A Regular Sine Series with Even $k$

Consider the Fourier series of the two-cycle unit-amplitude sawtooth wave. As is well known it is given by the sine series


\begin{displaymath}
S_{\rm s}
=
-\,
\frac{4}{\pi}
\sum_{j=1}^{\infty}
\frac{1}{2j}\,
\sin[(2j)\theta].
\end{displaymath}

The corresponding FC series is then


\begin{displaymath}
\bar{S}_{\rm s}
=
-\,
\frac{4}{\pi}
\sum_{j=1}^{\infty}
\frac{1}{2j}\,
\cos[(2j)\theta],
\end{displaymath}

the complex $S_{v}$ series is given by


\begin{displaymath}
S_{v}
=
-\,
\frac{4}{\pi}
\sum_{j=1}^{\infty}
\frac{1}{2j}\,
v^{2j},
\end{displaymath}

and the complex power series $S_{z}$ is given by


\begin{displaymath}
S_{z}
=
-\,
\frac{4}{\pi}
\sum_{j=1}^{\infty}
\frac{1}{2j}\,
z^{2j}.
\end{displaymath}

The ratio test tells us that the disk of convergence of $S_{z}$ is the unit disk. If we consider the inner analytic function $w(z)$ within this disk we observe that $w(0)=0$, as expected. We have for the function and its derivative

\begin{eqnarray*}
w(z)
& = &
-\,
\frac{4}{\pi}
\sum_{j=1}^{\infty}
\frac{1...
...}{dz}
& = &
-\,
\frac{4}{\pi}
\sum_{j=1}^{\infty}
z^{2j-1}.
\end{eqnarray*}


This is a geometrical series and therefore we may write the derivative in closed form,

\begin{eqnarray*}
\frac{dw(z)}{dz}
& = &
-\,
\frac{4}{\pi}\,
\frac{z}{1-z^{...
...rac{2}{\pi}\,
\left(
\frac{1}{1+z}
-
\frac{1}{1-z}
\right).
\end{eqnarray*}


This function has two simple poles at the points where the two-cycle sawtooth wave is discontinuous. These are hard singularities of degree $1$. It is now very simple to integrate in order to obtain the inner analytic function $w(z)$ in closed form, remembering that we should have $w(0)=0$,

\begin{eqnarray*}
w(z)
& = &
\frac{2}{\pi}\,
\left[
\ln(1+z)
+
\ln(1-z)
\right]
\\
& = &
\frac{2}{\pi}\,
\ln\!\left(1-z^{2}\right).
\end{eqnarray*}


This function has logarithmic singularities at the points where the two-cycle sawtooth wave is discontinuous. These are borderline hard singularities. If we now rationalize the argument of the logarithm in order to write it in the form


\begin{displaymath}
1-z^{2}
=
R\,{\rm e}^{\mbox{\boldmath$\imath$}\alpha},
\end{displaymath}

then the logarithm is given by


\begin{displaymath}
\ln\!\left(1-z^{2}\right)
=
\ln(R)+\mbox{\boldmath$\imath$}\alpha,
\end{displaymath}

which allows us to identify the real and imaginary parts of $w(z)$. We may write for the argument

\begin{eqnarray*}
R\,{\rm e}^{\mbox{\boldmath$\imath$}\alpha}
& = &
1
-
\rh...
...ox{\boldmath$\imath$}
\left[
\rho^{2}
\sin(2\theta)
\right].
\end{eqnarray*}


From this it follows, after some algebra, that we have

\begin{eqnarray*}
R(\rho,\theta)
& = &
\sqrt{1-2\rho^{2}\cos(2\theta)+\rho^{4...
...ft[\frac{\rho^{2}\sin(2\theta)}{1-\rho^{2}\cos(2\theta)}\right].
\end{eqnarray*}


The part which is of interest now is the imaginary one, which is related to the series $S_{\rm s}$,


\begin{displaymath}
\Im[w(z)]
=
-\,
\frac{2}{\pi}\,
\arctan\!
\left[\frac{\rho^{2}\sin(2\theta)}{1-\rho^{2}\cos(2\theta)}\right].
\end{displaymath}

The $\rho\to 1$ limit of this quantity is the function $f_{\rm s}(\theta)$. If we consider the cases $\theta=0$ and $\theta=\pm\pi$, we immediately get zero, because the argument of the arc tangent is zero, and therefore we get $\alpha=0$. Therefore we have

\begin{eqnarray*}
f_{\rm s}(0)
& = &
\lim_{\rho\to 1}
\Im[w(\rho,0)]
\\
&...
...i)
& = &
\lim_{\rho\to 1}
\Im[w(\rho,\pm\pi)]
\\
& = &
0.
\end{eqnarray*}


These are the correct values for the Fourier-series representation of the two-cycle sawtooth wave at these points. For $\theta\neq 0$ and $\theta\neq\pm\pi$ we get

\begin{eqnarray*}
f_{\rm s}(\theta)
& = &
\lim_{\rho\to 1}
\Im[w(z)]
\\
&...
...}{\pi}
\arctan\!\left[\frac{\cos(\theta)}{\sin(\theta)}\right].
\end{eqnarray*}


In order to solve this equation we first write it as

\begin{eqnarray*}
f_{\rm s}(\theta)
& = &
\frac{2}{\pi}\,
\alpha(\theta),
\...
...ghtarrow
\\
\tan(\alpha)
& = &
-\,
\frac{1}{\tan(\theta)}.
\end{eqnarray*}


Keeping in mind that we must have $-\pi\leq\theta\leq\pi$ and $-\pi/2\leq\alpha\leq\pi/2$, and paying careful attention to the signs of the sine and cosine of either angle, one concludes that the solution is given by


\begin{displaymath}
%
\renewedcommand{arraystretch}{2.4}
\begin{array}{rclcc...
...pi}{\displaystyle 2}}
&
\mbox{for}
&
\theta<0,
\end{array}\end{displaymath}

which means that for $f_{\rm s}(\theta)$ we have


\begin{displaymath}
%
\renewedcommand{arraystretch}{2.4}
\begin{array}{rclcc...
...playstyle \pi}}
+
1
&
\mbox{for}
&
\theta<0.
\end{array}\end{displaymath}

These are the correct values for the two-cycle unit-amplitude sawtooth wave. The FC function is related to the real part


\begin{displaymath}
\Re[w(z)]
=
\frac{1}{\pi}\,
\ln\!\left[1-2\rho^{2}\cos(2\theta)+\rho^{4}\right].
\end{displaymath}

In the $\rho\to 1$ limit this function is singular at $\theta=0$ and $\theta=\pm\pi$. Away from these logarithmic singularities we may write

\begin{eqnarray*}
\bar{f}_{\rm s}(\theta)
& = &
\lim_{\rho\to 1}
\Re[w(z)]
...
...\
& = &
\frac{1}{\pi}\,
\ln\!\left[4\sin^{2}(\theta)\right].
\end{eqnarray*}


We see therefore that the FC function to the two-cycle sawtooth wave is a function with logarithmic singularities at the two points where the original function is discontinuous. The derivative of this conjugate function is easily calculated, and turns out to be


\begin{displaymath}
\frac{d\bar{f}_{\rm s}(\theta)}{d\theta}
=
\frac{2}{\pi}\,
\frac{\cos(\theta)}{\sin(\theta)}.
\end{displaymath}

This is a quite a simple function, with two simple poles at $\theta=0$ and $\theta=\pm\pi$. Note that the logarithmic singularities of the FC function $\bar{f}_{\rm s}(\theta)$ are integrable ones, as one would expect since the Fourier coefficients are finite.

Note that we get a free set of integration formulas out of this effort. Since the coefficients $a_{k}$ can be written as integrals involving $\bar{f}_{\rm s}(\theta)$, we have at once that for even $k=2j$


\begin{displaymath}
\int_{-\pi}^{\pi}d\theta\,
\ln\!\left[4\sin^{2}(\theta)\right]
\cos(k\theta)
=
-\,
\frac{4\pi}{k},
\end{displaymath}

for $k>0$, while for odd $k=2j+1$


\begin{displaymath}
\int_{-\pi}^{\pi}d\theta\,
\ln\!\left[4\sin^{2}(\theta)\right]
\cos(k\theta)
=
0.
\end{displaymath}

Note that $\bar{f}_{\rm s}(\theta)$ is an even function of $\theta$, so that these integrals are not zero by parity arguments, and therefore we also have


\begin{displaymath}
\int_{0}^{\pi}d\theta\,
\ln\!\left[4\sin^{2}(\theta)\right]
\cos(k\theta)
=
0,
\end{displaymath}

for $k=2j+1$.