First-Order Center Series

There are two dominant singularities, located at $z=1$ and at $z=-1$, so that we must use factors of $(z-1)(z+1)=z^{2}-1$ in the construction of the first-order center series,


\begin{displaymath}
S_{z}
=
\frac{1}{z^{2}-1}\,
C_{z},
\end{displaymath}

where

\begin{eqnarray*}
C_{z}
& = &
\frac{32}{\pi^{3}}
\left(z^{2}-1\right)
\sum_...
...^{\infty}
\frac{6k(k+2)+8}{k^{3}(k+2)^{3}}\,
z^{k+1}
\right],
\end{eqnarray*}


where $k=2j+1$, and where we distributed the factor on the series and manipulated the indices of the resulting sums. Unlike the original series, with coefficients that behave as $1/k^{3}$, this series has coefficients that go to zero as $1/k^{4}$ when $k\to\infty$, and therefore our evaluation of the set of dominant singularities of $w(z)$ was in fact correct. We have therefore for $S_{z}$ the representation


\begin{displaymath}
S_{z}
=
\frac{32}{\pi^{3}}\,
\frac{z}{z^{2}-1}
\left[
...
...\infty}
\frac{6k(k+2)+8}{k^{3}(k+2)^{3}}\,
z^{k+1}
\right],
\end{displaymath}

where $k=2j+1$. In order to take the real and imaginary parts of $S_{z}$ on the unit circle, we observe now that since $z=\rho\exp(\mbox{\boldmath$\imath$}\theta)$ we have on the unit circle


\begin{displaymath}
\frac{z}{z^{2}-1}
=
-\,
\frac{\mbox{\boldmath$\imath$}}{2\sin(\theta)},
\end{displaymath}

and therefore we have for $S_{z}$ on the unit circle

\begin{eqnarray*}
S_{z}
& = &
-\,
\frac{16}{\pi^{3}}\,
\frac{\mbox{\boldmat...
...\frac{6k(k+2)+8}{k^{3}(k+2)^{3}}\,
\cos[(k+1)\theta]
\right\},
\end{eqnarray*}


where $k=2j+1$, and where we collected the real and imaginary terms. The original DP function is given by the imaginary part,


\begin{displaymath}
f_{\rm s}(\theta)
=
\frac{16}{\pi^{3}\sin(\theta)}
\left...
...rac{6k(k+2)+8}{k^{3}(k+2)^{3}}\,
\cos[(k+1)\theta]
\right\},
\end{displaymath}

where $k=2j+1$, and the corresponding FC function is given by the real part,


\begin{displaymath}
f_{\rm c}(\theta)
=
\frac{16}{\pi^{3}\sin(\theta)}
\left...
...rac{6k(k+2)+8}{k^{3}(k+2)^{3}}\,
\sin[(k+1)\theta]
\right\},
\end{displaymath}

where $k=2j+1$.