Alternate Proof of the Inner Analyticity of $w_{\epsilon }(z)$

Here we establish that $w_{\epsilon }(z)$ is analytic by showing that its real and imaginary parts satisfy the Cauchy-Riemann conditions. Consider an inner analytic function $w(z)$ and the corresponding filtered function within the open unit disk, with the real angular parameter $0<\epsilon\leq\pi$


\begin{displaymath}
w_{\epsilon}(z)
=
\frac{1}{2\epsilon}
\int_{\theta-\epsilon}^{\theta+\epsilon}d\theta'\,
w\!\left(z'\right).
\end{displaymath}

Since $w(z)$ is analytic, we have $w(z)=f_{\rm c}(\rho,\theta)+\mbox{\boldmath$\imath$}f_{\rm
s}(\rho,\theta)$ where $f_{\rm c}(\rho,\theta)$ and $f_{\rm
s}(\rho,\theta)$ satisfy the Cauchy-Riemann conditions in polar coordinates,

\begin{eqnarray*}
\frac{\partial f_{\rm c}}{\partial\rho}(\rho,\theta)
& = &
...
... = &
-\,
\frac{\partial f_{\rm s}}{\partial\rho}(\rho,\theta).
\end{eqnarray*}


It follows that the filtered function can be written as

\begin{eqnarray*}
w_{\epsilon}(z)
& = &
f_{\epsilon,{\rm c}}(\rho,\theta)+\mb...
...theta+\epsilon}d\theta'\,
f_{\rm s}\!\left(\rho,\theta'\right),
\end{eqnarray*}


so that we have

\begin{eqnarray*}
f_{\epsilon,{\rm c}}(\rho,\theta)
& = &
\frac{1}{2\epsilon}...
...theta+\epsilon}d\theta'\,
f_{\rm s}\!\left(\rho,\theta'\right).
\end{eqnarray*}


Since $f_{\rm c}(\rho,\theta)$ and $f_{\rm
s}(\rho,\theta)$ are continuous and differentiable, it is clear that so are $f_{\epsilon,{\rm c}}(\rho,\theta)$ and $f_{\epsilon,{\rm s}}(\rho,\theta)$. If we calculate their partial derivatives with respect to $\rho$ we get

\begin{eqnarray*}
\frac{\partial f_{\epsilon,{\rm c}}}{\partial\rho}(\rho,\thet...
...ac{\partial f_{\rm s}}{\partial\rho}\!\left(\rho,\theta'\right).
\end{eqnarray*}


Using the Cauchy-Riemann relations for $w(z)$ we may write these as

\begin{eqnarray*}
\frac{\partial f_{\epsilon,{\rm c}}}{\partial\rho}(\rho,\thet...
...,\theta+\epsilon)-f_{\rm c}(\rho,\theta-\epsilon)}
{2\epsilon}.
\end{eqnarray*}


If we now calculate the partial derivatives of $f_{\epsilon,{\rm c}}(\rho,\theta)$ and $f_{\epsilon,{\rm s}}(\rho,\theta)$ with respect to $\theta $ we get

\begin{eqnarray*}
\frac{1}{\rho}\,
\frac{\partial f_{\epsilon,{\rm c}}}{\parti...
...,\theta+\epsilon)-f_{\rm s}(\rho,\theta-\epsilon)}
{2\epsilon}.
\end{eqnarray*}


Comparing this pair of equations with the previous one we get

\begin{eqnarray*}
\frac{\partial f_{\epsilon,{\rm c}}}{\partial\rho}(\rho,\thet...
...\frac{\partial f_{\epsilon,{\rm s}}}{\partial\rho}(\rho,\theta),
\end{eqnarray*}


which establish the analyticity of $w_{\epsilon }(z)$, in the same domain as that of $w(z)$. Let us now examine the other properties defining an inner analytic function. For one thing we have $w(0)=0$, which means that

\begin{eqnarray*}
\lim_{\rho\to 0}
f_{\rm c}(\rho,\theta)
& = &
0,
\\
\lim_{\rho\to 0}
f_{\rm s}(\rho,\theta)
& = &
0.
\end{eqnarray*}


If we calculate the corresponding limits for $w_{\epsilon }(z)$ we get

\begin{eqnarray*}
\lim_{\rho\to 0}
f_{\epsilon,{\rm c}}(\rho,\theta)
& = &
\...
...\rho\to 0}
f_{\rm s}\!\left(\rho,\theta'\right)
\\
& = &
0.
\end{eqnarray*}


We have therefore that $w_{\epsilon}(0)=0$. Finally, $w(z)$ reduces to a real function over the interval $(-1,1)$ of the real axis, which means that its imaginary part is zero there, and therefore that $f_{\rm
s}(\rho,0)=0$ and $f_{\rm s}(\rho,\pm\pi)=0$. If we write $f_{\epsilon,{\rm s}}(\rho,\theta)$ for the same values of $\theta $ we get

\begin{eqnarray*}
f_{\epsilon,{\rm s}}(\rho,0)
& = &
\frac{1}{2\epsilon}
\in...
...^{\pi+\epsilon}d\theta'\,
f_{\rm s}\!\left(\rho,\theta'\right).
\end{eqnarray*}


However, since $w(z)$ is an inner analytic function we have that $f_{\rm
s}(\rho,\theta)$ is an odd function of $\theta $. In both cases above this implies that the integral is zero, and hence we conclude that $w_{\epsilon }(z)$ is an inner analytic function as well.