One of the most important universal concepts of physics is the concept of
energy, which we did not touch up to now in our technical development.
In this chapter we will correct this state of affairs, introducing and
exploring the concept of energy, thus continuing our probe into the
fundamental structure of the theory, and extending it in this important
new direction. This will require the redefinition of the theory in the
context of the canonical formalism, which we will develop entirely on the
Euclidean lattice. We will see that it is possible to do this without any
problems, and that the usual familiar results are recovered in the
case of quantum mechanics. However, significant differences with respect
to the results of the traditional formalism will be found in the case of
quantum field theory, that is, for the cases
.
At first the exploration of the concept of energy will be limited to the
study of the vacuum state of the theory, which has already been defined,
but one is quickly led to consider other states, resulting in the
definition and exploration of particle states, that is, states with
energies and momenta corresponding to multiples of some fundamental
quanta. These particle states will be associated to the modes of the
-dimensional cavity containing the physical system, in momentum space,
an association which is of great physical importance, since it can be
realized experimentally in the non-relativistic limit. The important
on-shell condition characterizing the physical states of relativistic
particles will appear naturally from the resulting structure when one
considers the continuum limit.
We will see that the introduction of the particle states permits a deeper
and more direct probe into the structure of the theory, which is closer
to the observability aspects of the physical structure. However, some
difficulties of a very fundamental nature will also be found, when we try
to make closer contact with the traditional formalism involving
state-vectors and operators in a Hilbert space. These difficulties do not
appear in the definition and calculation of the correlation-function
aspects of the structure, but only when one considers the issue of the
definition of the energy and of particle states. The results of the last
section of this chapter will lead us to depart even further from the
traditional approach to the subject.