First-Order Center Series

There are two dominant singularities, located at $z=\mbox{\boldmath$\imath$}$ and at $z=-\mbox{\boldmath$\imath$}$, so that we must use factors of $(z-\mbox{\boldmath$\imath$})(z+\mbox{\boldmath$\imath$})=z^{2}+1$ in the construction of the first-order center series,


\begin{displaymath}
S_{z}
=
\frac{1}{z^{2}+1}\,
C_{z},
\end{displaymath}

where

\begin{eqnarray*}
C_{z}
& = &
\frac{4}{\pi}\,
\left(z^{2}+1\right)
\sum_{j=...
...um_{j=0}^{\infty}
\frac{2(-1)^{j}}{k(k+2)}\,
z^{k+1}
\right],
\end{eqnarray*}


where $k=2j+1$, and where we distributed the factor on the series and manipulated the indices of the resulting sums. Unlike the original series, with coefficients that behave as $1/k$, this series has coefficients that go to zero as $1/k^{2}$ when $k\to\infty$, and therefore our evaluation of the set of dominant singularities of $w(z)$ was in fact correct. We have therefore for $S_{z}$ the representation


\begin{displaymath}
S_{z}
=
\frac{4}{\pi}\,
\frac{z}{z^{2}+1}
\left[
1
+
...
..._{j=0}^{\infty}
\frac{2(-1)^{j}}{k(k+2)}\,
z^{k+1}
\right],
\end{displaymath}

where $k=2j+1$. In order to take the real and imaginary parts of $S_{z}$ on the unit circle, we observe now that since $z=\rho\exp(\mbox{\boldmath$\imath$}\theta)$ we have on the unit circle


\begin{displaymath}
\frac{z}{z^{2}+1}
=
\frac{1}{2\cos(\theta)},
\end{displaymath}

and therefore we have for $S_{z}$ on the unit circle


\begin{displaymath}
S_{z}
=
\frac{2}{\pi\cos(\theta)}
\left\{
1
+
\sum_{j...
...fty}
\frac{2(-1)^{j}}{k(k+2)}\,
\sin[(k+1)\theta]
\right\},
\end{displaymath}

where $k=2j+1$, and where we collected the real and imaginary terms. The original DP function is given by the real part,


\begin{displaymath}
f_{\rm c}(\theta)
=
\frac{2}{\pi\cos(\theta)}
\left\{
1...
...fty}
\frac{2(-1)^{j}}{k(k+2)}\,
\cos[(k+1)\theta]
\right\},
\end{displaymath}

where $k=2j+1$, and the corresponding FC function is given by the imaginary part,


\begin{displaymath}
f_{\rm s}(\theta)
=
\frac{2}{\pi\cos(\theta)}
\left\{
\...
...fty}
\frac{2(-1)^{j}}{k(k+2)}\,
\sin[(k+1)\theta]
\right\},
\end{displaymath}

where $k=2j+1$.