The Expectation Value of $S_{V}[\vec{\varphi}']$

We now calculate the expectation value


\begin{displaymath}
\left\langle
S_{V}[\vec{\varphi}']
\right\rangle_{0}.
\end{displaymath}

Only the field-even part of the action will yield a non-zero result, so that we have


\begin{displaymath}
\left\langle
S_{V}[\vec{\varphi}']
\right\rangle_{0}
=
...
...t\langle
S_{V,{\rm even}}[\vec{\varphi}']
\right\rangle_{0}.
\end{displaymath}

Using the form of $S_{V,{\rm even}}[\vec{\varphi}']$ shown in Equation (A.2) we get for this expectation value

\begin{eqnarray*}
\lefteqn
{
\left\langle
S_{V}[\vec{\varphi}']
\right\rang...
...arphi_{\mathfrak{N}}'^{4}(n_{\mu})
\right\rangle_{0}
\right\}.
\end{eqnarray*}


Most of the remaining expectation values can be written in terms of $\sigma_{0}$ and $\sigma_{\mathfrak{N}}$, if we recall that it can be shown that for $i\neq\mathfrak{N}$ we have


\begin{displaymath}
\left\langle
\varphi_{i}'^{4}(n_{\mu})
\right\rangle_{0}
=
3\sigma_{0}^{2},
\end{displaymath}

while for $i=\mathfrak{N}$ we have, in a similar way,


\begin{displaymath}
\left\langle
\varphi_{\mathfrak{N}}'^{4}(n_{\mu})
\right\rangle_{0}
=
3\sigma_{\mathfrak{N}}^{2},
\end{displaymath}

as one can find in Appendix B, Equation (B.8). Given all this, we may write for our expectation value

\begin{eqnarray*}
\left\langle
S_{V}[\vec{\varphi}']
\right\rangle_{0}
& = &...
...}
+
\frac{3\lambda}{4}\,
\sigma_{\mathfrak{N}}^{4}
\right\}.
\end{eqnarray*}


The remaining expectation value of the sum shown can be found in Appendix B, Equation (B.15),


\begin{displaymath}
\left\langle
\left[
\sum_{i=1}^{\mathfrak{N}-1}
\varphi_...
...e{0em}{4ex}
(\mathfrak{N}+1)(\mathfrak{N}-1)
\sigma_{0}^{4}.
\end{displaymath}

Using this result we get for our expectation value

\begin{eqnarray*}
\left\langle
S_{V}[\vec{\varphi}']
\right\rangle_{0}
& = &...
...2}
+
\frac{3\lambda}{4}\,
\sigma_{\mathfrak{N}}^{4}
\right].
\end{eqnarray*}


Note that all the sums can now be done, so that we can write our result in the simpler form


$\displaystyle \left\langle
S_{V}[\vec{\varphi}']
\right\rangle_{0}$ $\textstyle =$ $\displaystyle N^{d}
\left[
\frac{\alpha-\alpha_{0}+\lambda v_{0}^{2}}{2}\,
(\ma...
...pha_{\mathfrak{N}}+3\lambda v_{0}^{2}}{2}\,
\sigma_{\mathfrak{N}}^{2}
+
\right.$  
    $\displaystyle \hspace{2.2em}
\left.
+
\frac{\lambda}{4}\,
(\mathfrak{N}^{2}-1)
...
...ma_{\mathfrak{N}}^{2}
+
\frac{3\lambda}{4}\,
\sigma_{\mathfrak{N}}^{4}
\right].$ (A.5)