Derivation from the Field Equation

Here we calculate in terms of $\beta (r)$ the quantity $r\left[r\nu'(r)\right]'$. If we simply differentiate the quantity $\left[r\nu'(r)\right]$ given in Equation (62) of the text, we get


$\displaystyle r\left[r\nu'(r)\right]'$ $\textstyle =$ $\displaystyle r\,\frac{r_{M}}{2}
\left[
\frac
{\beta(r)+\omega\left[r\beta'(r)\right]}
{r-r_{M}\beta(r)}
\right]'$  
  $\textstyle =$ $\displaystyle r\,\frac{r_{M}}{2}
\left\{
\frac
{\beta'(r)+\omega\left[r\beta'(r...
...ght]}
{\left[r-r_{M}\beta(r)\right]^{2}}
\left[1-r_{M}\beta'(r)\right]
\right\}$  
  $\textstyle =$ $\displaystyle \frac{r_{M}}{2}
\left(
\rule{0em}{4ex}
\frac
{\left[r\beta'(r)\ri...
...ht\}}
{\left[r-r_{M}\beta(r)\right]^{2}}
\left[r-r_{M}\beta(r)\right]
+
\right.$  
    $\displaystyle \hspace{3em}
\left.
-\,
\frac
{\beta(r)+\omega\left[r\beta'(r)\ri...
...ght]^{2}}
\left\{r-r_{M}\left[r\beta'(r)\right]\right\}
\rule{0em}{4ex}
\right)$  
  $\textstyle =$ $\displaystyle \frac{r_{M}}{2[r-r_{M}\beta(r)]^{2}}
\times$  
    $\displaystyle \times
\left[
\rule{0em}{3ex}
\left(
\left[r\beta'(r)\right]
+
\o...
...[r\beta'(r)\right]'
\right\}
\right)
\left[
r
-
r_{M}\beta(r)
\right]
+
\right.$ (122)
    $\displaystyle \hspace{3em}
\left.
-
\left\{
\beta(r)
+
\omega\left[r\beta'(r)\r...
...ght\}
\left\{
r
-
r_{M}\left[r\beta'(r)\right]
\right\}
\rule{0em}{3ex}
\right]$  
  $\textstyle =$ $\displaystyle \frac{r_{M}}{2[r-r_{M}\beta(r)]^{2}}
\times$  
    $\displaystyle \times
\left(
\rule{0em}{3ex}
\omega
\left[
r
-
r_{M}\beta(r)
\ri...
...
+
r
\left[r\beta'(r)\right]
-
r_{M}
\beta(r)
\left[r\beta'(r)\right]
+
\right.$  
    $\displaystyle \hspace{3em}
\left.
-
r
\beta(r)
+
r_{M}
\beta(r)
\left[r\beta'(r...
...a'(r)\right]
+
\omega
r_{M}
\left[r\beta'(r)\right]^{2}
\rule{0em}{3ex}
\right)$  
  $\textstyle =$ $\displaystyle \frac{r_{M}}{2[r-r_{M}\beta(r)]^{2}}
\left(
\rule{0em}{3ex}
\omeg...
...r\beta'(r)\right]'\right\}
+
\omega
r_{M}
\left[r\beta'(r)\right]^{2}
+
\right.$  
    $\displaystyle \hspace{16em}
\left.
+
(1-\omega)
r
\left[r\beta'(r)\right]
-
r
\beta(r)
\rule{0em}{3ex}
\right),$  

so that we have


\begin{displaymath}
r\left[r\nu'(r)\right]'
=
r_{M}\,
\frac
{
\left(
\beg...
...r
\beta(r)
\end{array} \right)
}
{2[r-r_{M}\beta(r)]^{2}},
\end{displaymath} (123)

which therefore determines $r\left[r\nu'(r)\right]'$, and indirectly also determines $\nu''(r)$, in terms of $\beta (r)$.