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AbstractWe study the generation of geometry in space-time as a consequence of the intro-duction in it of quantum matter �elds. We use as de�nition of Quantum Field Theoriestheir representation on the Euclidean lattice. The introduction of external sources inthe ��4 model breaks the translational invariance of the model on the lattice. Due tothis the physical scale that the model de�nes through its renormalized mass becomesdependent on position. The interpretation of this physical scale as the physical unitwhich de�nes distances generates on �nite lattices a metric geometry with non-zerointrinsic curvature.



DedicationOn the occasion of the writing of this thesis, which I hope will be the last one I willever write, I would like to leave recorded the intellectual legacy which I received fromthe persons who were my main mentors and teachers, among the many good teacherswith whom I had the happiness of studying. Hence, I would like to dedicate this workto those persons who played a particularly important role in my scienti�c educationand who, beyond that, guided me along the di�cult paths of science.I dedicate this e�ort to the memory of my father, Professor Carlos B. de Lyra,who left me not only the seeds of curiosity and intellectual honesty, but the belief inthe redemption of the human being through science and wisdom; to Professor HenriqueFleming, who showed me for the �rst time, with extraordinary enthusiasm, the beautiesof physics, and initiated me in my journey through science; to Professor Lee Smolin,who transmitted to me the fascination for the study of gravitation; to the memoryof Professor Feza G�ursey, who showed me, even in the few contacts which we had, aprofound vision of the relationship between physics and mathematics; and to ProfessorBryce S. DeWitt, who guided me to scienti�c maturity.

i



AcknowledgementsI would like to thank in a special way the people who accompanied and helped me in aconstant way during all the long and di�cult period of our lives during which this workwas slowly developed: my wife Maria Aparecida S. de Lyra and my children Alexandree Cassandra. I would also like to thank all my work companions, friends, collaboratorsand students, for all the conversations, discussions, seminars and exchanges of ideaswhich were so important to us all in learning new things, in special Dr. Timothy E.Gallivan, Dr. See-Kit Foong, Prof. Carlos Eugênio I. Carneiro, Dr. Andr�e C. R.Martins and Prof. Jo~ao Carlos A. Barata.I would like to thank the Department of Mathematical Physics and in particularProf. H. Fleming for their enduring support in my e�ort to obtain the facilities withwhich this work was done. The computer work involved in the elaboration of thisthesis was all done on equipment of the University of S~ao Paulo. The major part of thebasic simulation work was done on the IBM-SP2 parallel computer of the Laboratory forAdvanced Scienti�c Computing, to which I owe many thanks. The remaining simulationwork, as well as all the work of analysis and elaboration of the results, was done on themachines of the Department of Mathematical Physics, with the extensive use of freesoftware.

ii



Contents1 Introduction and Overview 12 Quantum Fields on the Lattice 52.1 De�nition of the Classical Theory . . . . . . . . . . . . . . . . . . . . . 52.2 De�nition of the Quantum Theory . . . . . . . . . . . . . . . . . . . . 72.3 Stochastic Monte-Carlo Simulations . . . . . . . . . . . . . . . . . . . . 93 Some Relevant Facts 113.1 Critical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.2 Discontinuity of the Con�gurations . . . . . . . . . . . . . . . . . . . . 123.3 Triviality of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.4 Action of External Sources . . . . . . . . . . . . . . . . . . . . . . . . . 143.5 Finite Invariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Local Observables for the Mass 174.1 Perturbation Theory on the Lattice . . . . . . . . . . . . . . . . . . . . 174.2 Local Observables for �R . . . . . . . . . . . . . . . . . . . . . . . . . 184.3 Tests of the Local Observables . . . . . . . . . . . . . . . . . . . . . . . 204.4 Extrapolation for the Use of the Observables . . . . . . . . . . . . . . . 225 Geometry Generated on the Lattice 255.1 Numerical Results: Geometry of the Section . . . . . . . . . . . . . . . 255.2 Numerical Methods Used . . . . . . . . . . . . . . . . . . . . . . . . . . 335.3 Analysis of the Geometry of the Section . . . . . . . . . . . . . . . . . 346 Conclusions and Outlook 42A Graphs 45A.1 Observable Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46A.2 Section Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49A.3 Residual Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63iii



Chapter 1Introduction and OverviewContemporary theoretical physics is based on the two great and fundamental intellectualstructures the discovery of which constituted the great revolution which occurred in the�rst half of this century: Relativity and Quantum Mechanics. More than descriptivetheories of this or that aspect of the structure of nature, these intellectual structuresare meta-theories containing the fundamental principles that rule all of physics. Wesay that these two intellectual structures are theories of principle, in contrast to thetheories of substance which describe each aspect of the structure of nature.Among the theories which describe the several fundamental forms of interactionbetween the particles which constitute the structure of matter the best known andalso that with the most universal and familiar applications is, without question, Elec-trodynamics. Cradle of Relativity, it was also in this theory that the most successfulapplication o the principles of QuantumMechanics was realized. The classical principlesof Electrodynamics are one of the most successful parts of physics and the applicationto them of the principles of Quantum Mechanics led to the creation of Quantum Elec-trodynamics, the most successful of the Quantum Field Theories.The great successes of Quantum Electrodynamics motivated the formulation of gen-eralizations of it, known as Gauge Theories, for the description of the short-rangeinteractions which exist in nature. In contrast to Electrodynamics, which dominatesthe structure of matter at the level of atoms and molecules, these short-range interac-tions, called strong and weak interactions, dominate the dynamics of the structure ofthe atomic nucleus and of its components. These are the interactions discovered mostrecently, in this century, being also the least well understood.The weak interactions are described and uni�ed with Electrodynamics by a GaugeTheory with symmetry U(1) � SU(2), while the strong interactions are described byQuantum Chromodynamics, a Gauge Theory with symmetry SU(3). While all theseare quantum theories of vector �elds describing various types of interactions, the con-stituents of matter itself are fermionic particles described by spinor �elds and appearas quarks or leptons according to their being able or not to undergo strong interactions.This whole picture is called the standard model of the elementary particles.On the other hand, the form of interaction longer known is undoubtedly gravitation,1



the classical theory of which goes back to the origins of classical mechanics. In fact, thecombined application of Classical Mechanics and the theory of Universal Gravitationto the problems of celestial mechanics was one of the �rst, great and lasting successesof classical physics. However, the situation of the theory of gravitation within the orderof the ideas of physics has always been shrouded by a certain cloud of mystery.At its inception the theory of gravitation was not even a �eld theory in the sense inwhich we use this concept today, but a theory of action at a distance. The question ofthe origin of this force was one which could not even be formulated clearly. With thediscovery of Relativity the theory of gravitation was the main obstacle, resisting to thedirect application of the relativistic principles. The compatibilization of the theory ofgravitation with the principles of relativity was accomplished with the creation of thetheory of General Relativity, now a well established theory and one of the most beautifulconquests of the human intellect. With this the theory of gravitation de�nitely becomesa �eld theory, although the gravitational waves predicted by it have not been, until now,observed directly. Besides, the theory presents an elegant explanation of the origin ofthe gravitational interactions in terms of the curvature of the geometry of space-time.However, the status to be attributed to the theory remained rather obscure. Itsgeometric and profoundly non-linear character puts it in clear contrast with all other�eld theories of interaction of physics. If, on the one hand, General Relativity can beunderstood simply as a relativistic theory of gravitation, on the other hand it can alsobe understood as a kind of generalization of Relativity. While Relativity contains atits center the principle of the constancy of the speed of light and Quantum Mechan-ics contains the principle of uncertainty, General Relativity contains the principle ofequivalence, which is intimately associated to the concept of locality which dominatesthe theory. Hence, General Relativity mixes up the concepts of theory of principle andtheory of substance.In no aspect the singularity of the theory shows itself more clearly than in the onerelated to the quantization e�ort. Since the beginning the theory resisted consistently toall the trials at making it compatible with the principles of Quantum Mechanics, whichwere many and varied. It must be said that there is no direct experimental evidenceimplying a need to quantize General Relativity. What exists is a logical imperative tomake the theory of gravitation compatible with the fundamental concepts of QuantumMechanics, if we want to believe that this last one is a true theory of principle withcompletely general validity.In the e�ort, unsuccessful to this day, to bring the relativistic gravitation of GeneralRelativity and Quantum Mechanics to a coexistence in a unique logical scheme, one hasalways started from the point of view that General Relativity is a classical �eld theorywhich should be quantized according to some scheme following the basic directives ofthe quantization of Electrodynamics and Gauge Theories. In this way, the dominantimage of General Relativity in this e�ort is as a theory of substance, a classical theoryof interaction, not as a theory of principle. However, after an enormous number of themost varied trials for the quantization of General Relativity, in which many di�erent2



techniques and manymodi�cations of the classical theory were tried, no de�nitive resultshave been obtained.Parallel to this, the semi-classical analysis of the theory, in which one studies thequantization of other �elds in the presence of a classical gravitational �eld, that is theso-called Quantum Field Theory in Curved Space-Time, presents some interesting andsuggestive results. These results, associated to the horizons which exist in the solutionsof General Relativity, establish an interesting connection with thermodynamics. Wemust observe, however, that these results do not provide a complete view of the physicsinvolved, containing in fact some paradoxes.From whatever angle one examines the nature of the theory of gravitation, a cloud ofdoubt persists, specially with respect to its relationship with Quantum Mechanics. Onemay identify the very geometrical character of the classical theory as the root of the dif-�culties. Observe that the fundamental principle contained in the theory, the principleof equivalence, �nds its expression exactly in this geometrical character. Indicationsare that the fundamental principle of locality in General Relativity conicts in an un-avoidable way with the non-local character introduced through Quantum Mechanics bythe principle of uncertainty.One of the di�culties one �nds in the e�ort of quantization of General Relativity isour still limited knowledge of Quantum Field Theory in general. A fair portion of thesedi�culties is of a technical character, however, after so many trials for so long, it is nolonger possible to believe that all di�culties which confront us in the quantization ofgravity are of a technical character. Certainly there must be a fundamental di�cultyof a conceptual character, even if we are not yet capable of identifying it clearly.It is not surprising that our understanding of Quantum Field Theory is limited,for these are recent, complex and sophisticated theories, expressed by mathematicsover which our control is still very limited. The extraordinary and even surprisingsuccess of the predictions of perturbation theory in Quantum Electrodynamics gives us,perhaps, a distorted idea of the depth of our understanding of Quantum Field Theoryin general, even with respect to theories which are formally simpler that QuantumElectrodynamics, like the ��4 polynomial models.In this work we wish to examine some aspects of this question, using as a laboratorythe ��4 model. Through the analysis of some basic properties of the structure of thismodel we will be taken to the examination of a particularly interesting aspect, whichrelates the quantization of the model directly to the concept of a local geometry in space-time. Although the ideas will be presented in the restricted context of this laboratorymodel with scalar �elds, they introduce the analysis of a new aspect of the quantizationof �eld theories and suggest new and interesting lines of research for the explorationof the possibility of extension of these ideas to more realistic models, containing vectorand spinor �elds.It is interesting to record here the philosophy which we adopt with respect to thede�nition of Quantum Field Theories. There is a way of thinking according to whicha Quantum Field Theory is what one gets by applying to a given classical �eld theory3



some \quantization process". This is not the standpoint which we adopt, because whatis meant by the \quantization process" is not a unique and well-de�ned mathemat-ical procedure. Unlike this, we adopt from the start a certain given de�nition of thequantum theory, while the corresponding classical theory should be obtained from thequantum theory by means of a classical limit, which consists of an approximation forlong wavelengths.In principle it is possible that several di�erent de�nitions of the quantum theory havethe same classical limit, or that no quantum theory has a given classical limit. Thedetermination of the classical limit of a quantum theory is part of the analysis of thenature of this quantum theory and is not determined \a priori". If, on the one hand, weadopt a given de�nition for the quantum theory with the intention that it be completeand consistent, on the other hand we do not assume any \a priori" position about theuniqueness or physical relevance of this de�nition. The correctness of the choice of thedetailed de�nition of a quantum theory can only be judged from the properties of theresulting theory.In this work we will be using a laboratory model to which no fundamental physicalrelevance is intended, but which we believe to be a good laboratory to illustrate theworking of the mathematics involved in the de�nition of a Quantum Field Theory. Thede�nition we use for the quantum theory in this model by means of the Euclideanlattice is the de�nition which is universally used by the researchers in this area, for thisparticular model. However, it is certainly not the only possible de�nition.
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Chapter 2Quantum Fields on the LatticeThe �rst step for the de�nition of a quantum �eld theory within the formalism of theEuclidean lattice is the de�nition of a certain mathematical structure on �nite lattices.This structure will contain exclusively a certain number, possibly large but �nite, ofdimensionless parameters and functions. The theory will be de�ned as the limit of asequence of �nite lattices, with increasingly larger sizes, satisfying certain conditions.We will call this limit the continuum limit.Some physical quantities are de�ned at the beginning of this process and remainunaltered until its end. One quantity of this type is the the integer number d ofdimensions of the Euclidean space-time in which we de�ne the theory. Another quantityof this type is the order N of the symmetry group we use to de�ne the model. Otherquantities will be parameters that, although constant in each lattice, will vary in thecontinuum limit. Among these is the number N of lattice sites in each space-timedirection, which characterizes the size of the lattice. Other parameters of this type willbe the mass parameter � and the dimensionless coupling constant �. Finally, we willhave dimensionless random variables, which uctuate in each �nite lattice accordingto a given probability distribution, that is, the dimensionless dynamical �eld variables,de�ned in an internal space of dimension N , which we will denote as ~', or by itscomponents 'i, i = 1; : : :N .2.1 De�nition of the Classical TheoryInitially we will illustrate the process considering the de�nition on the lattice of theclassical �eld theory, using as an example the ��4 model. Later we will examine insome detail the de�nition of the quantum theory. We consider, therefore, a hyper-cubiclattice of size N in d dimensions, that is, a set of Nd points, which we will call sites,arranged as a d-dimensional cube with N points along each side. We associate to thesepoints the concept of next neighbor, symbolized by the introduction of connectionsor links between them. We include links connecting the sites at the boundary of thecube with the sites at the opposite boundary, so as to implement periodic boundary5



conditions. Note that, at this stage, there is no notion of distance in the lattice.We de�ne now the Euclidean action of the system asSN = 12 dNdXl �l~' ��l~'+ �2 NdXs ~' � ~'+ �4 NdXs (~' � ~')2 � NdXs ~j � ~'; (2.1)where PdNdl represents a sum over all the dNd links of the lattice, �l~' is the di�erencebetween the �elds at each of the two ends of a link, PNds represents a sum over all theNd sites of the lattice, the dot denotes scalar product in the internal space of the �eldsand ~j is an external source. Note that we may separate this action in two parts, asSN = S0+SV , where S0 is the action of the free theory, which is quadratic on the �eldsand hence exactly soluble,S0 = 12 dNdXl �l~' ��l~'+ �2 NdXs ~' � ~'� NdXs ~j � ~';while SV is the part involving the quartic term of the potential, which couples the �eldcomponents in a non-linear way, SV = �4 NdXs (~' � ~')2:The classical solution of the model on a �nite lattice is the con�guration of the �eld~' which minimizes the function SN , which has a lower bound if � > 0 or if � = 0 with� � 0. In order to take the continuum limit, it is necessary that we establish a scale inthe system, introducing a dimensional parameter, in such a way that it will be possibleto de�ne the concept of distance between points on the lattice. Classically, we do thisby introducing an external scale in the system.We assume that, in some system of units external to the system, our cubic latticehas sides of length L. We de�ne then the lattice spacing as a = L=N , the squared massas m2 = �a�2, the dimensional coupling constant as � = �ad�4, the dimensional �eldas ~� = ~'a(2�d)=2 and the dimensional external source as ~J = ~ja�(d+2)=2. Besides, wemay decompose the sum over links, conveniently, as PdNdl = PNds Pd�, where Pd� is asum over the d positive directions from a given site. With all this, we may write theaction as SN = NdXs ad 2412 dX� ��~�a � ��~�a + m22 ~� � ~�+ �4 (~� � ~�)2 � ~J � ~�35 ;where �� is a di�erence between neighbors in the direction �. Taking now the limitN !1 with �xed L and a! 0, we have that the sumPNds ad approximates the integralR ddx, the ratio ��=a approximates the partial derivative @�, and we have therefore thatSN ! S where 6



S = Z ddx "12 dX� @�~� � @�~�+ m22 ~� � ~�+ �4 (~� � ~�)2 � ~J � ~�# : (2.2)Hence we recover the classical �eld theory in its usual form. Note that the dimensionalparameters are relative to the external scale which was introduced to de�ne L. Notealso that, in order that m and ~J be �nite in the limit, it is necessary, respectively, that�! 0 and ~j ! ~0. Naturally, for point sources we will have that ~J diverges at a certainpoint as a delta function. Besides, in order that � be �nite and non-zero in the limit,it is necessary that �! 0 (for d < 4), � � 1 (for d = 4) or �!1 (for d > 4). Finally,in order that �i be �nite and non-zero in the limit, we must have 'i !1 (for d < 2),'i � 1 (for d = 2) or 'i ! 0 (for d > 2).Note that the introduction of an external scale could be, in principle, avoided, sincethe theory contains the internal dimensional parameter m which can, in principle, beused as a unit to measure the others, as for example the size L of the box. In fact, ifwe wish to see our model as a laboratory for the universe and not as a model for only alocalized part of it, then the introduction of an external scale does not make sense andwe are forced to use this internal scale. However, in the classical theory it is not clearwhat is the procedure associated to m which could be used to de�ne distances. On theother hand, in the quantum theory there is such a procedure, as we shall see. This isprecisely the point of view which we want to explore in this work, in the context of thequantum theory.2.2 De�nition of the Quantum TheoryWe may use the lattice to de�ne the quantum theory in a way which is similar tothe process described above. The fundamental di�erence between this procedure andthe traditional approach is that, instead of �rst taking the continuum limit and thenconsider the quantization of the classical continuum theory which results, we invert theorder of these operations. We �rst de�ne a version of the quantum theory on each �nitelattice and afterwards we consider the limit of the sequence of these �nite quantumtheories as we increase the lattice inde�nitely, keeping satis�ed certain conditions onsome of the observables of the model. This limit produces the Euclidean quantum �eldtheory and, as a �nal step, the Lorentzian quantum �eld theory is de�ned by means ofthe analytic extension of the observables, by taking imaginary Euclidean times.In each �nite lattice we de�ne the quantum theory as a statistical model with a�nite number of degrees of freedom. The physically relevant quantities of the theoryare the average values, on a certain ensemble, of certain functions O['] of the �elds. Theensemble in question is de�ned by the Euclidean action. The observables are de�ned ashOi = R [d']O[']e�SN [']R [d']e�SN ['] ; (2.3)7



where [d'] = QNds QNi d'i(s) and the multiple integrals are over all the components ofthe �eld at all the sites, having therefore dimension NdN . The observables formed bysimple products of the �elds, which we call correlation functions and which, by analyticextension, produce the Green's functions of the system, are particularly important. Wewill be paying particular attention to the one- and two-point functions, which relaterespectively to the expectation value of the �eld and the renormalized mass, which inturn measures the inverse of the correlation length of the system,g(1);i(s) = h'i(s)i;g(2);i(s; s0) = h'i(s)'i(s0)i:In order to take the continuum limit we consider some conditions involving theseobservables. For example, for the case ~j = ~0, we may take a limit in which we imposethat the renormalized massmR and the expectation value of the �eld ~vR = h~'i are givenconstants. The maximum number of conditions that we can impose is the number offree parameters we have in the model, which allow us to adjust the values of theseobservables in each �nite lattice. In our case we have two parameters, � and �, hencewe may impose at most two conditions, like the ones above. However, it is possible thatthe structure of the model correlates the values of the observables in such a way thatit may, in fact, not be possible to give to them any values that we may wish.As an example of the continuum limit we may take the free theory, where � = 0and which has the single free parameter �. In this case it is necessary that we have� > 0 for the theory to be well-de�ned. Assuming also, for simplicity, the absence ofexternal sources, that is that ~j = ~0, we may take in this case a limit in which ~vR = ~0and mR 6= 0. In this model it results from direct calculation that m2R = �a�2, so thatin this limit we will necessarily have �! 0. We may also take a limit in which mR = 0and ~vR 6= ~0, but it is not possible to have both ~vR and mR non-zero.The renormalized mass mR is de�ned as the position of the pole of the two-pointfunction. In general it will not be related to � in such a simple way as in the free theory.In most models the renormalized mass will be a non-trivial function of both � and �.It is convenient to de�ne a renormalized version of � as �R = m2Ra2. We see then that,in any physically interesting limit, we must have �R ! 0, otherwise the renormalizedmass will be in�nite and there will be no propagation of particles in the Lorentzianversion of the theory.In the Euclidean version the parameter �R is related to the dimensionless correlationlength of the model, which is measured in terms of the number of sites and links crossedin order that the correlation between two values of the �eld fall by a certain factor andwhich can be obtained from the two-point correlation function. In this way it becomesclear that it can be used to de�ne distances: in order to know the distance between twopoints on the lattice it su�ces to count the number of correlation lengths that one can�t between them.In a similar way the expectation value ~vR of the �eld can be obtained from theone-point functions and the renormalized coupling constant �R from the two- and four-point functions. The solution of the theory consists of the determination, on each �nite8



lattice, of the functions ~vR(�; �), �R(�; �) and �R(�; �) which relate the renormalizedquantities to the parameters of the theory and the subsequent taking of the continuumlimit with conditions on some of the observables.2.3 Stochastic Monte-Carlo SimulationsStochastic simulations are the main exploration and calculation technique in this re-search area. They enable us to obtain good numerical estimates for the observablesde�ned in (2.3). Their foundations are well known and will not be repeated here. Itsu�ces to say that they are a technique which allows us to evaluate, with a measurableprecision, the ratios between high-dimensional multiple integrals which appear in thede�nition (2.3) for the observables. This is done by the generation of a sequence of �eldcon�gurations in such a way that the statistical distribution of these con�gurations con-verges to the distribution de�ned by the exponential of the Euclidean action. In thisway, the simulation techniques are identical to those used in the study of StatisticalMechanics, except for the fact that the simulations are realized more often in four thanin three dimensions.There are many di�erent ways to generate an appropriate sequence of con�gura-tions. We denominate as stochastic evolution the process of successive generation ofcon�gurations. In order that the generated statistical distribution of �elds converge tothe correct limit, it is su�cient that the algorithms used to generate each con�gura-tion form the previous one satisfy a condition which is known by the name of detailedbalancing. The algorithms used in our programs are of several types. The stochasticvariations of the �elds in the ��4 model are decomposed into radial and angular parts.For the stochastic evolution of the angular part we use the Wol� algorithm [1]. For this,it was necessary to adapt it to models with variable-length vectors in the presence ofexternal sources. The Wol� algorithm is extremely e�cient and improves considerablythe quality of the numerical results.For the evolution of the radial part we used the Metropolis algorithm [2]. In thissector of the code the part of the action involving the potential, being strictly local, istreated in a particular way, by means of a change of variables and an interpolation of theinverse of the integral of the exponential of the potential. This approach for the radialpart is very e�cient for dealing with the usual theory, without sources, but revealedhaving some limitations in the presence of very strong external sources, forcing us tolimit the simulations to values of the external source below a certain maximum limit.A re-structuring of the code to eliminate these limitations is currently in our plans, butthey did not actually compromise the utility of the current code for this work.It is interesting to record here the relation between the boundary conditions andthe critical behavior of the model. We use in the simulations performed in this workperiodic boundary conditions. In this case the internal SO(N ) symmetry of the modelsis always broken on �nite lattices and there are no phase transitions except in thecontinuum limit. However, it is possible to de�ne representations of the models which9



present phase transitions even on �nite lattices. For this it is necessary to use on the�nite lattices, instead of periodic boundary conditions, �xed boundary conditions. Inthis kind of representation, instead of connecting each boundary of the lattice to theopposite boundary through links, we simply �x the value of some of the quantities ofthe theory, in general the �eld itself, along the boundary.This kind of boundary condition may be useful in the future for the development ofthe work we present here, due to the fact that it would allow us to examine in greaterdetail the geometry of small regions of space. However, these boundary conditions arestill poorly developed and the current versions cause distortions in the critical exponentsof the models. There are ideas to improve this kind of boundary condition, which arecurrently subject of research in our group [3]. The basic idea is that we should not �xthe quantum �elds at the boundary but instead the values of some observables. It willbe necessary to �rst develop these ideas if �xed boundary conditions are to be of realuse in this work.
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Chapter 3Some Relevant FactsWe describe in this chapter some of the most important properties of the theory ac-cording to its de�nition in the Euclidean lattice. From these fundamental propertieswe will induce the basic motivation for this work.3.1 Critical BehaviorAs we saw before, in the continuum limit of the free theory we necessarily have that�R = � ! 0, while in the interacting theory we have �R(�; �) ! 0. On the otherhand, the Euclidean system that we de�ne in each �nite lattice is a statistical systemwhich, in the continuum limit, has a second-order phase transition the order parameterof which is the expectation value of the �eld, vR = j~vRj. The transition region, in thiscase a critical curve in the (�; �) plane, is the region where �R ! 0, and therefore anyphysically interesting continuum limit should converge to this critical curve.This is a general property of the de�nition of Quantum Field Theories on the Euc-lidean lattice. If we cannot �nd a representation on the �nite lattices which leads to astatistical system with a second-order phase transition, we cannot de�ne the theory, forin �rst-order phase transitions, in which �R 6! 0 in the critical region, it is not possibleto take well-de�ned continuum limits, with �nite renormalized masses.The critical diagram of the ��4 model can be found in �gure 3.1. This is a diagramin the space of the parameters of the model, in our case the (�; �) plane. The continuumlimits can be represented by paths in this diagram, which we call ows. All limits ofphysical interest converge to the critical curve. The ensemble of the theory is Gaussianin the half-axis � � 0, � = 0 and the free theory limits ow along this axis convergingto the Gaussian point � = 0, � = 0, where the critical curve begins. The theory doesnot exist in the half-axis � < 0, � = 0 and in the half-plane � < 0.The critical curve divides the diagram in two regions, which constitute the twophases of the model. The symmetric phase is characterized by having ~vR ! ~0 in theN !1 limit, while in the broken-symmetric phase we have, for one of the componentsof the �eld, vR;i 6= 0 even in the N !1 limit. By convention we choose the component11
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αFigure 3.1: The critical curve of the ��4 model.in the direction of which the symmetry is broken, which we name the longitudinalcomponent, as the N -th component of the �eld. For the other components, whichwe name transversal components, we always have vR;i = 0, even on �nite lattices.With periodic boundary conditions we will always have vR;N 6= 0 for the longitudinalcomponent on �nite lattices.In the neighborhood of the Gaussian point the critical curve di�ers very little froma straight line. For the model with SO(2) symmetry which we used in the simulationsdescribed later, it is at approximately 60o from the � < 0 half-axis in d = 4 and atapproximately 45o in d = 3. In d = 4 the larger lattice which we used, with N = 8,already has a behavior reasonably close to the critical behavior of the continuum limit.In d = 3 the N = 8 lattice is relatively more distant from the limit, so that we willexamine the critical situation performing the simulation at 50o. This is due to thefact that the proximity to the continuum limit, in terms of the critical behavior, isapproximately proportional to the total number Nd of sites of the lattice.3.2 Discontinuity of the Con�gurationsOne property of the continuum limit of the ��4 model which interests us in particular isthe fact that the typical con�gurations of the �elds of the model, which contribute in adominant way to the expectation values, are discontinuous functions at all points. Onecan show, analytically in the case of the free theory and numerically for the interactingmodels, that the quantity h(�l'i)2i on any link of the lattice has a �nite and non-zero12



limit [4].Since the di�erence �l is taken between neighbors this means that, on average,values of the �elds ~' at in�nitesimally close points di�er by a �nite quantity in thelimit and hence that the �elds are typically discontinuous at all points. For d > 2this implies that the discontinuities of the dimensional �eld ~� become in�nite in thecontinuum limit. The same conclusions can be derived analytically in the case of openelectrodynamics without sources [4] and observed numerically in other cases like, forexample, the Non-Linear Sigma Models.This basic fact of the structure of the theory immediately puts in profound doubtthe usual notion we have about what it means to quantize the gravitational �eld. Theusual way to think about the process of quantization of General Relativity involvesthe conception of the �eld con�gurations in the form of a uctuating geometry forspace-time. It is extremely arti�cial to think of the quantized gravitational �eld as auctuating geometry if the con�gurations are so profoundly discontinuous, completelypreventing the introduction of the concept of con�gurations of the theory as geometricalobjects.This property of the dominant con�gurations of the quantum �elds has importantconsequences for the analysis of the perturbative expansion of the model on the Euc-lidean lattice. It constitutes the basic mechanism responsible for the divergences whichappear in the perturbative expansion in the continuum limit. Besides, it immediatelyintroduces doubts about the role that the topology of the �eld con�gurations may playin the dynamics of the model.3.3 Triviality of the ModelA remarkable property of the ��4 models in four or more dimensions is what is usuallycalled the triviality of these models. This triviality is a property of the structure of themodels and means that, in the continuum limit, the correlation functions of the modelsare identical to the corresponding correlation functions of the free theory.The most important aspect of this fact is that the four-point functions are factor-izable in products of two-point functions. This, in the interpretation of the Lorentziantheory, means that the particles of the model behave as free particles and do not inter-act with one another. This appears in the observables as the fact that the dimensionalcoupling constant �R vanishes. In d > 4 this simply means that �R is �nite, while ind = 4 it means that �R ! 0 in the limit. In d = 3 it is known that the theory is nottrivial, having a �nite and non-zero limit for �R, which, once more, means that �R ! 0in the limit.All this implies that we should have �R = 0 over the critical curve in d = 3 andd = 4. Simulations which we realized under certain speci�c conditions seem to indicatethat, in fact, �R = 0 in all the parameter space of these models, even on �nite lattices.However, our statistics is still very poor and we cannot state this with certainty. Forthis it will be necessary to improve the numerical techniques and perform much more13



extensive numerical work.However, in chapter 4 we will show some facts which seem to indicate the sameconclusion. In the analysis of the local observables for the renormalized mass, presentedin that chapter, we will see that certain relations of the free theory seem to be satis�edby the interacting model even on �nite lattices. We do not know yet whether it ispossible to use this approach to perform a deeper analysis of the question of triviality,something which we intend to try to do in the future.3.4 Action of External SourcesThe introduction of external sources in the model will play a fundamental role in thiswork. In the usual treatment this introduction is done primarily within the frameworkof the e�ective action formalism and is limited to in�nitesimal sources. In that form-alism the external sources are used basically to allow the generation of the correlationfunctions by means of functional di�erentiation and, at the end of the process, thesources are put to zero. In this work, in contrast to this, we will be introducing strongexternal sources and examining in more detail their action on the system.The physical interpretation of the external sources is that they represent the intro-duction of classical objects in the theory, which generically can be sources of particles,such as accelerators, or absorbers of particles, such as detectors. For this reason, theyare represented in the theory as given �xed functions and not as uctuating randomvariables. The idea is that in a more complete representation the sources are related tosome other physical system, which we are not representing directly in our model. Forthe purpose of studying their e�ect in our model we exchange the uctuating variablesof the quantum objects of this other system by their expectation values, which we treatas given �xed functions.The most immediate e�ect of the introduction of an external source in our model isa change in the expectation value of the �eld ~vR, which becomes di�erent from zero ineither phase. Besides, if the external source is not constant over the lattice, ~vR becomesdependent on position. We will be examining in particular the case of a point sourceoriented in the direction of 'N . In the case of the free theory we can present a generalsolution for ~vR, given a generic source:~vR(s) = NdXs0 ~j(s0)K(s; s0);where K is the propagator in coordinate space,K(s; s0) = 1Nd NdXk cosh2�N k�(n� � n0�)i�2(k) + �and where n� are the integer coordinates of a site s of the lattice, in units of numbersof sites. The dimensional coordinates x� which describe the positions of the sites are14



given by x� = an�, where n� = 1; : : : ; N for � = 1; : : : ; d. The sum PNdk runs overthe Nd Fourier modes of the lattice and k� are integer variable that index these modes.In general we adopt for them the interval of values k� = km; : : : ; 0; : : : ; kM , wherekm = 1 � N=2 and kM = N=2 for lattices with even N , while km = �(N � 1)=2 andkM = (N � 1)=2 for lattices with odd N . The quantities�2(k) = 4 "sin2 �k1N !+ : : :+ sin2 �kdN !#are the eigenvalues of the Laplacian on the lattice. In the continuum limit the squareof the momentum relates to these eigenvalues by p�p� = p2 = lima!0[�2(k)=a2]. Thesums may be written explicitly asNdXs = NXn1=1 : : : NXnd=1;NdXk = kMXk1=km : : : kMXkd=km :Subtracting from the �eld its expectation value we have the shifted �eld variable~'0 = ~'�~vR, which has zero expectation value and all correlation functions identical tothe ones for the free theory without external sources. This is, clearly, a consequence ofthe linearity of the free theory. For a point source at the origin we have, in particular,that ~j(s0) = ~j0�0;s0 and then~vR(s) = ~j0K(s; 0) = ~j0Nd NdXk cos�2�N k�n���2(k) + � :Note that, at the position of this singular source, ~vR(s = 0) has a �nite and non-zerocontinuum limit for d > 2, because the quantity K(0; 0) = f0(N; d; �), wheref0(N; d; �) = 1Nd NdXk 1�2(k) + �; (3.1)has a �nite and non-zero limit for d > 2 [4]. At this point the expectation value of thedimensional �eld ~VR = h~�i diverges for d > 2. On the other hand, since we will havea �nite ~VR at all other points, it follows that at all points except the location of thesource we shall have ~vR ! 0 in the limit, for d > 2.3.5 Finite InvariancesThere are symmetries of several types in the model. All these symmetries are familiarand have complete and explicit realizations in the continuum limit, if we also make the15



dimensions of the box containing the model tend to in�nity. Both the representationof the model inside a �nite box and its realization on a discrete lattice a�ect some ofthese symmetries. However, the representation on the lattice keeps remnants of thecomplete symmetries, which allow us to identify that the symmetries will be restoredin the in�nite-volume continuum limit.First we have the internal invariance with which we de�ned the model, in our casean invariance by transformations of SO(N ) in the space of the �elds. This invarianceis the only one that stays intact on the classical model de�ned on a �nite lattice. It isnot a�ected by either the �niteness of the box or the discrete character of the latticeand, for N > 1, it is a continuous symmetry. This symmetry is broken, however, by thedynamics of the quantum theory and may or may not be recovered in the continuumlimit. It is this symmetry that de�nes the phase structure in the critical diagram of themodel.The spatial symmetries of rotation are broken, of course, by the introduction of adiscrete lattice in a �nite cubic box. However, the rotation symmetries remain encodedin the system in an indirect way. For example, we have the fact that the propagatorof the theory in momentum space is a function only of �2(k) and not of the severalcomponents and values of k� independently. In fact, the propagator has, as a functionof �2(k), exactly the same form that the propagator of the continuum limit has as afunction of p2. All quantities which in the continuum are functions of p2 become, on�nite lattices, functions of �2(k). In this way, the quantities �2(k) work as a kind of�lter which allows us to compensate the distortions introduced by the �niteness of thebox and the discrete character of the lattice. Besides this, there remains in explicit forma discrete remnant of the rotation symmetries, constituted by the rotations by �=2.The spatial symmetries of translation are also modi�ed by the introduction of the�nite box and of the discretization. In the case of the introduction of the �nite box theadoption of periodic boundary conditions still allows us to keep these symmetries inthe form of periodic translation symmetries along the torus de�ned by these boundaryconditions. The discretization on the lattice breaks the continuous character of thesesymmetries, changing them into discrete symmetries, in which we translate along thelattice by an integer number of sites in each direction. In this way, so long as thereare no position-dependent external sources in the action of the model, the translationsymmetries remain valid in a discrete form.The spatial symmetries will play an important role in this work. In the absence ofposition-dependent external sources all physical quantities of the model, in particularthe correlation length, will have discrete translation and rotation invariances. Withthis, it is evident that the geometry generated on the lattice by the quantization ofthe model will be at. It is the breaking of these symmetries by the introduction oflocalized external sources which will be responsible for the generation of curvature.16



Chapter 4Local Observables for the MassWe show here, by numerical means, that certain non-trivial relations among observablesof the ��4 model are satis�ed very precisely, possibly exactly so. These relations can bederived by means of perturbative methods and are identical in form to the correspondingrelations for the free theory, di�ering from them only by the exchange of the mass bythe renormalized mass.4.1 Perturbation Theory on the LatticeLet us consider the ��4 model de�ned by the action given in equation (2.2) and quant-ized on the lattice according to the scheme described in Chapter 2, using the latticeaction given in equation (2.1). It is possible to develop for this model a perturbativemethod on �nite lattices, in the way described in reference [5].This approach is very useful and, although it has a perturbative character, the res-ulting approximations are better described as Gaussian approximations for the model.Properly speaking it is not an expansion but a good approximation for some of theobservables of the theory. The approach is useful to deal with the one- and two-pointfunctions, but not for the four-point function. In the symmetric phase the approxim-ation for the renormalized mass is given, in terms of the parameters � and � of themodel, by �R = � + (N + 2)�f 00;i(N; d; �R);for each i-th �eld component, withf 00;i(N; d; �R) = f0(N; d; �R) + �iN � 1Nd�R ; (4.1)where f 00;i 6=N is the function f0 de�ned in (3.1) without the zero-mode term and f 00;N =f0. In the broken-symmetric phase we have�R = �2�iN [�+ (N + 2)�f0(N; d; �R)] :17



Note that �R = 0 for the transversal components, which are Goldstone bosons.These are not, in fact, explicit solutions for �R but equations determining �R interms or � and �, because their right-hand sides depend themselves on �R. A com-parison of these predictions for �R with numerical estimates, as presented in [5], showsthat they are very good approximations, even surprisingly so but, still, they are notexact and the di�erences can be clearly seen for large values of �.In this same perturbative scheme it is possible to derive results for other observablesof the theory, which do not involve the renormalized coupling constant �R, for examplefor the expectation value of the �eld, ~vR = (0; : : : ; 0; vR), for which one gets, in the case~j = ~0, vR = 0 in the symmetric phase and, in the broken-symmetric phase,vR = q�R=(2�):For the width of the uctuations of the �eld at sites we haveh('i � vR;i)2i = h'2i i � v2R;i= f 00;i(N; d; �R): (4.2)Finally, for the �nite di�erences on the lattice we haveh(�l'i)2i = h['i(x+ a�)� 'i(x)]2i= 1Nd NdXk 4 sin2�� k�N ��2(k) + �R= f1(N; d; �R);h(�d'i)2i = h['i(x+ a�1 + a�2)� 'i(x)]2i= 1Nd NdXk 4 sin2�� k�1+k�2N ��2(k) + �R= f2(N; d; �R); (4.3)where �l is the di�erence between the �elds at the two ends of a link, �d is the di�erencebetween the �elds at the two ends of a plaquette diagonal and a� is a displacement bythe lattice spacing a in the direction �. A plaquette is a set of four sites forming a squarein one of the lattice planes, that is, it is the basic geometrical element of dimensiontwo, which plays an important role in Gauge Theories.4.2 Local Observables for �RAlthough the observables of the model are, in general, functions of N , d, � and �independently, one can see that all these perturbative results can, with the exception ofthe one for vR, be written in terms of �R(�; �), instead of in terms of � e � separatelyand independently. Note however that the relation (4.2) involves vR in its left-hand18



side and that, due to this, h'2i by itself cannot be expressed only in terms of �R, unlessvR � 0. On the other hand, the relations (4.3) do not depend on vR and consequentlymay be written exclusively in terms of �R. Besides, the functions f 00;i, f1 and f2 haveexactly the same form as the corresponding exact results for the free theory, di�eringfrom them only by the exchange of the parameter � of the free theory by �R.It is also possible to calculate the propagator of the theory in momentum space,resulting eg(2);i(k) = h e'�i (k) e'i(k)i = 1Nd 1�2(k) + �Rin either phase, so long as �R is the appropriate expression in each phase and for each�eld component. In this expression e'i(k) is the �nite Fourier transform of the �eld onthe lattice [6], given by e'i(k) = 1Nd NdXs 'i(s)e{ 2�N k�n�:Besides, from a �t to the numerical propagator of an expression like1Nd R�2(k) + �R ;similar to the previous one, one can estimate very well �R, as is shown in [5]. The �tsdone use a limited but su�cient number of values of the momenta. In general they arevery good and it is observed that the residue of the propagator comes out consistentlyas R = 1 within numerical errors, which we believe to be one more indication of thetriviality of the models. The use of a limited number of values of the momenta is dueto historical issues of a technical character in the development of our computer codesand we have plans to change this strategy and starts calculating the observables fora complete set of values of the momenta. There is a possibility that the use of thislimited set of values of the momenta has introduced some small systematic errors whichwe detected in the numerical results.Note that, unlike the momentum-space propagator, the observables de�ned in (4.2)and (4.3) are local objects on the lattice, involving at most two neighboring sites. Notealso that the relation of these local observables to the renormalized mass is clear andintuitive, since they are directly related to the uctuations of the �elds at sites and thecorrelations between �elds across links and diagonals,h(�l'i)2i = 2h'2i i � 2h'i(l+)'i(l�)i;where 'i(l+) and 'i(l�) are the �elds at the two ends of the link or diagonal, while therenormalized mass �R is directly related to the correlation length of the theory.These considerations lead to the possibility of testing the perturbative relations givenin (4.2) and (4.3), verifying how well they are satis�ed if used to relate the numericalvalues of �R with the numerical values of h'2i i � v2R;i, h(�l'i)2i and h(�d'i)2i. Notethat everything here happens on �nite lattices of arbitrary size.19



4.3 Tests of the Local ObservablesWe performed such a comparison, which showed that the relations (4.3) are satis�ed,within errors compatible with our numerical precision, despite their perturbative origin,for all values of the parameters of the model for which we were able to perform thecomparisons. In the case of the relation (4.2) the same is valid for the transversal �eldcomponents, for which vR;i = 0, but a small di�erence appears for the longitudinalcomponent, in the direction of which the symmetry is broken and for which, therefore,vR;N 6= 0.To better understand these results it is important to point out that our treatmentof the zero-mode in the computer simulations is very di�erent for the transversal andlongitudinal components: the zero-mode of the transversal components is eliminatedfrom the theory by means of the symmetry transformations of the model, that of thelongitudinal component is not. It is through these transformations that we keep thedirection of symmetry breaking �xed along the component 'N .As one can see, unlike the formulas f 00;i 6=N , f1 and f2, the formula f 00;N containsan infra-red divergence involving the zero-mode, that is, a term proportional to 1=�R,which diverges if �R ! 0. Note that there is no divergence in this term in the continuumlimit, since in this case we have �R ! 0 as N�2 when N !1, so that 1=(Nd�R) goesin fact to zero for d > 2. In the same manner as this term, the di�erence observed forthe longitudinal component in the relation (4.2) decreases with the size of the latticeand should disappear in the continuum limit.It becomes clear that the observed di�erence is due to the e�ect of the zero-mode.For the transversal component, the zero-mode of which was eliminated, this term isabsent from the sum and the formula seems to be satis�ed with precision. For thelongitudinal component the term of the zero mode is present and the formula is notexactly satis�ed. The presence of the zero-mode in f 00;N is related to its dependenceon vR which, as we saw, cannot be written exclusively in terms of �R. Note that theobservables h(�l'i)2i and h(�d'i)2i, the formulas for which seem to be realized exactly,do not involve the zero mode at all.In order to perform the tests we measured �R by means of the �t to the numericalpropagator in momentum space and measured independently the observables ~vR, h'2i i,h(�l'i)2i and h(�d'i)2i, for each set of values of the parameters. From these observablescorresponding values for �R were obtained by numerical inversion of the formulas f 00;i,f1 and f2 given in (4.1) and (4.3).A sampling of the results can be found in �gures 4.1 and 4.2, while a mode completeset can be found in Appendix A.1. The parameters r and � that appear in these graphsrelate to � and � by � = �r cos(�);� = r sin(�):As can be seen in these �gures, with the exception of a few occasionally large statisticaluctuations or one or other possible imperfection in the �t used to obtain �R from the20
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momentum-space propagator, the results coincide in an essentially exact way, even forlarge values of the coupling constant.One can see that the local observables constitute a technically very good way tomeasure �R in these models. The extreme regularity and precision of these results,as well as their remarkable consistency with one another, raised the conjecture thatequations (4.2) for the case of the transversal components and (4.3) are in fact satis�edexactly on �nite lattices. Furthermore, the following more general conjecture is stronglysuggested: that there exists a pair of functions h1(�; �) and h2(�; �) such that, for everyobservable O of the theory, the expectation valuehOi = R [d']O[']e�SE(�;�)R [d']e�SE(�;�)is equal to the corresponding expectation value in the free theory with mass parameter�R = h1(�; �) and �eld expectation value vR = h2(�; �), that is,hOi = R [d']O[']e�S0(vR;�R)R [d']e�S0(vR;�R) :If this could be demonstrated it would immediately imply, of course, the trivialityof the theory. Maybe this conjecture is valid on �nite lattices only for some observablesbut, if the theory is in fact trivial, it must be true in the continuum limit for allobservables. In any case it seems that the theory, which can have at most two freeparameters, is such that h1 e h2 may be chosen as these parameters.4.4 Extrapolation for the Use of the ObservablesIt is important to note that the observables of the type (4.3) involving �l and �d su�ceto de�ne the geometry on the lattice, because they allow us to measure the renormalizedmass in a local way and, hence, the correlation lengths associated to links and diagonals.These elements are su�cient to de�ne the lattice as a simplicial complex, that is, tode�ne completely an intrinsic metrical geometry over it.The observables which we used in this work relate only to the links between sites andto sites separated by a two-dimensional diagonal contained in one of the lattice planes.However, it is possible to de�ne observables that measure �R for two neighboring sitesalong any direction of a lattice of higher dimension:h['i(x+ a�1 + : : :+ a�3)� 'i(x)]2i = 1Nd NdXk 4 sin2�� k�1+:::+k�3N ��2(k) + �R= f3(N; d; �R);h['i(x+ a�1 + : : :+ a�4)� 'i(x)]2i = 1Nd NdXk 4 sin2�� k�1+:::+k�4N ��2(k) + �R= f4(N; d; �R):22



With this it is possible, in principle, to obtain the complete intrinsic geometry of afour-dimensional lattice. Here we limited ourselves to examine only the links and two-dimensional diagonals for technical reasons and due to the fact that this su�ces for,at least, a �rst examination of the generated geometry, through its two-dimensionalsections.Note that, from the point of view of this work, the use of these local observables isonly a technique which allows us to measure �R in a local way in simulations with sizeslimited by the current availability of computer resources. This is a technique that mayapply only to the ��4 models, but it is possible to formulate, in principle, a scheme todo this in an arbitrary model. It is enough to imagine that we have a very large lattice,which can be divided into a large number of small boxes, each one still containing asu�ciently large number of sites.Inside each of these small boxes we use Fourier transforms with momenta along eachdirection, with wavelengths su�ciently small to �t inside the boxes, to calculate therenormalized mass associated to each direction by means of a �t to the propagator.We assume, of course, that the boxes are much smaller than the typical distance inwhich the renormalized mass varies and that the number of available modes inside eachbox is very large, allowing a good �t to the propagator. For an approach like this tobe successful, it is obvious that an extremely large lattice would be needed, which iscurrently out of our reach in practice.In this work we will be, therefore, using the local observables to measure the metricalgeometry of the lattice. However, we will be doing this under conditions di�ering fromthose in which it is possible to test them by comparison to the results obtained bymeans of Fourier transforms, for we will be introducing position-dependent externalsources, which break the translation symmetries. It is necessary, therefore, to considerthe errors that may be introduced by this extrapolation, even if the tests performedcover a considerable amplitude of situations with no important change in the resultshaving being observed. We can argue in several di�erent ways that this approach is atleast qualitatively correct, providing at least a good approximation of the real situation.A �rst justi�cation is based in the very triviality of the theory: if the theory is infact trivial, as all leads us to believe, then the two-point correlations are the same asthose of the free theory and hence the local observables should produce good results, atleast in the continuum limit, even in the presence of arbitrary external sources. Notethat we are only interested in using the observables to measure �R and not vR or �R.To formulate our second justi�cation, we �rst observe that, for the calculation ofthe correlation length, the two-point correlation functions must be calculated for theshifted �eld ~'0 which has an expectation value equal to zero. As was discussed before,the precise functioning of the observables (4.3) seems to be related to the fact that,being constant, ~vR does not appear in these observables, which involve derivatives, sothat they can be written indi�erently in terms of either ~' or ~'0. With the introductionof position-dependent external sources ~vR will be no longer constant and therefore willno longer cancel from these observables. We will have now for, as an example, the �rst23



observable in (4.3) h['0i(l+)� '0i(l�)]2i= hf['i(l+)� vR;i(l+)]� ['i(l�)� vR;i(l�)]g2i= h(�l'i ��lvR;i)2i:We observe now that, while the quantum �elds are discontinuous in the limit, the ob-servables of the theory, as for example~vR, are, in contrast to this, continuous. Therefore,while �l'i � 1, �lvR;i ! 0 in the limit. With this it becomes clear that these observ-ables are dominated by the discontinuous behavior of the �elds and that the di�erencesbetween the values of vR at nearby sites can introduce, at most, small changes in thevalue of the observables, changes which should vanish in the continuum limit.Finally, we note that the functions f 00;i 6=N , f1 and f2, considered as functions of �Rfor given N and d, have as images �nite intervals (0; fM ), with fM of the order of one,while �R varies in the domain (0;1). In this way, depending on the value obtainednumerically for the observables, it may or may not be possible to invert these functionsto obtain the corresponding values of �R. In fact, for some test runs with very poorstatistics we veri�ed that the inversion sporadically fails due to the large numericalerrors. However, it never fails for f1 and f2 in production runs with large statistics.This fact indicates that the observables are in fact closely related to the formulas f1and f2 and that the values of �R obtained from them should not contain excessivelylarge errors.
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Chapter 5Geometry Generated on the LatticeIn order to examine the character of the geometry generated on the lattice we performedsimulations of the model in four dimensions with a constant source located on a line ofsites along the direction � = 1, which we chose arbitrarily as the temporal direction.In order to obtain the renormalized masses at each link and diagonal we measured overthem the observables de�ned in (4.3), but using the shifted �eld variables ~'0 instead of~'. We chose to examine the two-dimensional spatial sections containing the origin. Inthis way we can examine the resulting geometry through the construction of embeddingsof these two-dimensional sections.5.1 Numerical Results: Geometry of the SectionIn �gures 5.1 to 5.3 we can observe the result of this process for some interesting cases.A more complete set of graphs can be found in Appendix A.2. For the construction ofthe geometries shown in these graphs we used the mass of the longitudinal componentand the largest value of the external source that we were able to run, j0 = 10. Ingraph 5.1, which corresponds more clearly to the symmetric phase, we can see thatthe resulting geometry has a very localized curvature, with a short range around thelocation of the source. In graph 5.2, which corresponds to our being more deeply intothe broken-symmetric phase, we see a clear tendency to conicity, that is, a geometrywith little local curvature but with a conical singularity at the position of the source. Inthese cases a fold in the embedding frequently appears, along the border of the lattice.In the graph 5.3, which corresponds to a position close to the critical transition inthe phase diagram, we have a clearly curved geometry, which seems to be developinga horizon in the immediacy of the source. It is very interesting that this behavior isrelated to the critical transition region, to where the continuum limits must tend.In �gures 5.4 to 5.6 we can see similar graphs, for the construction of which the massof the transversal component was used. For this component we have, in the symmetricphase, an essentially at geometry, with folds in the embedding probably associatedto numerical errors at the origin, where the singular source is located. In the broken-25



Imersao para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Figure 5.1: Embedding in the symmetric phase, in four dimensions, with j0 = 10,longitudinal component.
Imersao para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Figure 5.2: Embedding in the broken-symmetric phase, in four dimensions, with j0 = 10,longitudinal component. 26



Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Figure 5.3: Embedding in the critical region, in four dimensions, with j0 = 10, longit-udinal component.
Imersao para SO(2), d=4, N=8, r=1, ang=90, i=1, j=10.
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Figure 5.4: Embedding in the symmetric phase, in four dimensions, with j0 = 10,transversal component. 27



Imersao para SO(2), d=4, N=8, r=1, ang=30, i=1, j=10.
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Figure 5.5: Embedding in the broken-symmetric phase, in four dimensions, with j0 = 10,transversal component.
Imersao para SO(2), d=4, N=8, r=1, ang=60, i=1, j=10.
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Figure 5.6: Embedding in the critical region, in four dimensions, with j0 = 10, trans-versal component. 28



symmetric phase the geometry collapses, since the mass of this component goes to zerothere and it cannot in fact de�ne a geometry. It is interesting that in the critical region,unlike what happens in the other regions, the mass of the transversal component de�nesa geometry very similar with that de�ned by the mass of the longitudinal component.The main di�erence seems to be a global change of scale, probably due to the imper-fect reconstitution of the symmetry in the transition region, which is characteristic ofrelatively small lattices with periodic boundary conditions.
Imersao para SO(2), d=4, N=8, r=1, ang=180, i=2, j=10.
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Figure 5.7: Embedding for the free theory, in four dimensions, with j0 = 10, longitudinalcomponent.In these simulations � = 180o corresponds to the free theory, in which the geometryshould be at, with or without external source. This point was used as a reference fortests of the programs and an example of the results may be seen in �gure 5.7. We alsoveri�ed that the generated geometry is at for the interacting theory, so long as j0 isconstant throughout the lattice.We also performed some simulations with a somewhat smaller value of the externalsource, j0 = 5, with the objective of determining the character of its inuence onthe formation and position of the horizon. We can see some results in �gures 5.8 to5.10. As we see, the formation of a horizon is less visible in this case, which probablyindicates that it would be forming closer to the center, below the resolution of thelattice. Presumably, if we are to be able to see the formation of a horizon in this casea larger lattice will be needed.Finally, we performed some simulations in three dimensions, with the same type and29



Imersao para SO(2), d=4, N=8, r=1, ang=70, i=2, j=5.
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Figure 5.8: Embedding in symmetric the phase, in four dimensions, with j0 = 5, lon-gitudinal component.
Imersao para SO(2), d=4, N=8, r=1, ang=50, i=2, j=5.
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Figure 5.9: Embedding in the broken-symmetric phase, in four dimensions, with j0 = 5,longitudinal component. 30



Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=5.
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Figure 5.10: Embedding in the critical region, in four dimensions, with j0 = 5, longit-udinal component.
Imersao para SO(2), d=3, N=8, r=1, ang=90, i=2, j=10.
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Figure 5.11: Embedding in the symmetric phase, in three dimensions, with j0 = 10,longitudinal component. 31



Imersao para SO(2), d=3, N=8, r=1, ang=30, i=2, j=10.
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Figure 5.12: Embedding in the broken-symmetric phase, in three dimensions, withj0 = 10, longitudinal component.
Imersao para SO(2), d=3, N=8, r=1, ang=50, i=2, j=10.
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Figure 5.13: Embedding in the critical region, in three dimensions, with j0 = 10,longitudinal component. 32



value of the source, with the objective of checking the kind of geometry which appearsin this case. The main point of interest was verifying whether in this case the generatedgeometry is locally at and, in particular, if there is a conical singularity at the origin.Graphs with the results can be seen in �gures 5.11 to 5.13. As one can observe, on �nitelattices the geometry in three dimensions is qualitatively similar to that which appearsin four dimensions. Naturally, we should keep in mind that the dimensional variablesof the theory scale in di�erent ways in three and four dimensions and that, therefore,there may be a signi�cant di�erence in the continuum limit.5.2 Numerical Methods UsedThe simulations turned out to be very long in the equipment which has been availablefor this work. For the largest lattice we could run, with N = 8, some points tookalmost 1000 hours in one processor of the fastest computer available for our use, sothat we could generate good statistics. In order to improve the statistics, consideringthat the temporal translation symmetry is not broken by the source we introduced, weaveraged over the N spatial sections perpendicular to the time axis. Still to improvethe statistics we averaged, in the case of the four-dimensional space-time, over the threetwo-dimensional sections containing the origin which exist in the spatial section of threedimensions.For the construction of the embeddings it is necessary to solve an embedding prob-lem which consists, in this case, of �nding a surface in a three-dimensional Euclideanspace having the same intrinsic geometry of our section. This problem was solved nu-merically by a stochastic relaxation process of the type of a �2 �tting. Let `i be thelengths associated to each one of the 2dNd links and diagonals, which result from thequantization process and let �i be the distances between the points at the two ends ofeach link or diagonal, measured in the embedding space. We de�ne �2 as�2 = 2dNdXi=1 wi(�i � `i)2;where the sum runs over all the 2dNd links and diagonals and wi are weights inverselyproportional to the statistical errors associated to each `i. The stochastic relaxationprocess is started with the Nd points of the lattice in arbitrarily chosen positions inthe embedding space and begins to make random changes in these positions with theaim of minimizing �2. Each time that a change decreases �2 it is accepted, otherwiseit is rejected and one tries again from the original position. In this way we approachthe global minimum of �2, which is zero and corresponds to a perfect embedding, witheach �i equal to the corresponding `i.The relaxation process can be done in many di�erent ways. If one makes only inde-pendent local variations at each point, it is susceptible of being very slow in approachingsigni�cantly the global minimum. There is also the risk of the system getting trapped33



in local minima which are di�cult to leave. Some of these local minima can be seenas folds in the resulting embedding. Whenever possible it is useful to make correlatedchanges of several points at the same time. However, if the number of correlated pointsin a certain change is too large the probability of rejecting trials increases quickly.The process of embedding by stochastic relaxation tends to work better when theintrinsic geometry of the section is more curved. Note that the embedding problemdoes not necessarily have a unique solution. This is obvious, for example, in the caseof the at geometry and can be easily demonstrated by the crumpling up of a piece ofpaper. There is a drift within the set of possible solutions which happens along withthe relaxation process. In order to minimize this drift we perform the relaxation usingall the symmetry constraints which we can impose.In our case we have a symmetry of 8 elements, composed by the four 90o rotationsand by a reection of the section. Besides this, we �x the position of the central pointand the direction of the symmetry axis of the section. However, this is not alwaysenough to stabilize completely the embedding, which remains subject to foldings ofvarious kinds, in special for the case of the at geometry. Small errors in the lengthsof the links and diagonals can have a dramatic e�ect on the embedding. This happensfrequently for the links and diagonals which connect to the central point at whichthe singularity of the source is located, where the numerical errors tend to be larger.These errors are not purely statistical, including also numerical errors related to therepresentation of the potential of the theory in the presence of external sources.The process of stochastic relaxation was executed in each case until the errors fellbelow a certain level, chosen to be compatible with our numerical errors and so as notto extend too much the execution time of the programs. Typical graphs of the �nalvalues of �2 can be seen in �gures 5.14 to 5.16 and a more complete set can be foundin Appendix A.3. In these graphs the scale of �2 is relative to the average length of thelinks and diagonals which connect to the point at which it is de�ned. In this way, thevalues presented correspond to the additional displacement which it would be necessaryto do at each point in order that the errors become zero, which gives us a useful intuitiveidea of the quality of the �t. Typically the errors are no more than a few percent in theworst cases, in general at the center of the lattice, where the singular source is located.5.3 Analysis of the Geometry of the SectionThe main result we have to present here about the relationship between the quantizationof the �elds and the curvature of the spatial geometry is of a qualitative character, thatis, the simple fact that a curved geometry appears. The lattices which we were able touse until now are too small to allow us to do much better than evaluate visually theresults. However, even a purely visual evaluation of the results can already give us anintuitively useful idea about the nature of the geometry. It is enough to compare thethe embedding of �gure 5.3, which corresponds to the critical region, to the embeddingof a two-dimensional section of the Schwarzchild geometry shown in �gure 5.17, to34



Chi-quadrado para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Figure 5.14: Residual errors in the symmetric phase, in four dimensions, with j0 = 10,longitudinal component.
Chi-quadrado para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Figure 5.15: Residual errors in the broken-symmetric phase, in four dimensions, withj0 = 10, longitudinal component. 35



Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Figure 5.16: Residual errors in the critical region, in four dimensions, with j0 = 10,longitudinal component.verify the qualitative similarity between the two. In this last �gure we included, for thecomparison, an enlarged version of �gure 5.3. The two graphs in �gure 5.17 are drawnto the same scale and the Schwarzchild radius was chosen so as to make them as similaras possible.There still are two aspects of the generated geometry which we can try to examinewith more attention, even in these limited conditions from the point of view of thenumerical explorations. The �rst one consists of a comparison of the scalar curvatureof the generated section with that of the corresponding section of the Schwarzchildmetric. It is easy to calculate the intrinsic curvature of a two-dimensional sectioncontaining the origin in the Schwarzchild geometry, outside the horizon. The completemetric of the geometry isds2 = ��1 � r0r � dt2 + �1� r0r ��1 dr2 + r2 hd�2 + sin2(�)d�2i ;where r0 is the Schwarzchild radius. The section is given by the three-dimensional partof the metric, that is by dt = 0, if we impose also that � = �=2 with d� = 0. Since themetric is static outside the horizon the Euclidean and Lorentzian sections are identicaland we obtain ds2 = �1� r0r ��1 dr2 + r2d�2 = A2(r)dr2 + r2d�2;36



Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Imersao para Schwarzchild, com raio=0.89.
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Figure 5.17: Comparison of the embedding in the critical region with the embeddingof a section of the Schwarzchild geometry outside the horizon, shown with resolutioncompatible to that of the lattice. 37



where A(r) = (1 � r0=r)�1=2. Using the basis of 1-forms !� given by!r = A(r)dr;!� = rd�;the metric of the section can be written asds2 = (!r)2 + (!�)2;which g�� = ���, so that it is not necessary to di�erentiate between lower and upperindices. The connection 1-form !�� is in this case anti-symmetric and, solving theequations dg�� = !�� + !��;d!� = �!�� ^ !�we obtain !rr = !�� = 0;!�r = �!r� = 1rA(r)!�:The curvature 2-form 
�� is obtained from
�� = d!�� + !�� ^ !��;from which it follows that the non-zero components are all equal up to a sign, beinggiven by 
r� = _A(r)rA3(r)!r ^ !�;where _A(r) = dA(r)=dr. From this we obtain the curvature tensor R����, which relatesto 
�� by 
�� = R��j�>�j!� ^ !�;from which it follows that the non-zero components have all the same magnitude, withRr�r� = _A(r)rA3(r) ;the others being obtainable by anti-symmetry. It follows that the non-zero componentsof the tensor R�� are 38



Rrr = R�� = _A(r)rA3(r) ;and that the scalar curvature R is given byR = 2 _A(r)rA3(r) = �r0r3 :This result is valid at any point outside the horizon, that is for r > r0. What mattersmost to us about it is that it is negative and that its magnitude falls when we moveaway from the center.
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Figure 5.18: A cell of the simplicial complex.It is also easy to calculate the scalar curvature of our numerical section by meansof the Regge calculus. For this, we use the interpretation of our lattice as a simplicialcomplex. Taking all the links and diagonals which depart from a point, as well as allthe neighbors connected by these links and diagonals, we can build around each pointof the section a part of the complex, as �gure 5.18 shows. It is composed of 8 triangles.If we connect the middle points of the links and diagonals, we build a small region orcell around each point. It is easy to verify that the section can be divided in such a waythat each point has around it a cell like this, while the union of all cells reconstitutesthe section. Under these condition we may de�ne the scalar curvature at the centralpoint of the cell as R = 2� � �TA ;39



where A is the area of the cell which is around the point and �T = P8i=1 �i is the sum ofthe 8 internal angles of the triangles the vertices of which are at the central point of thecell at issue. Both the areas and the angles can be obtained trigonometrically from ourknowledge of the lengths `i of the links and diagonals. With this we can calculate Rat each point along our numerical section. Since in d = 2 the scalar curvature su�cesto de�ne completely the intrinsic geometry, this allows for a useful comparison. Itmust be recorder here that, as we de�ned it, the simplicial complex associated to thetwo-dimensional section is, in fact, three-dimensional. This is due to the fact that weuse both the diagonals of each square of the lattice, which e�ectively gives origin totetrahedra. However these tetrahedra are quasi-degenerate on �nite lattices and becomeat in the continuum limit.This calculation was performed and the result qualitatively compared to the resultfor the Schwarzchild section. Naturally, the absolute numbers are not of much interest,since we are comparing a relatively small lattice to the continuum limit. But theresulting sign is correct, being negative except at the central point where the singularityis, at the points directly connected to it by a link or diagonal and at the border ofthe lattice, where there are deformations due to the periodic boundary conditions.Naturally, one realizes that, with the exclusion of so many points in relatively smalllattices, not many signi�cant points remain for a quantitative comparison. Even so,on the lattice with N = 8, where there still are two signi�cant points along the radialdirection, one can see that the magnitude of R decreases as we move away from thecenter, as is the case for the Schwarzchild geometry.The second aspect which we can try to examine is related to the possibility thatthe generated geometry be conformally at. Since the geometry is generated by thevariation of a single parameter, the renormalized mass, one may think at �rst that thisleads inevitable to a conformally at geometry. This is due to the fact that a geometryis conformally at if its invariant interval ds2 is proportional to the invariant intervalof the at geometry. The proportionality factor may depend on position, so that thegeometry is not really at, but it may be attened by a simple change of scale madein a local way, at each point. The crucial point is that, in order that the geometrybe conformally at, the proportionality factor cannot depend on direction, but only onposition.Therefore, we may judge whether or not the generated geometry will be conformallyat examining the magnitude of the scale generated by the renormalized mass in eachdirection through a given point. Note that the renormalized mass, as we measure it inthis work, is not associated to sites but to links and diagonals, which is a reection ofthe fact that it is related to correlation lengths. Hence, it is possible that there is infact a dependence of it on direction. Since the renormalized masses are associated tothe links and diagonals and not directly to the sites, it is necessary to de�ne on eachsite mass parameters, associated to each direction, which interpolate the values of themasses at the links and diagonals which connect to the point from each of the two sidesin each direction. 40



In our two-dimensional sections we have 4 independent directions available at eachsite. For each of these directions we make an average of the masses associates to the twocorresponding links or diagonals, one in each side of the site, and associate the resultto the site. We check then whether or not the values obtained at each site depend onthe direction. The result is that in the more curved geometries they clearly dependon direction, with di�erences signi�cantly larger than the statistical errors. It follows,therefore, that the geometry generated in the four-dimensional space is not conformallyat, except when it is completely at. This indicates that the correlations are a�ectedin a di�erentiated form by the central source, depending on being measured in the radialor angular directions. It is necessary not to confuse this statement about the geometryof the space as a whole with any statement about the intrinsic geometry of the section,which, being two-dimensional, is always conformally at.
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Chapter 6Conclusions and OutlookWe believe that the simulations performed leave little doubt about the fact that the in-troduction of strong localized external sources in the ��4 model generates on the latticesome form of metrical geometry with intrinsic curvature. Two important questions re-main open: �rst, we have the question of whether or not the curvature of the geometrygenerated on �nite lattices by the process of quantization of the �elds survives the con-tinuum limit; second, we have the question of whether or not the resulting geometry isthe one predicted by Einstein's equation,R�� � 12g��R = 8�GT�� :We have not had, until now, access to enough computer power to answer these ques-tions through numerical explorations. All that we can say at the moment about thesecond question is that the geometry generated on a �nite lattice by a point source,judged through the two-dimensional spatial sections going through the origin, is qual-itatively similar to the corresponding section of the Schwarzchild solution. However,with the rapid progress of computing technology, we may expect that the numericalexplorations will advance very much in a relatively short time.As to the question of the continuum limit, certainly the size of the lattices we coulduse so far is not large enough to enable us to draw de�nitive conclusions. It shouldbe said that it is possible that the curvature does not survive the continuum limit inphysically acceptable conditions. The reason is that the variation of the mass withposition is apparently due, in this laboratory model, to the shifting of the minimumof the potential, that is, to the emergence of a non-zero expectation value ~vR. Thisonly reects the fact that the model seems to be unable to generate two independentdimensional scales. In four dimensions, a limit with a source representing a �xed and�nite point charge is such that j0 is constant, while J0 ! 1 as 1=a3. In such a limitwe will have ~VR �nite at all points except the origin. As we saw before, if we wish tohave a �nite ~VR in the continuum limit, it is necessary that ~vR vanish in this limit.Hence, we should have in the limit that ~vR ! 0 for all points except the origin, wherethe external source is located and where ~VR diverges. We are not able at the moment42



to decide whether or not it is enough to have ~VR 6= 0 in order to generate a curvedgeometry. Because of this, it is possible that in the limit �R becomes constant over allthe extent of the lattice and that the generated geometry becomes locally at.Note that, if this mechanism is actually realized in the continuum limit, one can lookat it as a second kind of triviality of the model, associated to the triviality in its usualsense. This possible result may be interpreted as the fact that the generated geometryis short ranged, just as the correlation functions of the massive longitudinal componentof our model. With this, the curvature of the geometry may collapse to the origin in thelimit. It is true that there are long-range correlations in the broken phases of the modelswith N > 1, due to the particles of zero mass, the Goldstone bosons associated to thetransversal components. However, the geometry is de�ned by the �nite and non-zerorenormalized mass of the longitudinal component and, if the various particles do notinteract due to the triviality of the theory, there is no way in which these long-rangemodes may a�ect the geometry. There remains a possibility that there is a remnant ofa topological character of the generated geometry, in the form of a conical singularityat the origin, resulting from the collapse of the curvature of the geometry to that point.This leads to the discussion of an objection formulated by Prof. H. B. Nielsen aboutthe issue of the generated geometry being Einstein's geometry. Since it is necessary tohave mR 6= 0 in order to de�ne a scale and hence the geometry, the �eld correlationswill be short-ranged. It is therefore to be expected that the variations �mR of the massdecay exponentially and the geometry resulting from them should be localized and notthe long-range geometry Einstein's equation. As we said before, it is possible that, inthis laboratory model, the triviality of the theory prevents the Goldstone bosons fromtransmitting the e�ects of generation of curvature to long distances but, in a morerealistic case, for example in a Gauge Theory, we will have a similar situation, withzero-mass vector particles and �nite-mass spinor particles, except that in that case theparticles do interact in fact with one another.Another objection about the generated geometry satisfying Einstein's equation comesfrom the study of the geometry in three dimensions. Apparently the behavior is qualit-atively the same which is seen in four dimensions, unlike what is implied by Einstein'sequation. According to it, in three dimensions we should have only conical singularitiesat the location of the source. Naturally, it is possible that this is realized in the con-tinuum limit, but it should be expected that the di�erences between the situations inthree and four dimensions would be clearly visible even on �nite lattices. Once more,in order to make progress in this kind of analysis it is necessary that we be able to uselarger lattices both in three and four dimensions.Naturally, a most important task lying ahead consists of discovering and developingideas and techniques which may enable us to realize a program like the one we presentedhere in the standard model, including the vector and spinor �elds. It would be veryinteresting to start this program with a study of the case of Electrodynamics.We close with an observation about the possible origin of the principle of equivalencein a program like the one we presented here. In a more complex theory, like the43



standard model, we will have several independent dimensional physical scales, relatedto the renormalized masses of the various particles present in the model. It is naturalthat we use one of them, possibly that of the lightest massive particle, as a scale unit,measuring all the others in terms of this one. Besides, we may now introduce externalsources of several types, one for each type of particle present in the model. Presumablythe independent introduction of any of these sources should a�ect the values of all themasses, since the �elds interact with one another.However, in order that the principle of equivalence be valid, it is necessary that theratios between masses do not depend on position or direction, so that the generatedgeometry be the same from the point of view of any of the masses, except for the globalchange of scale due to the exchange of units. For this, it is necessary that, whateverthe type of external source present, all the masses vary in the same way with positionand direction. Hence, the principle of equivalence, in the context of the ideas presentedhere, takes the form of a certain kind of universality of the mechanism of generation ofcurvature, which should hold, at least, for the types of particles and �elds that we doin fact �nd in nature. The determination of the existence or not of this universality is,certainly, one of the most important tasks we have ahead.
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Appendix AGraphsWe present in this Appendix a reasonably complete sampling of the simulations and thenumerical tests performed. More than to simply record the available data, the intentionis to give an idea of the extension of the numerical work which it was possible to do.Tests and simulations were performed in three and four dimensions, for the ��4model with SO(2) symmetry. With regard to the external sources, tests were realizedexamining the cases ~j0 = ~0 and ~j0 = (0; : : : ; 0; j0), where j0 is a constant along thatlattice, with values between 1 e 10. Lattices were used with even N between 2 and 8,values of the parameter r between 0:1 and 10 and of the parameter � between 10o and180o. The angle to which some �gures refer is always the angle �.The statistics used in each run was of 200 blocks of 50000 lattice sweeps each.The partial averages over each block were recorded and the dispersion among theblocks was used for the evaluation of the statistical errors. We also measured theauto-correlation between consecutive individual sweeps, the corresponding correlationlengths being taken into account in the �nal calculation of the errors.Whenever permitted by the existing symmetries, averages over the lattice were madein order to improve the statistics. The e�ect on the �nal errors of the correlations whichexist between di�erent points of the lattice was automatically taken into account, sincethe errors were calculated through blocks of sweeps obtained with these averages alreadyincluded.The coordinates of the lattice being i1; : : : ; id = 1; : : : ; N we chose arbitrarily i1 =1; : : : ; N as the coordinate of the time axis for the simulations and we put the externalsource along this axis, in the position i�6=1 = N=2. We make averages of the observablesover all the spatial sections perpendicular to the time axis. In d = 3 a two-dimensionalspace described by i2; i3 = 1; : : : ; N results. In d = 4 a three-dimensional space de-scribed by i2; i3; i4 = 1; : : : ; N results. In this case we make averages over the threetwo-dimensional sections given by i2 = N=2, i3 = N=2 e i4 = N=2.The scales of the embedding graphs were maintained constant for all values of �, foreach lattice size and collection of values of the other parameters of the model.45



A.1 Observable TestsTests in d = 4:(transversal component)
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A.2 Section EmbeddingsEmbeddings in d = 4:(longitudinal component)
Imersao para SO(2), d=4, N=6, r=1, ang=30, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=40, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=50, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=60, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=70, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=80, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=90, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=120, i=2, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5 Fig. I-4-2.8
Imersao para SO(2), d=4, N=6, r=1, ang=150, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=180, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=40, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=50, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=80, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=90, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=150, i=2, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=180, i=2, j=10.
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3.5 Fig. I-4-2.20Embeddings in d = 4:(transversal component)
Imersao para SO(2), d=4, N=6, r=1, ang=30, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=40, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=50, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=60, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=70, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=80, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=90, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=120, i=1, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5

3 Fig. I-4-1.8
Imersao para SO(2), d=4, N=6, r=1, ang=150, i=1, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=180, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=30, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=40, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=50, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=70, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=80, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=90, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=120, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=150, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=180, i=1, j=10.
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3.5 Fig. I-4-1.20Embeddings in d = 3:(longitudinal component)
Imersao para SO(2), d=3, N=6, r=1, ang=30, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=40, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=50, i=2, j=10.
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Fig. I-3-2.3
Imersao para SO(2), d=3, N=6, r=1, ang=60, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=70, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=80, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=90, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=120, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=150, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=180, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=30, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=40, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=50, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=60, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=70, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=80, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=90, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=120, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=150, i=2, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=180, i=2, j=10.
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Embeddings in d = 3:(transversal component)
Imersao para SO(2), d=3, N=6, r=1, ang=30, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=40, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=50, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=60, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=70, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=80, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=90, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=120, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=150, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=180, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=30, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=40, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=50, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=60, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=70, i=1, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

0.5

1

1.5

2

2.5

3

3.5 Fig. I-3-1.15

Imersao para SO(2), d=3, N=8, r=1, ang=80, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=90, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=120, i=1, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

0.5

1

1.5

2

2.5

3

3.5

4 Fig. I-3-1.18
61



Imersao para SO(2), d=3, N=8, r=1, ang=150, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=180, i=1, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4-0.5

0

0.5

1

1.5

2

2.5

3

3.5 Fig. I-3-1.20Embeddings with j = 5:(longitudinal component)
Imersao para SO(2), d=4, N=8, r=1, ang=50, i=2, j=5.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=5.
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Imersao para SO(2), d=4, N=8, r=1, ang=70, i=2, j=5.
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2 Fig. I-4-2-J.3Embeddings with j = 5:(transversal component)
Imersao para SO(2), d=4, N=8, r=1, ang=50, i=1, j=5.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=1, j=5.
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Imersao para SO(2), d=4, N=8, r=1, ang=70, i=1, j=5.
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2 Fig. I-4-1-J.3A.3 Residual ErrorsErrors in d = 4:(longitudinal component)
Chi-quadrado para SO(2), d=4, N=6, r=1, ang=30, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=40, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=50, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=60, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=70, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=80, i=2, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05 Fig. E-4-2.6

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=90, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=120, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=150, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=180, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=40, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=80, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=90, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=150, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=180, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=30, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=40, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=50, i=1, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.01

0.02

0.03

0.04

0.05

0.06 Fig. E-4-1.3
Chi-quadrado para SO(2), d=4, N=6, r=1, ang=60, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=70, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=80, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=90, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=120, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=150, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=180, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=30, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=40, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=80, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=90, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=120, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=150, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=180, i=1, j=10.
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Errors in d = 3:(longitudinal component)
Chi-quadrado para SO(2), d=3, N=6, r=1, ang=30, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=40, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=50, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=60, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=70, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=80, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=90, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=120, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=150, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=180, i=2, j=10.
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Fig. E-3-2.10
Chi-quadrado para SO(2), d=3, N=8, r=1, ang=30, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=40, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=50, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=60, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=70, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=80, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=90, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=120, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=150, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=180, i=2, j=10.
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0.04 Fig. E-3-2.20Errors in d = 3:(transversal component)

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=30, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=40, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=50, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=60, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=70, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=80, i=1, j=10.
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Fig. E-3-1.6
Chi-quadrado para SO(2), d=3, N=6, r=1, ang=90, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=120, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=150, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=180, i=1, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

5e-05

0.0001

0.00015

0.0002

0.00025 Fig. E-3-1.10
74



Chi-quadrado para SO(2), d=3, N=8, r=1, ang=30, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=40, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=50, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=60, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=70, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=80, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=90, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=120, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=150, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=180, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=2, j=5.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=2, j=5.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04 Fig. E-4-2-J.276



Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=2, j=5.
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0.04 Fig. E-4-2-J.3Errors for j = 5:(transversal component)

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=1, j=5.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=1, j=5.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035 Fig. E-4-1-J.2

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=1, j=5.
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