Action on the Fourier Coefficients with $k>0$

Let us determine the effect of the filter on the Fourier coefficients for $k>0$. We start with the Fourier coefficients of $f(x)$, which are given by

\begin{eqnarray*}
\alpha_{k}
& = &
\frac{1}{\pi}
\int_{-\pi}^{\pi}dx\,
f(x)...
...k}
& = &
\frac{1}{\pi}
\int_{-\pi}^{\pi}dx\,
f(x)
\sin(kx),
\end{eqnarray*}


where we arbitrarily chose $[-\pi ,\pi ]$ as the periodic interval. The Fourier coefficients of $f_{\varepsilon}(x)$ are similarly given by

\begin{eqnarray*}
\alpha_{\varepsilon,k}
& = &
\frac{1}{\pi}
\int_{-\pi}^{\p...
...ac{1}{\pi}
\int_{-\pi}^{\pi}dx\,
f_{\varepsilon}(x)
\sin(kx).
\end{eqnarray*}


Let us work out only the first case, since the work for the second one in essentially identical. Using the definition of $f_{\varepsilon}(x)$ in terms of $f(x)$ we have

\begin{eqnarray*}
\alpha_{\varepsilon,k}
& = &
\frac{1}{\pi}
\int_{-\pi}^{\p...
...psilon\pi k}
\int_{-\pi}^{\pi}dx\,
\sin(kx)
f(x-\varepsilon),
\end{eqnarray*}


where we integrated by parts and where there is no integrated term due to the periodicity of the integrand on the domain. We now change variables in each integral, using $x'=x\pm\varepsilon$, in order to obtain

\begin{eqnarray*}
\alpha_{\varepsilon,k}
& = &
-\,
\frac{1}{2\varepsilon\pi ...
...ft[
\sin(kx'+k\varepsilon)
-
\sin(kx'-k\varepsilon)
\right],
\end{eqnarray*}


where the integration limits did not change in the transformations of variables due to the periodicity of the integrand on the domain. We are left with

\begin{eqnarray*}
\alpha_{\varepsilon,k}
& = &
\frac{1}{2\varepsilon\pi k}
\...
...t_{-\pi}^{\pi}dx'\,
f\!\left(x'\right)
\cos\!\left(kx'\right).
\end{eqnarray*}


Since we recover in this way the expression of the Fourier coefficients $\alpha_{k}$ of $f(x)$, we get


\begin{displaymath}
\alpha_{\varepsilon,k}
=
\left[
\frac{\sin(k\varepsilon)}{(k\varepsilon)}
\right]
\alpha_{k},
\end{displaymath}

and repeating the calculation for the other coefficients one gets


\begin{displaymath}
\beta_{\varepsilon,k}
=
\left[
\frac{\sin(k\varepsilon)}{(k\varepsilon)}
\right]
\beta_{k}.
\end{displaymath}

Once again we see the sinc function of the variable $(k\varepsilon)$ appearing here. Since $\sin(k\varepsilon)$ is a limited function, in terms of the asymptotic behavior of the coefficients, for large values of $k$, the net effect of the filter is to add a factor of $k$ to the denominator.