Second-Order Center Series

There are two dominant singularities, located at $z=\mbox{\boldmath$\imath$}$ and at $z=-\mbox{\boldmath$\imath$}$, so that we must use factors of $(z-\mbox{\boldmath$\imath$})^{2}(z+\mbox{\boldmath$\imath$})^{2}=\left(z^{2}+1\right)^{2}$ in the construction of the second-order center series,


\begin{displaymath}
S_{z}
=
\frac{1}{\left(z^{2}+1\right)^{2}}\,
C_{z},
\end{displaymath}

where

\begin{eqnarray*}
C_{z}
& = &
\frac{4}{\pi}\,
\left(z^{2}+1\right)^{2}
\sum...
...0}^{\infty}
\frac{24(-1)^{j}}{k(k+2)(k+4)}\,
z^{k+3}
\right],
\end{eqnarray*}


where $k=2j+1$, and where we distributed the factor on the series and manipulated the indices of the resulting sums. Unlike the original series, with coefficients that behave as $1/k$, this series has coefficients that go to zero as $1/k^{3}$ when $k\to\infty$, and therefore our evaluation of the set of dominant singularities of $w(z)$ was in fact correct. We have therefore for $S_{z}$ the representation


\begin{displaymath}
S_{z}
=
\frac{4}{3\pi}\,
\frac{z}{\left(z^{2}+1\right)^{...
...^{\infty}
\frac{24(-1)^{j}}{k(k+2)(k+4)}\,
z^{k+3}
\right],
\end{displaymath}

where $k=2j+1$. In order to take the real and imaginary parts of $S_{z}$ on the unit circle, we observe now that since $z=\rho\exp(\mbox{\boldmath$\imath$}\theta)$ we have on the unit circle


\begin{displaymath}
\frac{z}{\left(z^{2}+1\right)}
=
\frac{z^{*}}{4\cos^{2}(\theta)},
\end{displaymath}

where $z^{*}z=1$. We also have that

\begin{eqnarray*}
z^{*}\left(3+5z^{2}\right)
& = &
3z^{*}+5z
\\
& = &
[8\cos(\theta)]
+
\mbox{\boldmath$\imath$}
[2\sin(\theta)],
\end{eqnarray*}


and therefore we have for $S_{z}$ on the unit circle

\begin{eqnarray*}
S_{z}
& = &
\frac{2}{3\pi\cos^{2}(\theta)}
\left\{
4\cos(...
...
\frac{12(-1)^{j}}{k(k+2)(k+4)}\,
\sin[(k+2)\theta]
\right\},
\end{eqnarray*}


where $k=2j+1$, and where we collected the real and imaginary terms. The original DP function is given by the real part,


\begin{displaymath}
f_{\rm c}(\theta)
=
\frac{2}{3\pi\cos^{2}(\theta)}
\left...
...\frac{12(-1)^{j}}{k(k+2)(k+4)}\,
\cos[(k+2)\theta]
\right\},
\end{displaymath}

where $k=2j+1$, and the corresponding FC function is given by the imaginary part,


\begin{displaymath}
f_{\rm s}(\theta)
=
\frac{2}{3\pi\cos^{2}(\theta)}
\left...
...\frac{12(-1)^{j}}{k(k+2)(k+4)}\,
\sin[(k+2)\theta]
\right\},
\end{displaymath}

where $k=2j+1$.