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Abstract

A new classification of real functions and other related real objects defined within
a compact interval is proposed. The scope of the classification includes normal real
functions and distributions in the sense of Schwartz, referred to jointly as “generalized
functions”. This classification is defined in terms of the behavior of these generalized
functions under the action of a linear low pass-filter, which can be understood as an
integral operator acting in the space of generalized functions. The classification criterion
defines a class of generalized functions which we will name “combed functions”, leaving
out a complementary class of “ragged functions”. While the classification as combed
functions leaves out many pathological objects, it includes in the same footing such
diverse objects as real analytic functions, the Dirac delta “function”, and its derivatives
of arbitrarily high orders, as well as many others in between these two extremes. We
argue that the set of combed functions is sufficient for all the needs of physics, as tools
for the description of nature. This includes the whole of classical physics and all the
observable quantities in quantum mechanics and quantum field theory. The focusing of
attention on this smaller set of generalized functions greatly simplifies the mathematical
arguments needed to deal with them.

1 Introduction

In a recent series of papers [1–5] we established a correspondence between, on the one
hand, real functions and generalized real functions or distributions, all defined within a
compact interval, and on the other hand, certain analytic functions defined within the
open unit disk of the complex plane [6]. This correspondence involves in a central way
the Fourier coefficients of the real functions, as well as the issue of the representability
of the generalized functions by their sequences of Fourier coefficients [7]. The generalized
functions as defined in [5] are to be understood loosely in the spirit of the Schwartz theory
of distributions [8]. The new correspondence that was established allows one to deal with
a large set of generalized functions, either singular or not, via their representation in terms
of analytic functions, and therefore through the use of very solidly established analytic
procedures.

In a related paper [9] we introduced a set of linear low-pass filters as tools that can be
used to deal efficiently with divergent or poorly convergent Fourier series resulting from
the resolution of boundary value problems of partial differential equations. In one of the
papers [3] of the series mentioned above these filters were integrated into the structure of
the aforementioned correspondence between real generalized functions and complex analytic
functions. This was done via the introduction of complex low-pass filters within the open
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unit disk of the complex plane, acting on complex analytic functions, that reproduce the
action of the real low-pass filters on the real functions when one takes the limit from within
the open unit disk to the unit circle.

Here we will use these elements to show that the first-order linear low-pass filter can be
used to establish a useful classification of all the generalized functions. This will separate
the set of all generalized functions that one can define on the unit circle into two disjoint
subsets. One of these we will call the set of combed functions, the other we will call the set of
ragged functions. Although most of the more profoundly pathological generalized functions
are included in the second subset, the classification is not based simply on smoothness,
since the Dirac delta “function” and many other singular generalized functions, as well as
many singular normal functions, are in fact classified as combed functions.

We will argue that the set of combed generalized functions is sufficient for all the needs of
physics, in the role of tools for the description of the observable aspects of nature. It should
be pointed out that, while one does not need real function in the continuum to describe
aspects of nature that are intrinsically discrete, such as the spin of elementary particles,
real generalized functions in the continuum can be advantageously used to describe the
behavior of physical quantities that depend on variables that vary almost continuously,
such as spatial positions. They can also be used as very good approximations to describe
those physical systems that involve an extremely large number of degrees of freedom, such
as extended material objects. The argument is that combed generalized functions suffice
for these roles. The universe of applicability includes the whole of classical physics, as well
as all the observable quantities that vary almost continuously in quantum mechanics and
quantum field theory.

2 The Low-Pass Filters

Consider a real function f(θ) defined within the periodic interval [−π, π], or equivalently on
the unit circle. In this paper we assume that all real functions to be discussed are Lebesgue-
measurable functions [10]. Let us recall that for Lebesgue-measurable real functions defined
within a compact domain the conditions of integrability, absolute integrability and local
integrability are all equivalent to one another, as discussed in [5]. The real functions we
are to deal with here may be integrable in the whole domain, or they may be what we
call locally non-integrable, as defined in [5]. This means that they are not integrable on
the whole domain, but are integrable in all closed sub-intervals of the domain that do not
contain any of the non-integrable singular points of the function, of which we assume there
is at most a finite number. Therefore the term “locally non-integrable” is to be understood
as meaning “locally integrable almost everywhere”. An integrable singularity is one around
which the asymptotic integral of the function exists, while around a non-integrable one the
asymptotic integral does not exist, or diverges to infinity.

For such functions we may define the action of the first-order linear low-pass filter as an
operator acting on the space of real functions, which from the real function f(θ) produces
another real function fǫ(θ) by means of the integral

fǫ(θ) =
1

2ǫ

∫ θ+ǫ

θ−ǫ

dθ′ f
(

θ′
)

, (1)

which is well-defined at the point θ so long as the interval [θ− ǫ, θ+ ǫ] does not contain any
of the non-integrable singularities of the original function. Since we are on the unit circle,
the parameter ǫ must satisfy 0 < ǫ ≤ π. In this paper we will be interested mostly in the
limit ǫ → 0, and in this limit this definition suffices to determine fǫ(θ) at all points except
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Figure 1: Illustration of the definition of the complex first-order linear low-pass filter within
the unit disk of the complex plane. The integral giving the average is taken over the arc of
circle from z⊖ to z⊕. The points z⊖, z⊕ and 0 form a closed contour.

for the non-integrable singular points of f(θ), that is to say almost everywhere, and strictly
everywhere within the domain of definition of f(θ) itself. The low-pass filter can also be
defined in terms of an integration kernel Kǫ(θ − θ′),

fǫ(θ) =

∫ π

−π

dθ′Kǫ

(

θ − θ′
)

f
(

θ′
)

,

where the kernel is defined as

Kǫ(θ − θ′) =
1

2ǫ
for |θ − θ′| < ǫ,

Kǫ(θ − θ′) = 0 for |θ − θ′| > ǫ.

As was shown in [3], this real operator acting on the real functions can be obtained from
a corresponding complex operator acting on the inner analytic functions, in the limit from
the open unit disk to the unit circle, as follows. Consider an inner analytic function w(z),
with z = ρ exp(ıθ) and 0 ≤ ρ ≤ 1. We define from it the corresponding filtered complex
function wǫ(z), using the real angular range parameter 0 < ǫ ≤ π, by

wǫ(z) = −
ı

2ǫ

∫ z⊕

z⊖

dz′
1

z′
w
(

z′
)

, (2)

involving an integral over the arc of circle illustrated in Figure 1, where the two extremes
are given by

z⊖ = z e−ıǫ

= ρ eı(θ−ǫ),

z⊕ = z eıǫ

= ρ eı(θ+ǫ).
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This definition can be implemented at all the points of the open unit disk. Note that if we
make z → 0, the integrand in Equation (2) converges to a finite number, since the Taylor
series of w(z) around z = 0 has no constant term, given that w(z) is an inner analytic
function. It follows that in that limit the integral converges to zero, because the domain
of integration becomes a single point in the limit. Therefore we conclude that wǫ(0) = 0,
which means that the filter reduces to the local identity at z = 0. Since on the arc of circle
we have that z′ = ρ exp(ıθ′) and hence that dz′ = ız′dθ′, we may also write the definition
of the complex filtered function as

wǫ(z) =
1

2ǫ

∫ θ+ǫ

θ−ǫ

dθ′w
(

ρ, θ′
)

, (3)

which makes it explicitly clear that what we have here is a simple normalized integral over
θ. One can thus see that what we are doing is to map the value of the function w(z) at z
to the average of w(z) over the symmetric arc of circle of angular span 2ǫ around z, with
constant ρ. This defines a new complex function wǫ(z) at that point.

Repeating what was done in [3] in the context of the old-style inner analytic functions,
and since it is a crucial part of our present argument, let us now show that this complex
function is in fact analytic, and therefore that it is an inner analytic function according to
the newer definition given in [5], since we have already shown that it has the property that
wǫ(0) = 0. The definition in Equation (2) has the general form of a logarithmic integral,
which is the inverse operation to the logarithmic derivative, as defined and discussed in [2],
where the logarithmic primitive of w(z) was defined as the integral

w−1·(z) =
∫ z

0
dz′

1

z′
w
(

z′
)

,

over any simple curve from z′ = 0 to z′ = z within the open unit disk, and where we are
using the notation for the logarithmic primitive introduced in that paper. The logarithmic
primitive w−1·(z) is an analytic function within the open unit disk, as shown in [2], and it
clearly has the property that w−1·(0) = 0, so that it is an inner analytic function as well.
In order to demonstrate the analyticity of wǫ(z) we consider the integral over the closed
positively-oriented circuit shown in Figure 1, from which it follows that we have

∫ z⊖

0
dz′

1

z′
w
(

z′
)

+

∫ z⊕

z⊖

dz′
1

z′
w
(

z′
)

+

∫ 0

z⊕

dz′
1

z′
w
(

z′
)

= 0,

due to the Cauchy-Goursat theorem, since the contour is closed and the integrand is analytic
on it and within it. It follows that we have

∫ z⊕

z⊖

dz′
1

z′
w
(

z′
)

= w−1·(z⊕)− w−1·(z⊖).

Since the logarithmic primitive w−1·(z) is an analytic function within the open unit disk,
and since the functions z⊖(z) and z⊕(z) are also analytic functions in that domain, it follows
that the right-hand side of this equation is an analytic function of z within the open unit
disk. We have therefore for the filtered complex function

wǫ(z) = −
ı

2ǫ

[

w−1·(z⊕)− w−1·(z⊖)
]

, (4)

which shows that wǫ(z) is an analytic function as well. Since we have already shown that
wǫ(0) = 0, it follows that this complex filtered function is an inner analytic function.
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Let us now show that this complex low-pass filter reduces to the real low-pass filter on
the unit circle. If we write both the original function w(z) and the filtered function wǫ(z)
in terms of their real and imaginary parts, the expression in Equation (3) becomes

[

fǫ(ρ, θ) + ıf̄ǫ(ρ, θ)
]

=
1

2ǫ

∫ θ+ǫ

θ−ǫ

dθ′
[

f
(

ρ, θ′
)

+ ıf̄
(

ρ, θ′
)]

,

where f̄ǫ(ρ, θ) and f̄(ρ, θ) are the harmonic conjugate functions respectively of fǫ(ρ, θ) and
f(ρ, θ). If we now take the ρ → 1 limit to the unit circle, we get from the real and imaginary
parts of this expression

fǫ(1, θ) =
1

2ǫ

∫ θ+ǫ

θ−ǫ

dθ′ f
(

1, θ′
)

,

f̄ǫ(1, θ) =
1

2ǫ

∫ θ+ǫ

θ−ǫ

dθ′ f̄
(

1, θ′
)

,

so long as the integration interval on the unit circle does not contain any non-integrable
singularities of w(z). Since the real part fǫ(ρ, θ) of wǫ(z) tends in the ρ → 1 limit to the
real generalized function fǫ(θ) corresponding to the inner analytic function wǫ(z), we may
conclude that in the ρ → 1 limit the complex filter reduces to the definition of the real filter
given in Equation (1), for any real generalized function f(θ) = f(1, θ) that can be obtained
as the ρ → 1 limit of the real part of an inner analytic function. The same is true for the
imaginary part, of course, which converges to the corresponding “Fourier Conjugate” real
generalized function, a concept which was defined in [1] and restated in [5].

3 The ǫ → 0 Limit

In a previously mentioned paper [9] it was shown that the first-order linear low-pass filter,
in its real form, tends to the identity operator almost everywhere in the ǫ → 0 limit. In
Section 6 of Appendix A of that paper one can find a simple proof that in this limit the
filtered function reproduces the value of the original function whenever that function is
continuous, that is

lim
ǫ→0

fǫ(θ) = f(θ),

which holds at every point where f(θ) is continuous. At isolated points of discontinuity
where the two lateral limits of the original function to the point of discontinuity exist, the
filtered function converges, in the ǫ → 0 limit, to the average of the two lateral limits, as
shown in Section 7 of that same Appendix,

lim
ε→0

fε(θ0) =
1

2
(L⊕ + L⊖) ,

where

L⊕ = lim
θ→θ0+

f(θ),

L⊖ = lim
θ→θ0−

f(θ).

When the two limits coincide, and therefore the original function is continuous at the point
θ0, this of course reduces to the previous property. At isolated points of non-differentiability
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where the two lateral limits to that point of the derivative of the original function exist,
the derivative of the filtered function converges, in the ǫ → 0 limit, to the average of these
two lateral limits, as shown in Section 8 of that same Appendix,

lim
ε→0

dfε
dθ

(θ0) =
1

2

(

L′
⊕ + L′

⊖

)

,

where

L′
⊕ = lim

θ→θ0+

df

dθ
(θ),

L′
⊖ = lim

θ→θ0−

df

dθ
(θ).

Of course, this implies that, at points where the function f(θ) is differentiable, the derivative
of the filtered function converges, in the ǫ → 0 limit, to the derivative of the original
function. From all this we may conclude that, so long as there is only a finite number of
singular points, or at most an infinite but zero-measure set of such points, in the ǫ → 0
limit the real filter becomes the identity operator almost everywhere.

In addition to this, one can easily prove that the corresponding complex filter always
becomes exactly the identity operator in the ǫ → 0 limit, within the open unit disk. This
was commented on in [3], but since it is quite crucial to our current argument let us repeat
the demonstration here. We can see this from the complex-plane definition in Equation (4).
If we consider the variation of θ between the extremes z⊕ and z⊖, which is given in terms
of the parameter ǫ by δθ = 2ǫ, and we take the ǫ → 0 limit of that expression, we get

lim
ǫ→0

wǫ(z) = −ı lim
ǫ→0

w−1·(z⊕)− w−1·(z⊖)
2ǫ

= −ı lim
δθ→0

w−1·(z⊕)− w−1·(z⊖)
δθ

= z lim
δz→0

w−1·(z⊕)− w−1·(z⊖)
δz

,

where we used the fact that in the limit δz = ızδθ. Since we have that δz = z⊕ − z⊖, we
see that the limit above defines the logarithmic derivative of w−1·(z). In addition to this,
since that function is analytic in the open unit disk, the limit necessarily exists. Therefore,
we have

lim
ǫ→0

wǫ(z) = z
d

dz
w−1·(z)

= w(z),

since we have here the logarithmic derivative of the logarithmic primitive, and the operations
of logarithmic differentiation and logarithmic integration are the inverses of one another,
as shown in [2]. We see, therefore, that this property within the open unit disk is stronger
than the corresponding property on the unit circle, since in this case we have exactly the
identity in all cases, while in the real case we had only the identity almost everywhere. We
have therefore that, for all inner analytic functions w(z),

lim
ǫ→0

wǫ(z) = w(z),

which holds in the whole open unit disk. Since every inner analytic function, filtered or
not, corresponds to a real generalized function on the unit circle in the ρ → 1 limit, defined
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at all points where this limit exists, the one-parameter family of inner analytic functions
wǫ(z) corresponds to a one-parameter family of real generalized functions fǫ(θ) on the unit
circle. It is therefore clear that as wǫ(z) approaches w(z) in the ǫ → 0 limit, so does fǫ(θ)
approach f(θ) in that same limit, at all points of the unit circle where the ρ → 1 limit
exists, that is, at least almost everywhere.

4 The Classification

The first-order low-pass filter can now be used to define a classification of generalized
functions. In order for the filter to be applicable, and therefore for the classification to be
feasible, the generalized functions must be locally integrable almost everywhere, but they
do not have to be integrable on the whole domain. Observe, moreover, that we do not have
to assume that the generalized functions which we start with in this argument were defined
as ρ → 1 limits of corresponding inner analytic functions. Therefore, given a generalized
function f(θ) which is locally integrable almost everywhere on the unit circle, irrespective
of whether or not it was defined as the ρ → 1 limit of an inner analytic function, we say
that it is a combed function if it is true that

f(θ) = lim
ǫ→0

fǫ(θ), (5)

where this recovery of the original function from the ǫ → 0 limit of the filtered function holds
everywhere. Otherwise we say that the generalized function is a ragged function. The results
obtained in [9] and discussed in the previous section now imply that any continuous function
is a combed function. We may consider adopting a corresponding complex definition, using
the corresponding criterion for the inner analytic functions within the open unit disk.
Therefore we may classify an inner analytic function as combed if it satisfies the condition
that

w(z) = lim
ǫ→0

wǫ(z), (6)

where the recovery of the original function from the ǫ → 0 limit of the filtered function
holds everywhere within the open unit disk. However, we showed in the previous section
that this is the case for all inner analytic functions. This means that every inner analytic

function is combed within the open unit disk.
Since the complex low-pass filter reduces to the real low-pass filter on the unit circle,

it follows at once that all the generalized functions obtained as limits to the unit circle of
the real parts of inner analytic functions within the open unit disk are combed functions,
which we will refer to as “combed generalized functions”. While this simply reproduces the
previously obtained results [9] for the case of continuous real functions on the unit circle, it
also means that the Dirac delta “function” is a combed generalized function, which is quite
a remarkable fact. In this particular case it is not difficult to verify this fact directly, but
from the same result expressed by Equation (6) it follows that this is also true for all the
derivatives of the delta “function”, of all orders, which is not so simple and immediately
apparent a fact.

Here is a simple direct proof that the delta “function” is a combed generalized function.
Consider a delta “function” δ(θ − θ0) centered at θ0. It is not difficult to verify by direct
calculation that the real filter with parameter ǫ, if applied to this generalized function,
produces a unit-integral rectangular pulse of width 2ǫ and height 1/(2ǫ) centered at that
same point. As one decreases ǫ, the ǫ → 0 limit of this one-parameter family of rectangular
pulses is one of the many ways commonly used as a definition of the delta “function”.
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Therefore one recovers the delta “function” in the ǫ → 0 limit, thus showing that the delta
“function” is a combed generalized function.

A similar argument can be constructed for the first derivative of the delta “function”, in
which one must use some of the properties of the delta “function” itself, and the fact that the
derivative of the integration kernel Kǫ(θ − θ′) contains a pair of delta “functions”. However,
in this case it is much simpler to establish that the derivative of the delta “function” is a
combed generalized function by simply relying on the fact that it is the ρ → 1 limit of an
inner analytic function, as was shown in [5]. The same argument is valid, with equal ease,
for all the derivatives of the delta “function”, of arbitrarily high orders.

It is also easy to see by direct calculation that any function with a few isolated step-type
discontinuities where the two lateral limits exist, and which is otherwise continuous, is a
combed function, so long as at the points of discontinuity the function is defined as the
average of the two lateral limits. Note that this is the value to which the Fourier series of
the function converges, if that series is convergent at all. Once again, this result can be
easily derived from the fact that functions such as the ones just described can be obtained
as the ρ → 1 limits of the real parts of the corresponding inner analytic functions.

4.1 Properties of Combed Functions

Although the class of combed function includes many singular objects such as the delta
“function” and at least some locally non-integrable functions, the generalized functions
within the set have a significant collection of common properties that considerably simplifies
their handling. Note that this is a large set of objects including many singular ones of
common use in physics, since combed function can be non-differentiable, discontinuous, and
may diverge to infinity at singular points, which may or may not be integrable ones. For the
purposes of this section let us limit ourselves to the case in which the combed generalized
functions are integrable. This will make it easier for us to list their main common properties,
most of which have been demonstrated before. The detailed extension of these properties
to the complete set of combed generalized functions is therefore postponed to some future
opportunity.

• To start with, combed functions have no finite-spike singularities. In fact, any patholo-
gies that do not have a definite non-zero effect on the integral of the function, such as
finite discontinuities on a zero-measure subset of the domain, are simply eliminated
by the application of the low-pass filter.

• Since it is the ǫ → 0 limit of a filtered function, every combed function assumes at
every given point the value given by the average of the two lateral limits of the original
function to that point, so long as these limits exist,

L⊕ + L⊖

2
,

where

L⊕ = lim
θ→θ0+

f(θ),

L⊖ = lim
θ→θ0−

f(θ),

which in particular holds at all isolated discontinuities where the two lateral limits
exist. Note that, since in the neighborhoods at the two sides of θ0, where f(θ) is
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continuous, the ǫ → 0 limit of fǫ(θ) reproduces f(θ), these two lateral limits of f(θ)
coincide with the two corresponding lateral limits of fǫ(θ) in the ǫ → 0 limit.

• Every combed function f(θ) has a well-defined and unique sequence of Taylor-Fourier
coefficients, from which it can be recovered strictly everywhere within its domain of
definition. From the sequence of Taylor-Fourier coefficients one can always construct
the corresponding inner analytic function w(z). The combed real function is always
given by the ρ → 1 limit of the real part of its corresponding inner analytic function,

f(θ) = lim
ρ→1

ℜ[w(z)],

everywhere within that domain, even if the Fourier series of that real function diverges
everywhere.

• If the Fourier series of a combed function converges at all, then it converges to that
combed function everywhere in its domain of definition.

• If the Fourier series of a combed function diverges, and so long as there is at most a
finite number of dominant singularities of the corresponding inner analytic function
on the unit circle, as they were defined in [2], it is possible to devise other expressions
involving trigonometric series that converge to the real function, and that do so as
fast as one may wish. We call these alternative trigonometric series “center series”,
and the algorithm to construct them is explained in [2].

• Every combed function is the smoothest member of the class of zero-measure equiva-
lent functions that it belongs to, as was discussed in Appendix C of [4]. Given another
member of that class, which is therefore a ragged function, there is no difficulty in
“combing” it, that is in finding the combed function from which it differs only by a
zero-measure function.

• A ragged function can be combed by any one of the following methods: application
to it of the low-pass filter in the ǫ → 0 limit; construction of its Fourier series, if
convergent, and therefore of the limiting function of that series; construction of an
expression containing an alternative trigonometric series, if the Fourier series fails to
converge, and therefore of the limiting function of that alternative series; construction
of its inner-analytic function and therefore of the limit of the real part of that complex
function to the unit circle.

In any given setting, if one limits the set of relevant real functions to be discussed to
combed generalized functions, then the use of the very characteristic “almost everywhere”
arguments in the harmonic analysis of the functions become more sparse and better focused
on the relevant features of the functions. The possible exceptional points of the “almost
everywhere” arguments become only those singular points on the unit circle that are brought
about by the construction of the corresponding inner analytic functions.

5 Sufficiency for Physics

In this section we argue, in a few different but related ways, that combed generalized
functions suffice to describe all physics. We mean this statement to include all classical
physics and all observables quantities in quantum mechanics and quantum field theory.
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Note that we do not argue that the use of combed generalized functions is necessary, only
that it is sufficient. There are a few ways in which one can argue this case, which we will
present in what follows. It should be noted in passing that the limitation of the functions
to the interval [−π, π] is of no consequence for this discussion of the physics applications,
as shown in Appendix A.

5.1 Fundamental Limitations on Precision

Perhaps one of the most basic ways to argue the case starts from the fundamental fact that
all physical measurements of quantities that vary almost continuously are necessarily made
within finite and non-zero errors. The representation of nature provided by physics is always
an approximate one. All physical measurements, as well as all theoretical calculations
related to them, of quantities which are represented by continuous variables, can only be
performed with finite amounts of precision, that is, within finite and non-zero errors.

In fact, not only this is true in practice, both experimentally and theoretically, but
with the advent of relativistic quantum mechanics and quantum field theory, it became
a limitation in principle as well. This is so because in its most fundamental aspect all
particles in nature are represented by fields, in the sense that the particles are just energetic
excitations of these fields. For finite particle energies the wavelengths of these fields are
finite and non-zero. Since it is not possible to localize the particles with an accuracy that
falls below the length scales defined by those wavelengths, it follows that it is never possible
to measure the position of particles, or the dimensions of objects constructed out of these
particles, with mathematically perfect precision.

The use of real functions in physics is meant to be for the representation of relations
between physical variables that vary almost continuously. If we assume that the physical
quantities are observable, then they can at best be measured or prepared (that is, set)
within finite and non-zero errors. A relation such as y = f(x) where both x and y are
observable means that a finite-spike discontinuity in the function cannot have any physical
meaning. In order to detect such a spike in y it would be necessary to measure or prepare
x with infinite precision, which is never possible, not only in practice but in principle.
Therefore, there is no possible physical meaning to ragged functions containing any such
finite-spike discontinuities.

5.2 Representability in Momentum Space

Another argument for the sufficiency of combed generalized functions for the representation
of physical quantities uses the representation of the physics in momentum space. This
representation is mathematically equivalent to the use of the Fourier coefficients of the
real generalized functions as a way to represent those functions. The representation of
the physics in momentum space can always be constructed, and it is often found to have
a more direct and profound physical meaning than the original representation in position
space. This is so, in no small measure, because the momentum-space modes that arise in
this way represent distributed quantities, and do not involve any attempt at localizing any
objects with mathematically perfect precision. Examples of this are everywhere, ranging
from normal modes of vibration in classical and quantum physics to the construction of
states of particles in quantum field theory.

The functions giving the solutions of physical problems are usually solutions of boundary
value problems of partial differential equations. One of the most common and standard
ways to solve such problems is via the representation of the solutions in momentum space,
which is equivalent to the representation of the functions involved by their sequences of
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Fourier coefficients. It follows at once that all solutions obtained in this way are combed
generalized functions. As was shown in the appendices of [9], the mere application of the
low-pass filters will usually improve rather than harm the representation of the physics
by the mathematics, even if the ǫ → 0 limit is not actually taken at the end of the day.
Moreover, when it is taken, since we are taking the ǫ → 0 limit of a filtered function, we
always end up with a combed function.

Since two zero-measure equivalent generalized functions have exactly the same set of
Fourier coefficients, and thus cannot be distinguished from each other by the use of those co-
efficients, it follows that if the physics can be represented in momentum space at all, then the
two zero-measure equivalent generalized functions must represent exactly the same physics.
If we add to this the fact that the Fourier series, if convergent at all, always converges to
the combed function belonging to that class of zero-measure equivalent generalized func-
tions, then we must conclude that the combed generalized functions are sufficient for the
representation of the physics involved. The same conclusion can be drawn for every other
way used to represent a generalized function by its sequence of Fourier coefficients, such
as through the corresponding inner analytic function or through alternative expressions
involving center series, which are just other trigonometric series. This is so because all such
method of representation always produce combed functions.

5.3 Representability by Differential Equations

As a third argument for the sufficiency of combed generalized functions for physics, we may
go back to the fact that physics is often expressed by second-order differential equations.
Given an arbitrary second-order differential equation to be satisfied by a real function f(θ),
if we are to consider the derivatives involved in the standard way, then the function f(θ)
must necessarily be twice-differentiable, and therefore differentiable and continuous. Since
every continuous function is a combed function, this implies that f(θ) must be a combed
function, and in this case also a normal real function. However, just as in the standard
Schwartz theory of distributions, the introduction of generalized functions represented by
inner analytic functions allows us to generalize the concept of differentiability and hence to
enlarge the scope of the differential equations.

If a real function f(θ) is not strictly differentiable at a given singular point, we may
still be able to uniquely attribute a value to its derivative at that point, by the following
sequence of operations: first we go to the open unit disk of the complex plane and take
the inner analytic function w(z) associated to that real function; second, since the inner
analytic function is always differentiable, we then take its logarithmic derivative, which
produces another inner analytic function within the open unit disk; finally, we take the
limit of the real part of this new complex analytic function to the singular point on the
unit circle; it that limits exists (as it often will), we attribute that value to the derivative
of the original function at the singular point.

This can be further generalized, in case the limit to the unit circle does not exist in a
strict sense, by the global attribution of a singular generalized function as the derivative
of a strictly non-differentiable function. In this way one may state, for example, that
the derivative of a function with a step-type singularity of height one at a certain point
contains a delta “function” centered at that point. From the point of view of this more
general definition of the derivative, all combed generalized functions are differentiable, and
in fact infinitely differentiable, just as in the standard Schwartz theory of distributions.
We are therefore able to consider arbitrary generalized functions as possible solutions of
differential equations, so long as we reinterpret these equations in terms of generalized
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derivatives.
Note that this extension of the scope of differential equations, if executed via the repre-

sentation of the generalized functions by inner analytic functions, is done without leaving
the realm of combed objects, which in this case are combed generalized functions. There-
fore, once again we may argue that combed generalized functions suffice for the description
of physics.

6 Conclusions

We have shown that the real first-order low-pass filter, if taken in the ǫ → 0 limit, can be
used to classify all possible generalized functions defined within a closed real interval into
two disjoint classes, a class of combed generalized functions and a complementary class of
ragged generalized functions. Although the first one contains, by and large, more regular
members and less singular members than the second, the classification is not based simply
on smoothness, since both classes do contain singular members. In addition to this, given
any ragged function, there always is a corresponding combed function, from which it differs
only by a zero-measure function. In this way, the concept suggests itself of the process of
“combing” ragged functions. They can be “combed” so long as they can be characterized
by a sequence of Taylor-Fourier coefficients, regardless of the convergence properties of the
corresponding Fourier series. In all cases there are several ways in which this “combing”
can be accomplished, including some that are algorithmically sound and useful.

We have also shown that the class of combed functions contains all those generalized
functions that can be obtained as the ρ → 1 limits of inner analytic functions. This same
class is also that which contains the limiting generalized functions of all convergent Fourier
series, as well as the limiting generalized functions obtained from all convergent center series
built from the sequences of Fourier coefficients of real generalized functions. At this time we
are not able to ascertain whether of not all combed generalized functions can be represented
by inner analytic functions. This is so because although we have shown in [5] that the set
of inner analytic functions includes representations of at least some locally non-integrable
functions, we do not yet know whether or not it contains all of them. In other words, it
is an open question whether or not all generalized functions which are locally integrable
almost everywhere are the derivatives of some order of integrable generalized functions, and
therefore can be represented by inner analytic functions in the way presented in [5], using
the extended Taylor-Fourier coefficients introduced there.

It is interesting that, if one does not actually take the ρ → 1 limit, but just gets
sufficiently close to the unit circle to decrease sufficiently the errors involved, then one can
draw the conclusion that, given any level of precision, there is an analytic real function that
represents the physics within that precision. If one considers the restriction of the real part
of any given inner analytic function to the circle of radius ρ = 1 − δ, for some arbitrarily
small but non-zero δ, it becomes clear that this restriction is an analytic real function,
since it is infinitely differentiable everywhere. If the limiting function represents some given
physics within some error level and there are no hard singularities (where the representation
must break down anyway), then the analytic real function obtained by this restriction with
a sufficiently small δ represents the same physics as the function obtained in the ρ → 1
limit, within the same error level. We may thus conclude that, given any real function that
represents some physics within the finite and non-zero errors that are made inevitable by
the fundamental physical limitations on the determination of all physical quantities that
vary almost continuously, there is always a real analytic function arbitrarily close to it, that
represents the same physics equally well, that is within the same level of precision.
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The same conclusion can be reached if we start from the fact that the real functions
that carry physical meaning in physics applications can also be represented by series in
a basis of orthogonal functions, which is often the case when the functions are solutions
of boundary value problems involving partial differential equations. Besides the Fourier
basis of functions, this includes such commonly used bases as those formed by Legendre
polynomials and those formed by Bessel functions of various types, among many others.
One property that all these bases share is that they are infinite but discrete sets of analytic
functions. If the series representing the functions are convergent, then the real functions
can be represented by partial sums of the series within an arbitrarily given finite level of
precision. However, these partial sums are finite sums of analytic functions and therefore are
themselves analytic. In all these cases it follows that the physics can always be represented
by analytic functions arbitrarily well, that is, within the finite and non-zero errors that
are mandated by the fundamental physical limitations on the determination of all physical
quantities that vary almost continuously.

As a final thought, one can pose the question of whether or not all solutions to linear
partial differential equations are necessarily combed generalized functions. We believe that
the right way to interpret this question is to ask whether or not there is an even more
general way to extend the scope of differential equations that the transition from normal
functions to generalized functions, and from normal derivatives to generalized derivatives,
defined as we do here. So far as can be currently ascertained, this seems to be an open
question.

A Appendix: Reduction of Domain Intervals

The fact that we discuss the properties of real functions only within the interval [−π, π]
is not a limitation from the physics point of view. It is easy to show that all situations
in physics application can be reduced to this interval. Let us consider a physical variable
x within the closed interval [a, b], and let g(x) be a real function describing some physical
quantity within that interval. The size of the interval does not matter. For example, if x is
a measure of length, the interval could be the size of a small resonant cavity or it could be
the size of the galaxy. In any case it is still a closed interval. The same is true if x represents
an energy, since it is always true that only limited amounts of energy are available for any
given experiment or realistic physical situation. So long as x ∈ [a, b], regardless of the
magnitude or physical nature of the dimensionfull physical variable x, we can rescale it to
fit within [−π, π]. It is a simple question of making a change of variables, by defining the
new dimensionless variable

θ = 2π
x− a

b− a
− π,

so that θ ∈ [−π, π]. The inverse transformation is given by

x =
b− a

2π
θ +

b+ a

2
.

The function g(x) can now be transformed into a function f(θ),

g(x) = f(θ),

where f(θ) describes the same physics as g(x). Let us now consider the transformation of
the first-order low-pass filter from one system of variables to the other. Given a value of
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θ, if we vary it by ǫ, we have a corresponding variation of x, which we will call ε. It then
follows that we have a relation between ε and ǫ,

x± ε =
b− a

2π
(θ ± ǫ) +

b+ a

2

=

(

b− a

2π
θ +

b+ a

2

)

±
b− a

2π
ǫ

= x±
b− a

2π
ǫ ⇒

ε =
b− a

2π
ǫ.

The limit ǫ → 0 is now seen to be clearly equivalent to the limit ε → 0, and the definition
of the filtered function fǫ(θ) has a counterpart gε(x),

fǫ(θ) =
1

2ǫ

∫ θ+ǫ

θ−ǫ

dθ′ f(θ′) ⇒

gε(x) =
1

2ε

∫ x+ε

x−ε

dx′ g(x′).

It follows that if f(θ) is a combed function and we thus have that

f(θ) = lim
ǫ→0

fǫ(θ),

then we also have that

g(x) = lim
ε→0

gε(x),

so that g(x) is also a similarly combed function. We may thus conclude that it suffices to
consider and discuss only the set of combed functions within [−π, π].
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[8] L. Schwartz, “Théorie des Distributions”, 1-2, Hermann, Paris, (1951).

M. J. Lighthill, “Introduction to Fourier Analysis and Generalized Functions”, Cam-
bridge University Press, (1959). ISBN 0-521-09128-4.

[9] J. L. deLyra, “Low-Pass Filters, Fourier Series and Partial Differential Equations”,
arXiv: 1410.8710.

[10] W. Rudin, “Principles of Mathematical Analysis”, McGraw-Hill, third edition, 1976;
ISBN-13: 978-0070542358, ISBN-10: 007054235X.

H. Royden, “Real Analysis”, Prentice-Hall Inc., third edition, 1988; ISBN-13: 978-
0024041517, ISBN-10: 0024041513.

15


