First-Order Center Series

There is a single dominant singularity at $z=-1$, so that we must use a single factor of $(z+1)$ in the construction of the first-order center series,


\begin{displaymath}
S_{z}
=
\frac{1}{z+1}\,
C_{z},
\end{displaymath}

where

\begin{eqnarray*}
C_{z}
& = &
\frac{2}{\pi}\,
(z+1)
\sum_{k=1}^{\infty}
\f...
...sum_{k=1}^{\infty}
\frac{(-1)^{k+1}}{k(k+1)}\,
z^{k}
\right],
\end{eqnarray*}


where we distributed the factor on the series and manipulated the indices of the resulting sums. Unlike the original series, with coefficients that behave as $1/k$, this series has coefficients that go to zero as $1/k^{2}$ when $k\to\infty$, and therefore our evaluation of the set of dominant singularities of $w(z)$ was in fact correct. We have therefore for $S_{z}$ the representation


\begin{displaymath}
S_{z}
=
\frac{2}{\pi}\,
\frac{z}{z+1}
\left[
1
+
\sum_{k=1}^{\infty}
\frac{(-1)^{k+1}}{k(k+1)}\,
z^{k}
\right].
\end{displaymath}

In order to take the real and imaginary parts of $S_{z}$ on the unit circle, we observe now that since $z=\rho\exp(\mbox{\boldmath$\imath$}\theta)$ we have on the unit circle


\begin{displaymath}
\frac{z}{z+1}
=
\frac{1}{2}
+
\frac{\mbox{\boldmath$\imath$}}{2}\,
\frac{\sin(\theta)}{1+\cos(\theta)}.
\end{displaymath}

If we write this in terms of $\theta/2$ we get


\begin{displaymath}
\frac{z}{z+1}
=
\frac{1}{2}
+
\frac{\mbox{\boldmath$\imath$}}{2}\,
\frac{\sin(\theta/2)}{\cos(\theta/2)},
\end{displaymath}

and therefore we have for $S_{z}$ on the unit circle

\begin{eqnarray*}
S_{z}
& = &
\frac{1}{\pi}
\left[
1
+
\mbox{\boldmath$\i...
...ty}
\frac{(-1)^{k+1}}{k(k+1)}\,
\sin[(k+1/2)\theta]
\right\},
\end{eqnarray*}


where we collected the real and imaginary terms. The original DP function is given by the imaginary part,


\begin{displaymath}
f_{\rm s}(\theta)
=
\frac{1}{\pi\cos(\theta/2)}
\left\{
...
...}
\frac{(-1)^{k+1}}{k(k+1)}\,
\sin[(k+1/2)\theta]
\right\},
\end{displaymath}

and the corresponding FC function is given by the real part,


\begin{displaymath}
f_{\rm c}(\theta)
=
\frac{1}{\pi\cos(\theta/2)}
\left\{
...
...}
\frac{(-1)^{k+1}}{k(k+1)}\,
\cos[(k+1/2)\theta]
\right\}.
\end{displaymath}