
The Wolff Algorithm

with

External Sources and Boundaries

Jorge L. deLyra

Department of Mathematical Physics
Physics Institute

University of São Paulo

Version 1, July 2006

We will consider here the technical question of how to implement the Wolff cluster
algorithm for the Ising model in the presence of arbitrary external sources. We will
also consider the use of the algorithm in lattices with fixed rather than periodical
boundary conditions, as well as the use of truncated clusters. We will not deal with
the technical aspects relating to how well the algorithm itself works, with respect to
the elimination of the phenomenon of critical slowing down. For that, the reader is
referred to the original papers on the cluster algorithms [1, 2].

1 The Wolff Algorithm

The traditional Metropolis algorithm, when applied do the Ising models close to
their critical points, suffers from severe critical slowing down problems. This is
due to its single-site updating procedure, which is good for updating the short-
wavelength components of the configurations, but very bad at updating the long-
wavelength components. Near the critical point the long-wavelength components
play an important role due to the emergence of long-distance correlations, and in
these circumstances the algorithm tends to diffuse only very slowly through the
configuration space of the model. This increases the autocorrelations along the
stochastic sequence of configurations and severely degrades the statistical quality of
the results.

This is always a problem is the case of quantum field theory, since in that theory
we are interested primarily in the critical region of the statistical models. If we
are to use the Ising model in the analysis of problems in quantum field theory, we
must use simulation techniques that do not suffer from such problems. The cluster
algorithms are the answer to our needs, and among them the Wolff algorithm is
particularly well suited for the task, due to its simplicity and efficiency. Cluster

1



algorithms are characterized by the updating of whole sets of sites, or clusters, at a
time, and in doing this they solve the problem of critical slowing down. The problem
of how to make collective updates with a low rate of rejection and in such a way
that the required statistical distribution is still produced correctly is a very difficult
one, which was solved by the inventors of the cluster algorithms.

In this section we will describe the basic algorithm and show that it satisfied the
condition of detailed balance, thus converging to the correct distribution. After that
we will generalize the algorithm to the case in which we introduce external sources
in the systems, as well as to the case in which we use fixed rather than the more
usual periodical boundary conditions. This last topic will also lead us to consider
the use of truncated clusters, a variation of the algorithm which may be useful under
some circumstances.

Let us start by reviewing the fundamentals of the Metropolis algorithm. In order
to do that we must first establish some notation. Consider a model in quantum
field theory defined by an action functional S[ψ], where ψ is the field. This action
determines the distribution of probabilities for all the possible configurations C of the
field, which is given by PB[C] = Z exp(−S[C]), where Z is a normalization constant
and the dependence on the field can be represented either by S[ψ] or by S[C]. What
a simulation algorithm does is to establish a probability W [C → C ′] for going from
a configuration C to a configuration C ′ on a single iteration of the algorithm. By
iterating the algorithm indefinitely one produces a sequence of configurations with
a distribution of probabilities that is supposed to approach PB[C].

In order for this to work, it suffices that the algorithm satisfy two conditions:
ergodicity and detailed balance. Although not strictly necessary, these conditions
are sufficient to ensure convergence to the correct distribution. Ergodicity means
that any configuration C ′ should be reachable from any other configuration C in a
finite number of iterations of the algorithm. In other words, the algorithm should
never get stuck in any particular configuration that it is unable to leave, and there
should be no configuration that it cannot reach from some other configuration. This
means that the algorithm should be able to diffuse through the whole space of
possible configurations of the field, without leaving out any points or regions within
it. Note that no statement is made here about how fast it is able to diffuse. Of
course, in practice the quality of the algorithm will depend on it being able to do so
fast, because the space of configurations is usually very large.

The condition of detailed balance is the one which will mostly concern us here. It
is a relation between the probability W [C → C ′] of going from the configuration C
to the configuration C ′ and the probability W [C ′ → C] of doing the reversed update,
that is, of going from C ′ to C, and involves the probabilities P [C] and P [C ′] of the
two configurations involved, within the ensemble of all possible configurations. It
states that the ratio of these two probabilities should satisfy the condition

W [C → C ′]

W [C ′ → C]
=
P [C ′]

P [C]
.

Since the probabilities of the configurations can be written in terms of the action,

2



this condition can be translated into

W [C → C ′]

W [C ′ → C]
=

exp(−S[C ′])

exp(−S[C])
= exp(−S[C ′] + S[C]) = exp(−∆S),

where ∆S is the change in the action due to the update of the configuration. It is
possible to show by elementary means, in a simple one-dimensional case, that this
condition is sufficient to guarantee that the set of configurations produced by the
algorithm converges to the correct distribution. However, that is not our focus here,
and we will simply take it as a given fact. Let us now describe in detail the usual
Metropolis algorithm for a single local update in the Ising model, and show that
it satisfies this condition. Starting from some initial configuration, the Metropolis
single-site updating algorithm is given by the following sequence of steps:

1. Choose a single site of the lattice for trying an update, for example in a random
way.

2. Calculate the variation ∆S of the action caused by flipping the field at that
site.

3. If it happens that ∆S ≤ 0, then flip the field with probability equal to 1.

4. If ∆S > 0, then flip the field with probability exp(−∆S), which in this case
is a number in the interval (0, 1); if the update is rejected, repeat the current
configuration in the stochastic sequence.

5. Loop back to step 1 and repeat the procedure.

As one can see, the algorithm is very simple and easily generalizable to more complex
models. It is also possible to improve it in various rather technical ways, that help
in some cases but that do not solve the central problem of critical slowing down
caused by the local update. It is now easy to verify that this algorithm satisfies
the condition of detailed balance. We must consider three cases, depending on
whether the variation of the action is positive, zero or negative. If the update is
such that ∆S > 0, then we have for its probability W [C → C ′] = exp(−∆S); in this
case the reversed update is such that ∆S < 0, so that we have for its probability
W [C ′ → C] = 1; it therefore follows that

W [C → C ′]

W [C ′ → C]
=

exp(−∆S)

1
= exp(−∆S),

as required by the condition. If the update is such that ∆S < 0, then the probability
for the update is W [C → C ′] = 1, and the probability for the reversed update is
W [C → C ′] = exp(−∆′S), where ∆′S = −∆S is the variation of the action in the
reversed update; it therefore follows that

W [C → C ′]

W [C ′ → C]
=

1

exp(∆S)
= exp(−∆S),

3



+

Figure 1: A periodical lattice with the sites and links classified, showing the clusters
that may be built in it.

just as in the previous case. If ∆S = 0, then we also have ∆′S = 0, and hence
W [C → C ′] = W [C ′ → C] = 1, so that the ratio of the two updating probabilities
is equal to 1; since in this case exp(−∆S) = exp(0) is also equal to 1, we see that
in all three cases the condition is satisfied.

In order to discuss the Wolff algorithm, we must now establish a few more con-
cepts and notations. The basic idea of the algorithm will be to first built a cluster of
sites according to certain rules, and then to flip the whole cluster. The cluster will
be built by the “activation” of some of the links between two neighboring sites, and
requires that we classify the links according to whether it connects two sites where
the field has the same orientation, or opposite orientations. At first, let us consider
only lattices with periodical boundary conditions and the model in the absence of
any external sources. Later on we will extend the algorithm to these other cases.
We should recall here that the Ising model is defined by the action

S[ψ] = −β
∑

`

ψ−ψ+,

where 0 < β <∞ is the free parameter of the model, the sum is over the links and
ψ−, ψ+ are the values of the field at the two ends of a given link. In figure 1 one
can see an example of a two-dimensional periodical lattice with all its sites and links
dully classified. The sites where the field is positive are shown as black circles and
those where the field is negative as white circles. The links that connect two sites
with the same orientation are shown as solid lines, and those connecting sites with

4



+

Figure 2: The same periodical lattice, showing a possible cluster that might have
been built in it.

opposite orientations as dashed lines. Note that this is true for the border links as
well, which establish the periodical boundary conditions. The links represented by
solid lines will be denoted by `+ in the formulas, and those represented by dashed
lines by `−. According to the algorithm only `+ links can be activated to form
clusters, so the sets of sites connected by solid lines illustrate the clusters that can
be formed in this particular configuration. We may now state the Wolff algorithm,
which is given by the following sequence of steps:

1. Choose a single site of the lattice for starting to build the cluster, in a random
way.

2. Consider all the links connected to that initial site; the `− links are never to be
activated; activate the `+ links with the probability p+ = 1− exp(−2βψ−ψ+),
thus forming a first cluster of sites, that is, updating the cluster from a single
site to possibly a few sites.

3. Given the set of sites added to the cluster in the previous update of the cluster
(which is not the whole cluster), consider all the links that connect those sites
to sites that are still outside the cluster; among these, activate the `+ links
with the probability p+, thus enlarging (updating) the cluster.

4. Loop back to step 3 until the set of links left for activation trial in the next
round of the loop is empty; this means that you stop this loop at the first
instance of step 3 that adds no new sites to the cluster.

5



Figure 3: A larger lattice, showing a cluster and its boundary.

5. Flip the whole cluster with probability 1, then loop back to step 1, in order to
build and flip a new cluster.

Note that in steps 2 and 3, since only `+ links can be activated, the argument of the
exponential is negative and thus exp(−2βψ−ψ+) is a number in the interval (0, 1).
Therefore, so is the probability p+ = 1− exp(−2βψ−ψ+). Note also that during the
construction of the cluster a certain site may be approached by the growing cluster
from two or more different directions, along different links. If that site does not get
linked to the cluster at the first trial, it might still get linked at a later trial. The
algorithm implies that the same link is never tried more than once for activation,
but a single site my be tried more than once for linking to the cluster, if it has more
than one link able to be activated. Finally, observe that during construction it might
happen that two sites already included in the cluster are connected by a link that
has not yet been tried. That link will in fact never be tried by the algorithm, and
may be considered as automatically activated, that is, they can simply be activated
with probability 1 at the end of the construction. A simple cluster that could result
from the algorithm is shown in figure 2, with its sites and activated links, which are
shown in a thicker solid line.

Let us now show that this algorithm satisfied the condition of detailed balance.
In order to do this, given a certain cluster, we must calculate the probability that it
will be built and flipped. We will denote the cluster by C and the boundary of the
cluster, that is, the set of links that connect the cluster with sites outside the cluster,
by ∂C. In figure 3 one can see a larger lattice with a cluster that could have been

6



built by the algorithm, as well as its boundary, illustrated by the thick dotted line
which crosses all the links that connect the cluster to sites outside the cluster. Since
the probability of flipping a cluster is 1, once it has been built, we must simply
calculate the total probability of building a certain given cluster. The process of
building the cluster might start at any of its sites, so we start the calculation with
the probability that one of the sites of the cluster will be chosen in step 1 of the
algorithm. Let us call this probability pi, and there is no need to further elaborate
on it.

Irrespective of where the construction starts, the probability that the given clus-
ter will be built is the product of the probabilities that each one of its internal links
will be activated, times the product of the probabilities that each one of the links
of its borders will not be activated. Now, all the internal links are `+ links, so the
probability that they will be activated is given by

∏

`+∈C

p+.

For the `+ links in the border of the cluster not to be activated we have the proba-
bility

∏

`+∈∂C

q+,

where q+ = 1− p+ = exp(−2βψ−ψ+) is the complementary probability to p+. Since
the probability for the `− links at the border not to be activated is 1, this product
is the complete probability for the construction of the boundary. We have therefore
the complete probability for the construction of the cluster, and hence the complete
probability for the update of the configuration,

W [C → C ′] = pi





∏

`+∈C

p+









∏

`+∈∂C

q+



 .

Next we must consider the probability for the reversed update. Since the same set
of sites that makes up the cluster C in the configuration C also makes up the flipped
cluster C′ in the configuration C ′, it is clear that the probability pi is the same
in either case. Now, repeating the argument used for the cluster C we get for the
probability that the cluster C′ will be built

W [C ′ → C] = pi





∏

`+∈C′

p+









∏

`+∈∂C′

q+



 .

Observe now that when we flip the fields certain mappings between links take place.
When we go from the cluster C to the flipped cluster C′, we can see that all the
internal `+ links of C become internal `+ links of C′, since the fields at both ends of

7



each link get flipped and hence their product does not change sign. This means that
the first products that appears in the two formulas above are equal, and therefore
that we may write the ratio of the two probabilities as

W [C → C ′]

W [C ′ → C]
=

∏

`+∈∂C q+
∏

`+∈∂C′ q+
.

For the links at the border, however, we have that the `+ links of ∂C become the `−
links of ∂C ′, and that the `− links of ∂C become the `+ links of ∂C ′, since for these
links only the field at one end gets flipped and therefore the sign of the product
changes. In addition to this, the term of the action corresponding to each link
changes sign, so that the factor q+ gets mapped to 1/q+. If we write the ratio above
in terms of the action terms,

W [C → C ′]

W [C ′ → C]
=

∏

`+∈∂C exp(−2βψ−ψ+)
∏

`+∈∂C′ exp(−2βψ−ψ+)
,

we see that we can decompose each one of the two products in two parts,

W [C → C ′]

W [C ′ → C]
=

∏

`+∈∂C exp(−βψ−ψ+)
∏

`+∈∂C′ exp(−βψ−ψ+)

∏

`+∈∂C exp(−βψ−ψ+)
∏

`+∈∂C′ exp(−βψ−ψ+)
.

Now, due to the mappings of the boundary links which we just discussed, we have
that the following two equations hold,

∏

`+∈∂C

exp(−βψ−ψ+) =
∏

`−∈∂C′

exp(βψ−ψ+),

∏

`+∈∂C′

exp(−βψ−ψ+) =
∏

`−∈∂C

exp(βψ−ψ+),

so that the ratio of updating probabilities may be written as

W [C → C ′]

W [C ′ → C]
=

∏

`+∈∂C exp(−βψ−ψ+)
∏

`+∈∂C′ exp(−βψ−ψ+)

∏

`−∈∂C′ exp(βψ−ψ+)
∏

`−∈∂C exp(βψ−ψ+)

=

∏

`+∈∂C′ exp(βψ−ψ+)
∏

`+∈∂C exp(βψ−ψ+)

∏

`−∈∂C′ exp(βψ−ψ+)
∏

`−∈∂C exp(βψ−ψ+)
.

Note that in this way we have completed the set of boundary links in both the
numerator and the denominator, so that we may write

W [C → C ′]

W [C ′ → C]
=

∏

`∈∂C′ exp(βψ−ψ+)
∏

`∈∂C exp(βψ−ψ+)
=

exp(
∑

`∈∂C′ βψ−ψ+)

exp(
∑

`∈∂C βψ−ψ+)
.

What we see here in the argument of the two exponentials in the last form of this
equation is the negative of the part of the action that corresponds to the boundary

8



links, which we may denote by SB = −
∑

`∈∂C βψ−ψ+. We may therefore write the
ratio of the two updating probabilities as

W [C → C ′]

W [C ′ → C]
=

exp(−SB[C ′])

exp(−SB[C ′])
= exp(−∆SB).

Since in the flipping of a cluster the parts of the action corresponding to links that
are either completely internal to the cluster or completely external to it do not
change at all, the only variation of the action is that due to the boundary links,
which means that ∆S = ∆SB, and hence we get the final relation

W [C → C ′]

W [C ′ → C]
= exp(−∆S),

which is indeed the condition of detailed balance, as we set out to show. Please
note how important it is for this demonstration the fact that the update of a cluster
changes the action exclusively at the boundary links of the cluster, and not at its
bulk, that is, at its interior sites and links.

2 Arbitrary External Sources

Let us now discuss what happens when we introduce external sources into the sys-
tem. In this case we have a new term in the action, which becomes

S[ψ] = S0[ψ] + Sη[ψ] = −β
∑

`

ψ−ψ+ −
∑

s

η(s)ψ(s),

where the sum in the new term denoted as Sη[ψ] is over all the sites of the lattice.
The external source η(s) is a given, fixed but otherwise arbitrary function of the
sites. It is not simply a new parameter of the model because, unlike β, it may
change from site to site. It is not a dynamical variable either, since, unlike ψ, it
does not fluctuate according to a statistical ensemble. It is what we may call a
classical (non-quantum) variable introduced into the model in this way.

The issue at hand now, regarding the stochastic simulations, is how to update
the configurations so as to converge to the ensemble given by Z exp(−S[ψ]), with
this new action. At a first glance one may think that the most natural thing to do is
to modify the algorithm in order to take the new term into account while building
the cluster, but one can quickly verify that this does not work, due to the fact that
the flipping of the cluster changes this new term at the interior sites of the cluster.
Under such circumstances the algorithm no longer satisfies the condition of detailed
balance.

The only known alternative left open to us is to modify the probability of ac-
ceptance of the clusters, built exactly as before, taking only the term S0[ψ] into
consideration. This means that, instead of flipping the cluster with probability 1,
once it is built, we will flip it with a probability that depends on Sη[ψ], using a
version of the usual Metropolis algorithm at the end of the Wolff algorithm. Here
is the complete algorithm with this modification:

9



1. Choose a single site of the lattice for starting to build the cluster, in a random
way.

2. Consider all the links connected to that initial site; the `− links are never to be
activated; activate the `+ links with the probability p+ = 1− exp(−2βψ−ψ+),
thus forming a first cluster of sites, that is, updating the cluster from a single
site to possibly a few sites.

3. Given the set of sites added to the cluster in the previous update of the cluster
(which is not the whole cluster), consider all the links that connect those sites
to sites that are still outside the cluster; among these, activate the `+ links
with the probability p+, thus enlarging (updating) the cluster.

4. Loop back to step 3 until the set of links left for activation trial in the next
round of the loop is empty; this means that you stop this loop at the first
instance of step 3 that adds no new sites to the cluster.

5. Calculate the variation ∆Sη of the external-source term of the action caused
by flipping the cluster just built.

6. If it happens that ∆Sη ≤ 0, then flip the cluster with probability equal to 1.

7. If ∆Sη > 0, then flip the cluster with probability exp(−∆Sη); if the update is
rejected, repeat the current configuration in the stochastic sequence.

8. Loop back to step 1, in order to build and possibly flip a new cluster.

It is apparent at once that this algorithm is inevitably somewhat less efficient than
the pure Wolff algorithm, in terms of diffusion speed through configuration space,
but the important thing is that is still free from the severe critical slowing down
problems of the Metropolis algorithm. It is not difficult to check that the modified
algorithm satisfies the condition of detailed balance. Since the cluster is built just
like before, we already know that the ratio of the corresponding building probabilities
is given by

W0[C → C ′]

W0[C ′ → C]
= exp(−∆S0).

We must now multiply this by the flipping probability, which can easily be obtained
from our previous argument regarding the Metropolis algorithm,

Wη[C → C ′]

Wη[C ′ → C]
= exp(−∆Sη),

so that we have for the ratio of the complete probabilities W = W0Wη,

W [C → C ′]

W [C ′ → C]
= exp(−∆S0 − ∆Sη) = exp(−∆S),

10



+

Figure 4: A fixed-boundary lattice with the sites and links classified, showing the
clusters that may be built in it, as well as the boundary sites.

which is the condition of detailed balance, thus showing that the algorithm does
work. Note, however, that there is no way to control the rejection rate of the clusters
built, because the variation of Sη will depend on the average size of the clusters and
we have no control over that. It is possible, therefore, that the algorithm will
become very inefficient under certain conditions, with a high rejection rate, such as,
for example, in the case of a very large external source which is constant over the
whole lattice.

3 Fixed Boundary Conditions

Let us now discuss what happens when we use a lattice with fixed instead of peri-
odical boundary conditions. In this case the lattice has a boundary, where the field
is kept at fixed values, which are not necessarily constant over the boundary, and
which, even in the Ising model, are not necessarily just ±1. In figure 4 one can see
an example of such a lattice, with all its sites and links dully classified. The sites
at the external boundary are shown in gray. Note that all the links to the sites
at the boundary are represented by dashed lines, because one cannot ever activate
these links, since that would force us to flip the fields at the boundary, and of course

11



+

Figure 5: The same fixed-boundary lattice, showing a possible cluster that might
have been built in it, with part of it connected to the boundary.

changing the fields at the boundary is not allowed under these circumstances.
One can see without difficulty that one can use the algorithm to build clusters in

the usual way in the interior, once the links to the external boundary are marked as
non-candidates for activation. Once the cluster is built, there are two possibilities:
if the cluster includes no sites that are connected to the boundary sites, then one
can go ahead and flip it as usual; if the cluster does include one or more sites
connected to the external boundary, then flipping it will change a part of the action
which is being ignored by the building algorithm, namely the terms relating to links
connecting to the boundary sites. In this last case the situation is similar to the
situation discussed in the previous section for the case of external sources, namely
there is a part of the action that has to be taken into account separately.

In figure 5 one can see an example of a cluster built on the lattice, including a
few sites that are connected to the boundary. The same type of solution used in the
previous section applies in this case as well, but in this case the relevant separation
of the action is two parts is

S[ψ] = Si[ψ] + Sb[ψ] = −β
∑

`i

ψ−ψ+ − β
∑

`b

ψ−ψ+

where `i are the links strictly in the interior of the lattice and `b are those connect-

12



ing the interior to the boundary. The interior part Si of the action is taken into
consideration by the cluster-building algorithm, and the boundary part Sb can be
taken into account by a Metropolis test done afterwards, giving the probability that
the cluster will be flipped. Here is the algorithm for this case:

1. Choose a single site of the interior the of lattice for starting to build the cluster,
in a random way.

2. Consider all the links connected to that initial site, which are not connected
to the external boundary; the `− links are never to be activated; activate the
`+ links with the probability p+ = 1 − exp(−2βψ−ψ+), thus forming a first
cluster of sites, that is, updating the cluster from a single site to possibly a
few sites.

3. Given the set of sites added to the cluster in the previous update of the cluster
(which is not the whole cluster), consider all the links that connect those sites
to sites that are still outside the cluster, and which are not in the external
boundary; among these, activate the `+ links with the probability p+, thus
enlarging (updating) the cluster.

4. Loop back to step 3 until the set of links left for activation trial in the next
round of the loop is empty; this means that you stop this loop at the first
instance of step 3 that adds no new sites to the cluster.

5. Calculate the variation ∆Sb of the boundary term of the action caused by
flipping the cluster just built; this will of course be zero if there are no sites in
the cluster connected to sites in the boundary.

6. If it happens that ∆Sb ≤ 0, then flip the cluster with probability equal to 1.

7. If ∆Sb > 0, then flip the cluster with probability exp(−∆Sb); if the update is
rejected, repeat the current configuration in the stochastic sequence.

8. Loop back to step 1, in order to build and possibly flip a new cluster.

One can see that, just as in the case of external sources, in this case also the algorithm
is inevitably somewhat less efficient than the pure Wolff algorithm, in terms of
diffusion speed through configuration space. This will happen mostly in the rather
unlikely case when one has very large values at the boundary, and also for very
small lattices, since the ratio of the number of boundary sites to the number of
internal sites is much larger on small lattices, specially in the larger dimensions.
Just as in the case of external sources, in this case also we have no control over the
rejection rate, although this tends to be a lesser problem here than in the case of
the presence of a bulk term in the action, as is the case of the external-sources term.
Of course, one can easily combine fixed boundary conditions with the presence of
external sources, by simply considering for the Metropolis test all parts of the action
which are not taken into consideration by the cluster-building algorithm.

13



4 Superclusters and Truncated Clusters

One possible problem with the cluster algorithm is the possibility that under some
circumstances it will build many very large clusters, taking most of the lattice. In
a situation in which there is reflection invariance of the whole action, the flipping
of such a “supercluster”, combined with a symmetry transformation reflecting the
whole lattice, is actually equivalent to flipping the much smaller complementary
cluster. In this case one may be using a lot of computational effort building large
clusters in order to actually make relatively small changes in the configurations, and
hence the algorithm may become inefficient.

This kind of problem appears mostly in low dimensions and for very large val-
ues of β (low “temperatures”), away from the critical region, situations which are
therefore only of secondary interest for those interested mostly in quantum field the-
ory. However, it might be induced also by the presence of strong, constant external
sources, which tend to strongly orient the fields and hence to favor the building of
large clusters. In this case not only large clusters are more likely to be built, but
they will also most likely be rejected, because flipping them will tend to cause large
increases of the Sη term of the action. Once again large amount of computational
effort will be spent building clusters that are likely to be rejected, and the algorithm
may then diffuse through configuration space only very slowly.

One way to handle this kind of problem is to use truncated clusters. A truncated
cluster is one that we just stop building at some point, according to some criterion.
For example, one may require that the clusters have no more than a certain given
maximum number of sites in them. The way to handle such clusters is suggested
by the treatment of fixed boundary conditions described in the previous section. At
the point where one arbitrarily stops building the cluster, one has a list of `+ links
that should but no longer will be tested for activation. The corresponding terms
of the action have not been taken into account by the building algorithm, so that
flipping this truncated cluster would violate the condition of detailed balance.

The way to correct this is quite clear now: one examines the remaining `+ links
and calculates the variation of the corresponding terms of the action due to the
flipping of the cluster. Having done this, one performs a Metropolis test with this
variation of the action, thus establishing a probability for flipping the cluster. This
is exactly the same situation that one has for fixed boundary conditions, when the
cluster has part of its sites connected to the boundary sites. The only difference is
that in our case here the situation is realized at parts of the border of the truncated
cluster, consisting of the links that have not been tested for activation by the building
algorithm.

The introduction of a new parameter, such as the maximum number of sites
in a cluster, gives us a handle to try to control the rejection rate and thus to
try to optimize the efficiency of the algorithm, that is, the speed with which it
diffuses through configuration space. Note that one could use also other criteria for
truncating the cluster, such as that the cluster should not extend beyond a certain
radius from the initial site. This technique may be useful in some rather extreme

14



situations. For example, one might consider using it when, with the use of the usual
algorithm, the average size of the clusters becomes larger than one half the total
number of sites in the lattice.

Note that if one reduces the maximum number of sites in a cluster to just 1,
then the cluster algorithm is reduced back to the simple Metropolis algorithm, with
a strictly local update. Therefore, we can see that reducing too much the cluster
size may bring back the usual critical slowing down problems of the Metropolis
algorithm. Note also that in this case there is no fixed separation of the action
in two parts, the separation is dynamical, determined only at the point where we
decide to stop building the current cluster. This variation of the algorithm is not
actually difficult to implement, but finding the optimal maximum cluster size under
a given set of circumstances may not be so easy a task.

5 Optimization of the Algorithm

Under some common circumstances it is possible to optimize the extended Wolff al-
gorithms by technical means. This will depend fundamentally on the characteristics
of the external source or of the boundary conditions which are present. Specially in
the case of external sources, the main cause of performance degradation is the high
cluster rejection rate associated to large values of the sources. Let us recall that, af-
ter the cluster is built, one has to calculate the variation ∆Sη of the external-source
term of the action and then accept the cluster with the probability exp(−∆Sη). In
order to do this, one extracts a random number r ∈ [0, 1) and only accepts the
cluster if

r ≤ exp(−∆Sη),

or, equivalently, if

∆Sη ≤ − ln(r),

where one should note that − ln(r) is always a positive number. The best way to
calculate ∆Sη is to do so along the construction of the cluster, incrementing ∆Sη as
the sites are added to it. The optimizations we are talking about here are usually the
following two things: if the variation of the action Sη is guaranteed to be negative,
then the cluster is sure to be accepted and it is not necessary to calculate ∆Sη

or to perform the final Metropolis test, which saves some computational effort; if
the variation of the action is known to always increase as sites are added to the
cluster, then at some point one may know that the cluster will be rejected even
before completing it, and then one may drop the cluster, thus saving the significant
computer effort required to finish building it.

The main idea behind this is that, so long as the random number r used for
the final Metropolis test has a flat distribution of probabilities in [0, 1), it does not
matter whether it is extracted from the generator after the cluster is built or before

15



one starts to build it. Therefore one may extract it beforehand and keep the value
− ln(r) in storage for tests to be performed along the building of the cluster. In
order to better exemplify the idea, let us consider a specific case. Let us consider
the case in which the external source has a constant and non-vanishing value η over
the whole lattice. As we saw in the discussion of the building algorithm for the
clusters, it is always true that all the sites of a cluster have the field oriented in
the same direction. Therefore, if η is a constant, all the variations of the action
Sη associated to the flipping of the field at each site of the cluster will have the
same sign. Therefore, given η and the initial site ψi of the cluster, the following
statements are true:

• If ηψi < 0 then all the variations of Sη due to the inclusion of sites in the
cluster will be negative, and hence the cluster is sure to be accepted. In fact,
∆Sη will decrease monotonically from zero as the cluster is built.

• If ηψi > 0 then all the variations of Sη due to the inclusion of sites in the
cluster will be positive, and hence the cluster may be rejected. In this case,
∆Sη will increase monotonically from zero as the cluster is built.

Note that, so long as the external source η is not zero, it never happens that ηψi = 0.
Note also that, if the random number r extracted beforehand happens to be 0, then
one cannot calculate and store − ln(r), but in this case this is also not necessary,
because the condition

r = 0 ≤ exp(−∆Sη)

will be satisfied regardless of the value of ∆Sη, and hence the cluster is sure to be
accepted. A simple and well-structured way to implement these ideas is to imagine
that the code for building the cluster can run in one of two modes: a “check” mode,
in which ∆Sη is calculated along the building of the cluster, and a “no-check” mode,
in which the variations of Sη are simply ignored and the cluster is built and flipped
just as would happen in the absence of any external sources. Here is the algorithm
for the optimized code in this case:

1. Choose the first site randomly, starting in check mode.

2. If ηψi < 0 then go to no-check mode, build and flip the cluster, and loop back
to step 1, in order to build and possibly flip a new cluster.

3. If ηψi > 0 then extract a random number r for the Metropolis test.

4. If r = 0 then go to no-check mode, build and flip the cluster, and loop back
to step 1, in order to build and possibly flip a new cluster.

5. Calculate and store − ln(r), and stay in check mode, building the cluster and
calculating ∆Sη along the construction.

16



6. As each site is added to the cluster, check the relation between the value of
∆Sη and − ln(r): if the monotonically increasing ∆Sη surpasses − ln(r), then
reject the cluster, which means that you quit building it, repeat the current
configuration in the stochastic sequence, and loop back to step 1, in order to
build and possibly flip a new cluster.

7. If you get to the end of the construction of the cluster without a rejection,
then flip it with probability equal to 1 and loop back to step 1, in order to
build and possibly flip a new cluster.

In this way one makes as much economy as possible of computer effort. The idea
can be used in essentially the same way for other forms of constant external sources
such as, for example, one existing only over the world line of a particle, which is
a one-dimensional line of sites within the d-dimensional lattice. Also, it can easily
be adapted to fixed boundary conditions with a constant value of the field at the
external boundary. In fact, the external source or the value at the boundary do
not really have to be constant, so long as they do not change sign, for this idea to
work as explained above. In these other cases additional indexing structures may
be necessary, in order to single out the sites where the external source exists, or
the interior sites which are next to the external boundary, connected to it by the
boundary links.

It is much more difficult to optimize the case of a general external source or
set of boundary conditions, which can change sign freely. One can use ideas which
are similar to the ones described above, but it is much more difficult to obtain a
significant amount of optimization. The basic idea goes something like what follows.
Let us consider a typical intermediate situation during the construction of the clus-
ter. Assume that one keeps updated along the construction two positive variables,
∆Sη,min and ∆Sη,max, which hold the maximum value that can be subtracted from
the current value of ∆Sη and the maximum value that can be added to the current
value of ∆Sη, respectively, during the rest of the construction of the cluster.

Under these conditions, after the inclusion of a certain site in the cluster, if one
verifies that ∆Sη + ∆Sη,max is less than or equal to − ln(r), then there is no chance
that the action will ever increase enough to cause a rejection, and therefore one can
go to no-check mode in order to build the rest of the cluster and flip it. This is so
because the sum above is larger than or equal to the maximum possible value that
∆Sη can assume from this point on. Similarly, if one verifies that ∆Sη − ∆Sη,min

is greater than − ln(r), then there is no chance that the action will ever decrease
enough to avoid a rejection, and therefore one can quit the current cluster before
actually completing its construction. In this case, the difference above is smaller
than the minimum possible value that ∆Sη can assume from this point on.

The initial values of the variables ∆Sη,min and ∆Sη,max can be obtained, respec-
tively, as the sum of all negative single-site variations and the sum of all positive
single-site variations of the action Sη. Given the orientation of a certain cluster,
these sums can be limited to the sites of the lattice where the field has that ori-
entation, or even only to the sites that can actually participate of that particular

17



cluster, because they are connected to the initial site by strings of `+ links. Along
the construction the values of ∆Sη,min and ∆Sη,max have to be modified by the addi-
tion or subtraction of the variation of Sη at each site which is added to the cluster,
in order to keep the variables up to date. There is, of course, an additional overhead
of computer effort, needed in order to initialize and update these variables. Due to
this and to the added complexity of the resulting code, sometimes it may not be
worth while to implement this kind of optimization.

6 Fortran Routines

There are Fortran routines available implementing the cluster-update routines as
described in this document. There are also a few test programs that may be useful
as examples of how to use the routines. As they currently stand, these routines
are written for use in either 32-bit or 64-bit processors. The files described in what
follows, containing the source code, are freely available in a compressed tar file at
the URL:

http://latt.if.usp.br/technical-pages/twawesab/

There are files with the definition of the necessary data structures, as well as the
initialization routines and the cluster-update routines themselves. These modules
are meant to be integrated into larger programs at a source-code level. The files
containing the data structures are include files, meant to be included in the modules
that need access to the data structures they contain. All interchange of data among
modules is made by means of common blocks. Each initialization routine defines
the data in the common block in the corresponding include file. These initialization
routines should be called once at the beginning of the program, one for each common
block that is used in the program.

Read the Makefile, the README file and the source code in the src/ subdirectory
in order to see which modules depend on which data structures. All the code is fairly
well documented with internal comments. Here are short explanations of the nature
of each source-code file. First the files with the data structures:

fp def.f: an include file with the basic parameters defining the run; this is needed
by all modules.

fp cal.f: an include file with other parameters, which are calculated using the
basic ones; this is needed by most modules.

cb param.f: an include file with a common block containing additional initial and
calculated parameters.

cb flags.f: an include file with a common block containing the dimensionality
flags.

18



cb index.f: an include file with a common block containing the data structures
related to the indexing of neighbors.

cb exsrc.f: an include file with a common block containing the data structures
related to the external sources.

cb field.f: an include file with a common block containing the data structures
related to the field.

cb fdbck.f: an include file with a common block containing variables related to
feedback and monitoring functions.

The files containing the main routines, including the initialization routines and the
cluster-update routines themselves:

init param.f: a subroutine that initializes the common block in cb param.f.

init flags.f: a subroutine that initializes the common block in cb flags.f.

init index.f: a subroutine that initializes the common block in cb index.f.

init exsrc.f: a subroutine that initializes the common block in cb exsrc.f.

init field.f: a subroutine that initializes the common block in cb field.f.

cluster no source.f: a cluster routine for a periodical lattice without any exter-
nal sources.

cluster general bas.f: a cluster routine for a periodical lattice with an arbitrary
external source over the whole lattice, without any specific optimizations.

cluster general opt.f: an optimized cluster routine for a periodical lattice with
an arbitrary external source over the whole lattice.

cluster constant.f: an optimized cluster routine for a periodical lattice with a
constant external source over the whole lattice.

cluster localized.f: an optimized cluster routine for a periodical lattice with a
constant external source over a localized subset of the lattice, such as a single
site or a straight line of sites.

Files containing the test programs and some auxiliary routines, including a couple
of C interfaces to system facilities:

test cluster no source.f: a program that executes in an infinite loop the cluster
routine cluster no source, and measures the average cluster size and the
speed of the routine.

19



test cluster general bas.f: a program that executes in an infinite loop the clus-
ter routine cluster general bas, and measures the average cluster size, the
cluster rejection rate and the speed of the routine.

test cluster general opt.f: a program that executes in an infinite loop the clus-
ter routine cluster general opt, and measures the average cluster size, the
cluster rejection rate and the speed of the routine.

test cluster constant.f: a program that executes in an infinite loop the cluster
routine cluster constant, and measures the average cluster size, the cluster
rejection rate and the speed of the routine.

test cluster localized.f: a program that executes in an infinite loop the cluster
routine cluster localized, and measures the average cluster size, the cluster
rejection rate and the speed of the routine.

urandom ctof.c: a Fortran-callable C interface to the system libraries, to get a
random seed from the Linux kernel.

clock ctof.c: a Fortran-callable C interface to the system libraries, to get the
CPU time of the current process from the system.

dranr-1.f: the first random number generator from the authors of the book “Nu-
merical Recipes”.

dranr-2.f: the second random number generator from the authors of the book
“Numerical Recipes”.

References

[1] Wolff, Ulli, “Collective Monte Carlo Updating for Spin Systems”, Phys. Rev.

Lett., v.62, n.o 4, 1989.

[2] Wang, Jian-Sheng, and Swendsen, Robert H., “Cluster Monte Carlo Algo-
rithms”, Physica A, 167, 565-567, 1990.

20


