Broken-Symmetric Phase:
In this case, if there is no external source, then instead of zero we have for $v_{0}$ the non-trivial solution $v_{0,{\rm SSB}}$, which according to Equation (7) is given by


\begin{displaymath}
\lambda
v_{0,{\rm SSB}}^{2}
=
-
\alpha
-
\lambda
\le...
...-1)
\sigma_{0}^{2}
+
3
\sigma_{\mathfrak{N}}^{2}
\right],
\end{displaymath}

which is a positive quantity in this phase. Substituting this for the term $\lambda v_{0}^{2}$ in Equation (6) we get for the longitudinal renormalized mass parameter


\begin{displaymath}
\alpha_{\mathfrak{N}}
=
-2
\left\{
\alpha
+
\lambda
...
...a_{0}^{2}
+
3
\sigma_{\mathfrak{N}}^{2}
\right]
\right\}.
\end{displaymath} (D.13)

This is a positive quantity in this phase, and in general corresponds to a non-zero mass $m_{\mathfrak{N}}$. If, however, there is an external source, then $v_{0}$ will be somewhat larger that the solution $v_{0,{\rm SSB}}$. In this case we may add and subtract $3\lambda v_{0,{\rm SSB}}^{2}$ to Equation (6) and therefore write $\alpha_{\mathfrak{N}}$ as


\begin{displaymath}
\alpha_{\mathfrak{N}}
=
3\lambda
\left(
v_{0}^{2}
-
v...
...a_{0}^{2}
+
3
\sigma_{\mathfrak{N}}^{2}
\right]
\right\},
\end{displaymath}

showing once more that the mass increases with the variation of $v_{0}$ beyond its spontaneous symmetry-breaking value, and hence that it increases with the introduction of the external source. If we denote the value of $\alpha_{\mathfrak{N}}$ without the presence of the source by $\alpha_{\mathfrak{N},{\rm SSB}}$, we may write for the variation of $\alpha_{\mathfrak{N}}$ due to the external source


\begin{displaymath}
\alpha_{\mathfrak{N}}
-
\alpha_{\mathfrak{N},{\rm SSB}}
=
3\lambda
\left(
v_{0}^{2}
-
v_{0,{\rm SSB}}^{2}
\right).
\end{displaymath} (D.14)

Observe that once again this variation is three times larger than the corresponding variation of $\alpha_{0}$.