
Fourier Modes of a Real Scalar Field

Jorge L. deLyra

Department of Mathematical Physics
Physics Institute

University of São Paulo

Version 1, June 2006

We will consider here the technical questions of how to deal with the Fourier modes
of a single-component real scalar field in numerical simulations. This includes how
to organize them in order to avoid over-counting the degrees of freedom, how to
index them into vectors and how to build the transformations from position space
to momentum space and back in an efficient way, so that they can be executed
very fast, for use in stochastic simulations. It is important to note that the type
of implementation presented here is not what is usually known as the Fast Fourier
Transform (FFT). It may be described rather as an Indexed Fourier Transform, and
is meant specifically for the relatively small lattices used in the stochastic simulations
of field-theoretical models in space-time dimensions ranging from d = 2 to d = 5.

1 Organizing the Degrees of Freedom

Just as we can represent the field in position space as a Nd-dimensional real vector,
so we would like to do the same in momentum space. A real field ϕ on a N -lattice in
d dimensions corresponds to Nd degrees of freedom, that is, to Nd independent real
variables ϕ(~n), one for each site of the lattice, which is described by the integer
coordinates ~n. Since Fourier transformation is simply a change of basis in the
space of functions on the lattice, from the position space representation ϕ(~n) to

the momentum-space representation ϕ̃(~k), it follows that the Fourier components
must also include exactly Nd independent variables, one for each mode of the lattice,
which is described by the integer coordinates ~k. However, in its usual representation
the Fourier transform of a real scalar field is complex,

ϕ̃(~k) =
1

Nd

∑

~n

eı 2π

N
~k·~nϕ(~n),

and therefore seems to include twice as many real variables. This is not really so
because not all such variables are independent, due to the identity

1



ϕ̃(−~k) = ϕ̃∗(~k),

or, using the decomposition ϕ̃(~k) = R(~k) + ıI(~k), the identities

R(−~k) = R(~k) and I(−~k) = −I(~k).

Besides, there are some modes for which the transform is real, such as ϕ̃(~0), for which
I(~0) = 0. So we see that counting and keeping the truly independent variables is
not so straightforward a task.

In order to keep just the Nd independent variables, we must first identify which
modes are real and which modes are complex, and then adopt some standard form
of keeping the real and imaginary parts in a unique way. A mode is real when
ϕ̃(−~k) = ϕ̃(~k) identically, that is, for any field ϕ(~n), and is complex otherwise. For
example, it is clear that ϕ̃(~0) is real, as one can easily verify by inspection of the
definition of the transform. Since it is not true in general that ϕ(−~n) = −ϕ(~n), one
can also see from the definition that there are no purely imaginary modes. Hence
we have two classes of modes, purely real modes that contain a single independent
real variable each, and complex modes that contain two mutually independent real
variables each. These complex modes are related in pairs by the identity above, so
if we keep all of them we will be double-counting the variables associated to them.
For odd N these pairings can be illustrated by the diagram below, representing the
conjugate lattice in dimension d = 1,

k1

−(N−1)/2 (N−1)/20

where every square represents a mode and one can see a vector ~k as well as the
negative of the same vector. In two dimensions we have the corresponding diagram
in figure 1. In these diagrams one can see the limits of the range of the momentum
coordinates for odd N , which are −(N − 1)/2 and (N − 1)/2. The zero mode
obviously maps to itself. We see now that for odd N there is a single real mode, the
zero mode, because all other modes map to a different mode inside the conjugate
lattice, by the inversion of the vector ~k, due to the fact that the extremes of the
range are symmetrical. For even N the situation is more complicated, in the case
d = 1 we have

2



k2

k1

(N−1)/2−(N−1)/2

(N−1)/2

−(N−1)/2

0

0

Figure 1: Inversion of a vector ~k in the conjugate lattice for odd N and d = 2.

k1

0 N/2−N/2+1

length N

So we see that, because the extremes of the range of the variable are no longer
symmetrical, there is a mode, the mode k1 = N/2, that maps to a point outside the
conjugate lattice, so that we must then add to the inverted vector a period vector of
length N , as shown in the figure, in order to bring it back into the conjugate lattice.
As a consequence of all this the mode k1 = N/2 also maps to itself, and is therefore
a real mode, as one may check by direct inspection of the definition of the Fourier
transform. In the case d = 2 we have the diagram in figure 2, were we see that
in general many modes will map to points outside the conjugate lattice, namely all
those modes that have at least one component equal to N/2, and in such cases we
must add a period vector of length N along one of the directions of the lattice, as
shown in the example depicted, with the period vector (N, 0). In some cases it may
be necessary to add several period vectors in different directions of the lattice, as in
the case of the mode (N/2, N/2) of this example, which needs two period vectors,

3



k2

k1

−N/2+1 N/2

−N/2+1

0

0

N/2

length N

Figure 2: Inversion of a vector ~k in the conjugate lattice for even N and d = 2.

(0, N) and (N, 0). However, not all such modes are real, because most times they
map to a different mode on the border of the lattice, as shown in the example. In
the case d = 2 we can see from the diagram that there will be four real modes:
(0, 0), (0, N/2), (N/2, 0) and (N/2, N/2).

In general we have 2d real modes for even N , and just one for odd N . For odd
N each complex mode is paired with the mode obtained by the inversion of ~k, but
for even N the pairings are not always so simple, as there are modes paired within
the surfaces with one component equal to N/2. Nevertheless, all complex modes
are dully paired in this way. The idea for the classification of the Nd independent
variables is that we leave the purely real modes alone and, for each pair of conjugated
complex modes, we keep only one real part and one imaginary part. In order to have
a conjugate lattice with one real variable per site, just as have in position space for
ϕ(~n), we must classify the modes in conjugate pairs and keep only the real part of
one member of the pair, and only the imaginary part of the other member of the
pair. As we do this we must also keep in mind that later on we will index all the
modes into a single Nd-dimensional vector, just as we do in position space.

On order to describe the scheme we adopt for this classification of independent
variables, we must discuss one dimension at a time. Starting with d = 1, in this

4



case we may simply keep the real parts of the modes with positive components, and
the imaginary parts of the modes with negative components. In the simpler odd-N
case we represent this by the diagram

k1

−(N−1)/2 (N−1)/20

I R R R R RI I I

where the purely real modes are presented in a heavier shade, the complex modes
of which we keep only the real parts in a lighter shade, and the complex modes of
which we keep only the imaginary parts in white. The algorithm for implementing
this is very simple,

−(N − 1)/2 ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ (N − 1)/2 −→ calculate and store R(~k).

In the even-N case, still for d = 1, we have the diagram

k1

0 N/2−N/2+1

I RI I I R R R R R

and the algorithm is only slightly different,

−N/2 + 1 ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ N/2 − 1 −→ calculate and store R(~k),

k1 = N/2 −→ calculate and store R(~k).

For d = 2, in the odd-N case, we adopt a scheme which is a generalization of the
previous one, and which is given by the diagram in figure 3. We start by scanning
the lattice vertically by row, and define the situation on all horizontal rows that do
not contain a real mode. For each row that contains a real mode we must examine
the next coordinate. In this way we use the previous d = 1 scheme for the middle
horizontal row of modes. The algorithm in this case is a two-fold iteration of the
algorithm for d = 1,

5



k2

k1

(N−1)/2−(N−1)/2

(N−1)/2

−(N−1)/2

0

0

R

I

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

R R R R

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

III IIII IIII IIII IIII IIII IIII IIII IIII

III IIII IIII IIII IIII IIII IIII IIII IIII

III IIII IIII IIII IIII IIII IIII IIII IIII

III IIII IIII IIII IIII IIII IIII IIII IIII

I I I R

Figure 3: Classification of the momentum variables for odd N and d = 2.

−(N − 1)/2 ≤ k2 ≤ 1 −→ calculate and store I(~k),
k2 = 0 −→ go to block for k1,

1 ≤ k2 ≤ (N − 1)/2 −→ calculate and store R(~k),

−(N − 1)/2 ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ (N − 1)/2 −→ calculate and store R(~k).

Note that we start by checking k2, not k1, and only if it is zero we go on to check k1.
In the even-N case, still for d = 2, we adopt a similar scheme, given by the diagram
in figure 4. Note that in this case the d = 1 scheme is used for two horizontal rows,
the middle one and the top one. The algorithm in this case is once more a two-fold
iteration of the algorithm for d = 1,

6



k2

k1

−N/2+1 N/2

−N/2+1

0

0

N/2

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

RRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR RRRR

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

III IIII IIII IIII IIII IIII IIII IIII IIII IIII

III IIII IIII IIII IIII IIII IIII IIII IIII IIII

III IIII IIII IIII IIII IIII IIII IIII IIII IIII

III IIII IIII IIII IIII IIII IIII IIII IIII IIII

I

I RRR RRRR RRRR RRRR RRRR RRRR

RRR RRRR RRRR RRRR RRRR RRRR

III IIII IIII IIII

III IIII IIII IIII

Figure 4: Classification of the momentum variables for even N and d = 2.

−N/2 + 1 ≤ k2 ≤ 1 −→ calculate and store I(~k),
k2 = 0 −→ go to block for k1,

1 ≤ k2 ≤ N/2 − 1 −→ calculate and store R(~k),
k2 = N/2 −→ go to block for k1,

−N/2 + 1 ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ N/2 − 1 −→ calculate and store R(~k),

k1 = N/2 −→ calculate and store R(~k).

Note that in this case both the value k2 = 0 and the value k2 = N/2 send us to
test the next coordinate, so that there are two paths to get from one block to the
next block. Both the odd-N and the even-N algorithms can be easily generalized
to arbitrary dimensions. Here is the general algorithm for odd N ,

7



−(N − 1)/2 ≤ kd ≤ 1 −→ calculate and store I(~k),
kd = 0 −→ go to block for kd−1,

1 ≤ kd ≤ (N − 1)/2 −→ calculate and store R(~k),

−(N − 1)/2 ≤ kd−1 ≤ 1 −→ calculate and store I(~k),
kd−1 = 0 −→ go to block for kd−2,

1 ≤ kd−1 ≤ (N − 1)/2 −→ calculate and store R(~k),

· · · · · · · · ·

−(N − 1)/2 ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ (N − 1)/2 −→ calculate and store R(~k).

Similarly, for even N we have the general algorithm

−N/2 + 1 ≤ kd ≤ 1 −→ calculate and store I(~k),
kd = 0 −→ go to block for kd−1,

1 ≤ kd ≤ N/2 − 1 −→ calculate and store R(~k),
kd = N/2 −→ go to block for kd−1,

−N/2 + 1 ≤ kd−1 ≤ 1 −→ calculate and store I(~k),
kd−1 = 0 −→ go to block for kd−2,

1 ≤ kd−1 ≤ N/2 − 1 −→ calculate and store R(~k),
kd−1 = N/2 −→ go to block for kd−2,

· · · · · · · · ·

−N/2 + 1 ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ N/2 − 1 −→ calculate and store R(~k),

k1 = N/2 −→ calculate and store R(~k).

Note that, except for the changes in the minimum and maximum values of each
momentum coordinate, this algorithm includes the previous one, since for odd N a
momentum coordinate will never have the value N/2. Hence, if we define kl to be
kl = (N − 1)/2 for odd N and kl = N/2 − 1 for even N , and define also kL to be
kL = (N + 1)//2 where the division indicated by the symbol // is integer division,
with truncation, so that kL is in fact (N +1)/2 for odd N and N/2 for even N , then
we have the general algorithm, valid for both odd and even N ,

8



−kl ≤ kd ≤ 1 −→ calculate and store I(~k),
kd = 0 −→ go to block for kd−1,

1 ≤ kd ≤ kl −→ calculate and store R(~k),
kd = kL −→ go to block for kd−1,

−kl ≤ kd−1 ≤ 1 −→ calculate and store I(~k),
kd−1 = 0 −→ go to block for kd−2,

1 ≤ kd−1 ≤ kl −→ calculate and store R(~k),
kd−1 = kL −→ go to block for kd−2,

· · · · · · · · ·

−kl ≤ k1 ≤ 1 −→ calculate and store I(~k),

k1 = 0 −→ calculate and store R(~k),

1 ≤ k1 ≤ kl −→ calculate and store R(~k),

k1 = kL −→ calculate and store R(~k).

In the way of verification, one can count the number of modes which are classified
in each case. For odd N we have, at each step of the algorithm,

−(N − 1)/2 ≤ kd ≤ 1 −→ Nd−1(N − 1)/2,
kd = 0 −→ proceed to next block,

1 ≤ kd ≤ (N − 1)/2 −→ Nd−1(N − 1)/2,

−(N − 1)/2 ≤ kd−1 ≤ 1 −→ Nd−2(N − 1)/2,
kd−1 = 0 −→ proceed to next block,

1 ≤ kd−1 ≤ (N − 1)/2 −→ Nd−2(N − 1)/2,

· · · · · · · · ·

−(N − 1)/2 ≤ k1 ≤ 1 −→ N0(N − 1)/2,
k1 = 0 −→ 1,

1 ≤ k1 ≤ (N − 1)/2 −→ N0(N − 1)/2.

Adding up all the contributions one gets

Nd−1(N − 1) + Nd−2(N − 1) + . . . + (N − 1) + 1 =

(N − 1)(Nd−1 + Nd−2 + . . . + 1) + 1 =

(N − 1)
Nd − 1

N − 1
+ 1 =

Nd
− 1 + 1 = Nd,

9



so that this case checks out. For even N we have, at each step of the algorithm,

−N/2 + 1 ≤ kd ≤ 1 −→ 20Nd−1(N/2 − 1),
kd = 0 −→ proceed to next block,

1 ≤ kd ≤ N/2 − 1 −→ 20Nd−1(N/2 − 1),
kd = N/2 −→ proceed to next block,

−N/2 + 1 ≤ kd−1 ≤ 1 −→ 21Nd−2(N/2 − 1),
kd−1 = 0 −→ proceed to next block,

1 ≤ kd−1 ≤ N/2 − 1 −→ 21Nd−2(N/2 − 1),
kd−1 = N/2 −→ proceed to next block,

· · · · · · · · ·

−N/2 + 1 ≤ k1 ≤ 1 −→ 2d−1N0(N/2 − 1),
k1 = 0 −→ 2d−1,

1 ≤ k1 ≤ N/2 − 1 −→ 2d−1N0(N/2 − 1),
k1 = N/2 −→ 2d−1.

The factors of powers of 2 that appear are due to the fact that there are two ways
to proceed from each block to the next one. Adding up all the contributions one
gets

20Nd−1(N − 2) + 21Nd−2(N − 2) + . . . + 2d−1N0(N − 2) + 2d =

2d−1(N − 2)

[(
N

2

)d−1

+

(
N

2

)d−2

+ . . . +

(
N

2

)0
]

+ 2d =

2d−1(N − 2)

(
N

2

)d

− 1

N

2
− 1

+ 2d =

2d

[(
N

2

)d

− 1

]
+ 2d =

(
Nd

− 2d
)

+ 2d = Nd,

so that this case also checks out. Therefore, we have a completely well-defined
algorithm that can be used to organize the independent variables, in any dimension.
This algorithm should be used both when we calculate the Fourier components, in
order to put them in their correct places in the conjugate lattice, and when one
calculates an inverse transform or use the Fourier components in any other way, in
order to get them from their correct places.

10



2 Indexing in Momentum Space

For the position-space representation ϕ(~n) of the field, with 1 ≤ nµ ≤ N and
µ = 1, . . . , d, one can index the field into a single N -dimensional vector, using the
single index ι instead of all the position coordinates, where

ι = 1 + (n1 − 1)N0 + (n2 − 1)N1 + (n3 − 1)N2 + . . . + (nd − 1)Nd−1.

Defined in this way the index ι runs from 1 to Nd, thus enumerating all the sites of
the lattice. There is also an algorithm to obtain the components of ~n back from the
value of ι, as we will discuss later. We would like to do the same for the momentum-
space representation ϕ̃(~k), with km ≤ nµ ≤ kM , µ = 1, . . . , d, where the extremes of
the range are defined as

km = −(N − 1)/2, kM = (N − 1)/2,

for odd N , and as

km = −N/2 + 1, kM = N/2,

for even N . In order for the index value of 0 to correspond to the zero mode ~k = ~0,
we would like to use the index κ given by

κ = k1N
0 + k2N

1 + k3N
2 + . . . + kdN

d−1.

In order to show that one can in fact do this, and to discover how to invert the rela-
tion, getting the components of ~k out of κ, we start with a version of the momentum-
space index just like the position-space one,

κ′ = 1 + (k1 − km)N0 + (k2 − km)N1 + (k3 − km)N2 + . . . + (kd − km)Nd−1,

which ranges from 1 to Nd and where 0 ≤ (kµ − km) ≤ N − 1, µ = 1, . . . , d, just like
the position-space index. Now, starting from this index we have

κ′ = 1 + k1N
0 + k2N

1 + k3N
2 + . . . + kdN

d−1

−(kmN0 + kmN1 + kmN2 + . . . + kmNd−1)

= k1N
0 + k2N

1 + k3N
2 + . . . + kdN

d−1

+1 − km(N0 + N1 + N2 + . . . + Nd−1)

= k1N
0 + k2N

1 + k3N
2 + . . . + kdN

d−1 + 1 − km

Nd
− 1

N − 1
,

where Nd − 1 is always divisible by N − 1, of course. Therefore, considering the
definition of κ, we have

κ′ =

(
1 − km

Nd
− 1

N − 1

)
+ κ.

11



Since the two indices are related by an additive constant, either one can be used to
index the modes. Since κ′ ranges from 1 to Nd, we have for the extreme values of κ

(Nd
− 1)

km

N − 1
= κm ≤ κ ≤ κM = (Nd

− 1)

(
1 +

km

N − 1

)
.

Note that km is negative, so that the lower extreme is negative. For odd N the
extremes can be written explicitly as

−
Nd

− 1

2
≤ κ ≤

Nd
− 1

2
,

and the range is therefore symmetrical around 0. Note that since N is odd so is Nd,
and therefore Nd − 1 is even and thus divisible by 2. For even N we get

−
(N − 2)(Nd

− 1)

2(N − 1)
≤ κ ≤

N(Nd
− 1)

2(N − 1)
,

so that in this case the range is not symmetrical, and there are (Nd − 1)/(N − 1)
more positive-index elements than negative-index elements. A little analysis will
show that the integer divisions are exact in this case also, without any truncation:
since Nd − 1 is always divisible by N − 1, we are left with −(N − 2)/2 and N/2 to
be considered, and since N is even both N and N − 2 are divisible by 2.

If we recall our organization of real and imaginary parts as independent coordi-
nates, as described in the previous section, it is interesting to observe that one can
verify that for odd N the negative values of κ correspond to imaginary parts, the
value 0 to the real mode, and the positive values to real parts. However, the same is
not true for even N , due to the modes with one or more components equal to N/2,
some of which have their imaginary parts at positive values of the index. Due to
this, in general it will be necessary to implement an additional pair of indexing ar-
rays in order to map real parts to the corresponding imaginary parts and vice-versa,
whenever it becomes necessary to recover the two parts of one and the same mode.

It remains for us to discuss the inversion algorithm. The algorithm for extracting
the position coordinates ~n from the position-space index ι works by integer division,
with truncation, and in d dimensions is given by

τ = ι − 1,
nd = 1 + τ//Nd−1,
τ = τ − (nd − 1)Nd−1,

nd−1 = 1 + τ//Nd−2,
τ = τ − (nd−1 − 1)Nd−2,

nd−2 = 1 + τ//Nd−3,
τ = τ − (nd−2 − 1)Nd−3,

· · · · · · · · ·

n2 = 1 + τ//N1,
τ = τ − (n2 − 1)N1,

n1 = 1 + τ//N0,

12



where τ is a temporary variable. It is therefore clear that we can use exactly the
same algorithm for extracting the d shifted momentum coordinates kµ−km +1 from
the index κ′. Since κ and κ′ are related by an additive constant, we can also use
the algorithm for κ, so long as we start by adding to it the constant 1 − κm, and
substitute nµ − 1 by kµ − km in the formulas, in order to get the components kµ of
~k, and therefore we have the algorithm

τ = κ − κm,
kd = km + τ//Nd−1,
τ = τ − (kd − km)Nd−1,

kd−1 = km + τ//Nd−2,
τ = τ − (kd−1 − km)Nd−2,

kd−2 = km + τ//Nd−3,
τ = τ − (kd−2 − km)Nd−3,

· · · · · · · · ·

k2 = km + τ//N1,
τ = τ − (k2 − km)N1,

k1 = km + τ//N0.

This completes the discussion of the indexing scheme in momentum space.

3 The Transform and its Inverse

Let us discuss now, in detail, how to implement numerically the finite Fourier trans-
form and its inverse transform. The complete Fourier transform of a real scalar field
is given by

ϕ̃(~k) =
1

Nd

∑

~n

eı 2π

N

~k·~nϕ(~n),

but we will only calculate and store the independent real and imaginary parts,
ϕ̃(~k) = R(~k) + ıI(~k), which are given by

R(~k) =
1

Nd

∑

~n

cos

(
2π

N
~k · ~n

)
ϕ(~n),

I(~k) =
1

Nd

∑

~n

sin

(
2π

N
~k · ~n

)
ϕ(~n).

For use in the numerical programs we will implement these in matrix form, using a
single (usually very large) Nd × Nd transformation matrix,

ϕ̃κ =
1

Nd

Nd∑

ι=1

Fκιϕι,

13



where ϕ̃κ stands for either a real part or an imaginary part, depending on the
value of the index κ, according to our classification of the independent variables in
momentum space, and where, accordingly,

Fκι = cos

(
2π

N
~k · ~n

)
or Fκι = sin

(
2π

N
~k · ~n

)
,

where κ corresponds to ~k and ι to ~n via the respective indexation schemes. Since
~k · ~n has a limited set of possible values, much smaller than the number of elements
N2d of Fκι, and which will be used repeatedly for many different modes, in order to
save both computation time and memory, we will calculate all necessary sine and
cosine functions just once, beforehand, for future repeated use. We will store these
values in a relatively small array P (τ) indexed by the integer τ = ~k ·~n, and construct
a very large indexing matrix Iκι, of size Nd × Nd, to pick up the necessary values
of P (τ) for each combination of a mode in momentum space and a site in position
space. Since this indexing matrix can be of 2-byte integers rather than of the 8-byte
double-precision real numbers needed for the values of P (τ), in this way we save

memory at the ratio of almost four to one. The range of the integer ~k ·~n is given by

d kmN ≤ (~k · ~n) ≤ d kMN,

so that the size of the small double-precision array is given by d NkM − d Nkm + 1,
where kM − km = N − 1 for either odd or even N , so that the size of this array is
d N(N − 1) + 1, of the order of d N2, much smaller than N2d for the values of d of
most interest, from d = 3 to d = 5. When we deal with the values of P (τ) using
this array, not all values along the array are actually going to be used, because not
all integers in the range can in fact be written as ~k · ~n. However, it can be verified
that the rate of useful occupation of the array is large for the dimensions of interest,
in fact, it is over 90 % for dimensions from d = 3 to d = 5. Therefore, we have here
only a very small waste of memory space, and in the interest of simplicity it is not
worth while to try to improve this occupation rate.

Since we must store the values of both the sines and the cosines, we actually
have to double the size of the array as it was described above. In order to put the
cosines at positive values of the index and the sines at negative values, we add and
subtract constants in order to use the ranges that follow,

−d N(N − 1) − 1 ≤

[
~k · ~n − (d NkM + 1)

]
≤ −1,

to be used for the sines, and

1 ≤

[
~k · ~n + (−d Nkm + 1)

]
≤ d N(N − 1) + 1,

to be used for the cosines, so that the total range is given by

−d N(N − 1) − 1 = τm ≤ τ ≤ τM = d N(N − 1) + 1,

14



The total size of the array is now given by 2d N(N − 1) + 3, which is still much
smaller than the indexing matrix. The indexing matrix Iκι will return the values of
τ in this range, and is to be used as the argument of P (τ), given values of κ and ι,
so that we have

Fκι = P (Iκι),

and the transformation can now be written as

ϕ̃κ =
1

Nd

Nd∑

ι=1

P (Iκι)ϕι,

which includes all the independent real and imaginary parts, depending on the values
of κ, in a single matrix operation, which is easy to implement efficiently.

Let us now examine the situation concerning the inverse transform. It is clear
that a similar scheme should be used for it. Since the indexing matrix Iκι is so
large, and considering the possibility that a single program might need to use both
the transform and its inverse, it is important to build the scheme for the inverse
transform in such a way that it is able to use the same indexing matrix. As we will
see, it is possible to do this, but unfortunately not in a very efficient way. For speed
of execution the order of the indices matters, and should in fact be Iικ for the direct
transform and Iκι for the inverse transform. Hence, one can save memory only so
long as one needs only one of the two matrices or so long as the program is not
dependent on the performance of one of the two transforms. The inverse Fourier
transform is defined by

ϕ(~n) =
∑

~k

e−ı 2π

N

~k·~nϕ̃(~k),

or, in Nd-dimensional matrix form,

ϕι =

κM∑

κ=κm

F−1
ικ ϕ̃κ,

where the limits of the sum over the momentum index are κm = (Nd−1)km/(N −1)
and κM = (Nd − 1)(1 + km/(N − 1)). We must now deal explicitly with the fact
that both the Fourier component of the field and the mode function are complex.
Since we have the decomposition of the field ϕ̃(~k) = R(~k) + ıI(~k), as well as

e−ı 2π

N
~k·~n = cos

(
2π

N
~k · ~n

)
− ı sin

(
2π

N
~k · ~n

)
,

it follows that we have

ϕ(~n) =
∑

~k

[
cos

(
2π

N
~k · ~n

)
R(~k) + sin

(
2π

N
~k · ~n

)
I(~k)

]

+ı
∑

~k

[
− sin

(
2π

N
~k · ~n

)
R(~k) + cos

(
2π

N
~k · ~n

)
I(~k)

]
.

15



Since the field ϕ(~n) is real, the sum giving its imaginary part must vanish, and we
are left with

ϕ(~n) =
∑

~k

[
cos

(
2π

N
~k · ~n

)
R(~k) + sin

(
2π

N
~k · ~n

)
I(~k)

]
.

We must now consider separately the contributions to the sum from the real and
complex modes. From the purely real modes we get the contributions

∑

real ~k

cos

(
2π

N
~k · ~n

)
R(~k),

while from the complex modes we get the contributions

∑

complex ~k

[
cos

(
2π

N
~k · ~n

)
R(~k) + sin

(
2π

N
~k · ~n

)
I(~k)

]
.

Since we keep only one copy of each independent R(~k) and one copy of each inde-

pendent I(~k), while the sum above runs over both parts on all the complex modes,
in the case of these modes we must multiply the contribution by a factor of two.
In this way we get the correct result when we run over the modes and use only the
part which is stored in each one. So in reality we will calculate this contribution as

∑

complex ~k

[
2 cos

(
2π

N
~k · ~n

)
R(~k) + 2 sin

(
2π

N
~k · ~n

)
I(~k)

]
.

These factors of two, which do not appear in the real modes, prevent us from im-
plementing the inverse transform as a single matrix operation. The best way to
implement it will be to first perform a complete matrix operation with the factors of
two for all modes, and then subtract back once the contributions of the real modes,

ϕ(~n) = 2
∑

~k

[
cos

(
2π

N
~k · ~n

)
R(~k) + sin

(
2π

N
~k · ~n

)
I(~k)

]

−
∑

real ~k

cos

(
2π

N
~k · ~n

)
R(~k).

This second sum runs over only either %M = 1 or %M = 2d elements, depending on
the parity of N , and is therefore much smaller than the first one, which runs over Nd

elements, specially for large lattices, representing therefore only a small additional
computational effort. In order to do this it will be necessary to construct a small
indexing array to pick the purely real modes out of the indexed vector of modes.
Note that the first term of the inverse transformation matrix F−1

ικ , as decomposed
above, is equal to 2Fκι. In order to deal with the second term, consider an indexing
array λ(%) of dimension %M , which for each % = 1, . . . , %M , with %M = 1 for odd N

16



and %M = 2d for even N , returns the value of the index κ of a purely real mode.
Using it we can write the inverse transform as

ϕι = 2

κM∑

κ=κm

P (Iκι)ϕ̃κ −

%M∑

%=1

P (Iλ(%)ι)ϕ̃λ(%).

We have therefore the inverse transformation implemented by a large matrix oper-
ation followed by a small correction, which is still easy to implement efficiently. In
the computer code we will actually have two indexation matrices I

(t)
κι and I

(i)
ικ = I

(t)
κι ,

differing only by the ordering of the indices, one for the direct transformation and
one for the inverse transformation, so that both can be executed efficiently.

4 Fortran Routines

The technique described above for the implementation of the Fourier transforms
implies strong limitations for the lattice size, both due to addressing issues and
due to memory requirement issues. We will examine here these limitations, and
we will see that the technique is still usable for lattices with the usual sizes in the
important cases d = 3 and d = 4. For these lattices a set of routines implementing
the transforms in the fastest possible way is supplied. For larger lattices a different
set of routines is supplied, in which the indexation matrices I

(t)
κι and I

(i)
ικ are not

implemented directly in memory, but rather by functions that dynamically calculate
and return the index τ of the phases, appropriately shifted, given values of the
coordinate indices κ and ι. These routines are about 4 to 5 times slower, but can
be used for very large lattices, with much smaller memory requirements.

First of all, note that since the indexation matrices are defined as 2-byte signed
integers, they are limited to the range [−32767, 32767], that is, to 65535 different
values. Therefore this last number is the maximum size of the indexed array of
phases P (τ). This implies that there are limits to the possible lattice sizes N in
each dimension d, as shown in the following table:

d Nmax RAMmax

1 181 64 kB
2 128 520 MB
3 105 2497 GB
4 91 8560 TB
5 81 22 EB

Here the corresponding maximum required amounts of RAM are also shown and
the order of the unit multipliers is k, M, G, T, P and E, ranging from 210 to 260, so
we see that in the case of the higher dimensions the memory requirements are truly
enormous for the larger lattices still allowed by this indexing limitation. Specially for
dimensions d = 4 and d = 5, these are larger lattices than one can possibly expect
to run successfully on current computers. On 32-bit processors there is another type

17



of limitation on the values of N , which is far more serious for the larger values of
d. The limitations of the signed 32-bit integer addressing of the indexation matrices
limits their size, and hence the size of the lattice, as shown in the following table:

d Nmax RAMmax

1 32767 2 GB
2 181 2 GB
3 31 2 GB
4 13 2 GB
5 7 2 GB

In this case the addressing limitations correspond to a fixed maximum required
memory, of course. In addition to this, the limitations of the signed 32-bit integer
addressing of the indexed array of phases also limits its size and the size of the
lattice, but this one is a significant limitation only for the case d = 1, which is
relatively irrelevant to us, as shown in the following table:

d Nmax RAMmax

1 11585 2 GB
2 8192 2 GB
3 6689 2 GB
4 5793 2 GB
5 5181 2 GB

Therefore, we see that this last limitation can be safely ignored. The corresponding
limitations in the case of a 64-bit processor with 48-bit addressing are smaller, and
not so significant, since in this case the memory availability limitations become
relevant much before the addressing limitations themselves. The limits due to the
48-bit addressing of the indexation matrices are shown in the following table:

d Nmax RAMmax

1 8388607 128 TB
2 2896 128 TB
3 203 128 TB
4 53 128 TB
5 24 128 TB

The limits due to the 48-bit addressing of the indexed array of phases are shown in
the following table:

d Nmax RAMmax

1 2965821 128 TB
2 2097152 128 TB
3 1712317 128 TB
4 1482910 128 TB
5 1326355 128 TB

18



If we consolidate all these indexing and addressing limitations in a single table, we
see that the limits on a 32-bit processor with 32-bit logical addressing are given by
the table below:

d Nmax RAMmax

1 181 64 kB
2 128 520 MB
3 31 2 GB
4 13 2 GB
5 7 2 GB

The same limits on a 64-bit processor with 48-bit logical addressing are given by the
table below:

d Nmax RAMmax

1 181 64 kB
2 128 520 MB
3 105 2497 GB
4 53 128 TB
5 24 128 TB

A typical larger lattice in d = 4 would have N = 10, and in this case the transform
can be used with reasonable memory requirements, about 200 MB for a single index-
ation matrix, and about 400 MB for two indexation matrices. A lattice of N = 20
in d = 3 can be used with memory requirements of about 128 MB for one matrix
and of about 256 MB for two matrices. Therefore, we conclude that the fast version
of the transforms can be used in practice in most simulations. Whenever there is
not enough memory available, one can turn to the alternative routines.

There are Fortran routines available implementing the direct and inverse Fourier
transforms, as described in this paper. There are also a few test programs that
may be useful as examples of how to use the routines. As they currently stand,
these routines are written for use in either 32-bit or 64-bit processors. However,
sufficiently large lattices may require a 64-bit processor, as well as lots of available
memory. The files described in what follows, containing the source code, are freely
available in a compressed tar file at the URL:

http://latt.if.usp.br/technical-pages/fmrsf/

There are files with the definition of the necessary data structures, as well as the
initialization routines and the transforms themselves. These modules are meant to
be integrated into larger programs at a source-code level. The files containing the
data structures are include files, meant to be included in the modules that need
access to the data structures they contain. All interchange of data among modules
is made by means of common blocks. Each initialization routine defines the data
in the common block in the corresponding include file. These initialization routines

19



should be called once at the beginning of the program, one for each common block
that is used in the program. Read the makefile or the source code in order to see
which modules depend on which data structures.

Here are short explanations of the nature of each source-code file. First the files
with the data structures:

fp def.f: an include file with the basic parameters defining the run; this is needed
by all modules.

fp cal.f: an include file with other parameters, which are calculated using the
basic ones; this is needed by most modules.

cb param.f: an include file with a common block containing additional calculated
parameters.

cb flags.f: an include file with a common block containing the dimensionality
flags.

cb logic.f: an include file with a common block containing the logical array for
marking the sites as carrying either their real parts or their imaginary parts.

cb field.f: an include file with a common block containing the field components
in position space and in momentum space.

cb phase.f: an include file with a common block containing the indexed array for
the phases.

cb trans.f: an include file with a common block containing the large indexing
matrix for the direct transform.

cb trinv.f: an include file with a common block containing the large indexing
matrix for the inverse transform.

cb traux.f: an include file with a common block containing the auxiliary indexing
array for the inverse transform.

The files containing the main routines, including the initialization routines and the
transforms themselves:

check pars.f: a subroutine that verifies consistency of the basic parameters defin-
ing the run.

check pars 32.f: a subroutine that verifies consistency of the basic parameters
regarding indexation and addressing issues on a 32-bit machine with 32-bit
addressing capability.

check pars 48.f: a subroutine that verifies consistency of the basic parameters
regarding indexation and addressing issues on a 64-bit machine with 48-bit
addressing capability.

20



init param.f: a subroutine that initializes the common block in cb param.f.

init flags.f: a subroutine that initializes the common block in cb flags.f.

init logic.f: a subroutine that initializes the common block in cb logic.f.

init phase.f: a subroutine that initializes the common block in cb phase.f.

init trans.f: a subroutine that initializes the common block in cb trans.f.

init trinv.f: a subroutine that initializes the common block in cb trinv.f.

init traux.f: a subroutine that initializes the common block in cb traux.f.

indphtrn.f: a function that replaces the large indexing matrix in the common
block in cb trans.f.

indphinv.f: a function that replaces the large indexing matrix in the common
block in cb trinv.f.

fourier trans fast.f: a subroutine that implements the fast version of the direct
Fourier transform.

fourier inver fast.f: a subroutine that implements the fast version of the in-
verse Fourier transform.

fourier trans large.f: a subroutine that implements the direct Fourier trans-
form with much smaller memory requirements, for use on large lattices.

fourier inver large.f: a subroutine that implements the inverse Fourier trans-
form with much smaller memory requirements, for use on large lattices.

fourier trans slow.f: a subroutine that implements the fast version of the direct
Fourier transform in a much slower but somewhat less memory-intensive way.

fourier inver slow.f: a subroutine that implements the fast version of the in-
verse Fourier transform in a much slower but somewhat less memory-intensive
way.

Files containing the test programs and some auxiliary routines, including a couple
of C interfaces to system facilities:

test trans inver fast.f: a program that composes the fast versions of the trans-
form and of the inverse, in this order, and measures the resulting average error.

test inver trans fast.f: a program that composes the fast versions of the in-
verse and of the transform, in this order, and measures the resulting average
error.

21



test trans inver large.f: a program that composes the large-lattice versions of
the transform and of the inverse, in this order, and measures the resulting
average error.

test inver trans large.f: a program that composes the large-lattice versions of
the inverse and of the transform, in this order, and measures the resulting
average error.

test trans inver slow.f: a program that composes the slow versions of the trans-
form and of the inverse, in this order, and measures the resulting average error.

test inver trans slow.f: a program that composes the slow versions of the in-
verse and the transform, in this order, and measures the resulting average
error.

urandom ctof.c: a Fortran-callable C interface to the system libraries, to get a
random seed from the Linux kernel.

clock ctof.c: a Fortran-callable C interface to the system libraries, to get the
CPU time of the current process from the system.

dranr-1.f: the first random number generator from the authors of the book “Nu-
merical Recipes”.

dranr-2.f: the second random number generator from the authors of the book
“Numerical Recipes”.

sdot.f: a simple function that returns the scalar product of two vectors.

22


