The Expectation Value of $\varphi_{1}'(n_{\mu}')\varphi_{1}'(n_{\mu}'')S_{V}[\vec{\varphi}']$

We now calculate the expectation value


\begin{displaymath}
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1}'(n_{\mu}'')
S_{V}[\vec{\varphi}']
\right\rangle_{0}.
\end{displaymath}

Once more only the field-even part of the action will yield a non-zero result, so that we have


\begin{displaymath}
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1}'(n_{\mu}'...
...{\mu}'')
S_{V,{\rm even}}[\vec{\varphi}']
\right\rangle_{0}.
\end{displaymath}

Using the form of $S_{V,{\rm even}}[\vec{\varphi}']$ shown in Equation (A.3), and if we already replace the expectation values of squared fields by $\sigma_{0}$ or $\sigma_{\mathfrak{N}}$ whenever possible, as well as replace $\left\langle\varphi_{1}'(n_{\mu}')\varphi_{1}'(n_{\mu}'')\right\rangle_{0}$ by $g_{0}(n_{\mu}'-n_{\mu}'')$, we get

\begin{eqnarray*}
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1}'(n_{\mu}'')...
..._{\mu})
\right\rangle_{0}
g_{0}(n_{\mu}'-n_{\mu}'')
\right\}.
\end{eqnarray*}


We may now use the known value of the expectation value of the squared sum. From Appendix B, Equation (B.14), we get


\begin{displaymath}
\left\langle
\left[
\sum_{i=2}^{\mathfrak{N}-1}
\varphi_...
...t\rangle_{0}
=
\mathfrak{N}(\mathfrak{N}-2)
\sigma_{0}^{4}.
\end{displaymath}

We may also use the fact that it can be shown that

\begin{eqnarray*}
\left\langle
\varphi_{\mathfrak{N}}'^{4}(n_{\mu})
\right\ra...
..._{0}^{2}\,
g_{0}(n_{\mu}-n_{\mu}')\,
g_{0}(n_{\mu}-n_{\mu}''),
\end{eqnarray*}


also found in Appendix B, Equations (B.8), (B.10) and (B.12), in order to write for our expectation value

\begin{eqnarray*}
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1}'(n_{\mu}'')...
...sigma_{\mathfrak{N}}^{4}\,
g_{0}(n_{\mu}'-n_{\mu}'')
\right\}.
\end{eqnarray*}


Next we group all terms containing $g_{0}(n_{\mu}'-n_{\mu}'')$ and simplify to get

\begin{eqnarray*}
\lefteqn
{
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1...
...
\right\}
g_{0}(n_{\mu}-n_{\mu}')\,
g_{0}(n_{\mu}-n_{\mu}'').
\end{eqnarray*}


The sum over $n_{\mu}$ can now be done in all terms in the first group, yielding

\begin{eqnarray*}
\lefteqn
{
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1...
...
\right\}
g_{0}(n_{\mu}-n_{\mu}')\,
g_{0}(n_{\mu}-n_{\mu}'').
\end{eqnarray*}


We must now perform the sum indicated. This is easily done using Fourier transforms. From Appendix B, Equation (B.4), we get


\begin{displaymath}
\sum_{n_{\mu}}^{N^{d}}
g_{0}(n_{\mu}-n_{\mu}')\,
g_{0}(n_...
...mu}'-n_{\mu}'')}
}
{
[\rho^{2}(k_{\mu})+\alpha_{0}]^{2}
},
\end{displaymath}

which is expressed as a Fourier transform, with the general structure of a two-point function. We have therefore the final result,


$\displaystyle {
\left\langle
\varphi_{1}'(n_{\mu}')
\varphi_{1}'(n_{\mu}'')
S_{V}[\vec{\varphi}']
\right\rangle_{0}
}
$
  $\textstyle =$ $\displaystyle N^{d}
\left[
\frac{\alpha-\alpha_{0}+\lambda v_{0}^{2}}{2}\,
(\ma...
...pha_{\mathfrak{N}}+3\lambda v_{0}^{2}}{2}\,
\sigma_{\mathfrak{N}}^{2}
+
\right.$  
    $\displaystyle \hspace{2.2em}
\left.
+
\frac{\lambda}{4}\,
(\mathfrak{N}^{2}-1)
...
...frac{3\lambda}{4}\,
\sigma_{\mathfrak{N}}^{4}
\right]
g_{0}(n_{\mu}'-n_{\mu}'')$ (A.6)
    $\displaystyle +
\left[
\alpha-\alpha_{0}
+
\lambda
v_{0}^{2}
+
\lambda
(\mathfr...
...{\mu}^{d}k_{\mu}(n_{\mu}'-n_{\mu}'')}
}
{
[\rho^{2}(k_{\mu})+\alpha_{0}]^{2}
}.$