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Abstract

W e study the generation of geometry in space-time as a consequence of the in tro-

duction in it of quan tum matter �elds. W e use as de�nition of Quan tum Field Theories

their represen tation on the Euclidean lattice. The in tro duction of external sources in

the ��

4

mo del breaks the translational in v ariance of the mo del on the lattice. Due to

this the ph ysical scale that the mo del de�nes through its renormalized mass b ecomes

dep enden t on p osition. The in terpretation of this ph ysical scale as the ph ysical unit

whic h de�nes distances generates on �nite lattices a metric geometry with non-zero

in trinsic curv ature.
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Chapter 1

In tro duction and Ov erview

Con temp orary theoretical ph ysics is based on the t w o great and fundamen tal in tellectual

structures the disco v ery of whic h constituted the great rev olution whic h o ccurred in the

�rst half of this cen tury: Relativit y and Quan tum Mec hanics. More than descriptiv e

theories of this or that asp ect of the structure of nature, these in tellectual structures

are meta-theories con taining the fundamen tal principles that rule all of ph ysics. W e

sa y that these t w o in tellectual structures are the ories of principle , in con trast to the

the ories of substanc e whic h describ e eac h asp ect of the structure of nature.

Among the theories whic h describ e the sev eral fundamen tal forms of in teraction

b et w een the particles whic h constitute the structure of matter the b est kno wn and

also that with the most univ ersal and familiar applications is, without question, Elec-

tro dynamics. Cradle of Relativit y , it w as also in this theory that the most successful

application o the principles of Quan tum Mec hanics w as realized. The classical principles

of Electro dynamics are one of the most successful parts of ph ysics and the application

to them of the principles of Quan tum Mec hanics led to the creation of Quan tum Elec-

tro dynamics, the most successful of the Quan tum Field Theories.

The great successes of Quan tum Electro dynamics motiv ated the form ulation of gen-

eralizations of it, kno wn as Gauge Theories, for the description of the short-range

in teractions whic h exist in nature. In con trast to Electro dynamics, whic h dominates

the structure of matter at the lev el of atoms and molecules, these short-range in terac-

tions, called strong and w eak in teractions, dominate the dynamics of the structure of

the atomic n ucleus and of its comp onen ts. These are the in teractions disco v ered most

recen tly , in this cen tury , b eing also the least w ell understo o d.

The w eak in teractions are describ ed and uni�ed with Electro dynamics b y a Gauge

Theory with symmetry U (1) � S U (2), while the strong in teractions are describ ed b y

Quan tum Chromo dynamics, a Gauge Theory with symmetry S U (3). While all these

are quan tum theories of v ector �elds describing v arious t yp es of in teractions, the con-

stituen ts of matter itself are fermionic particles describ ed b y spinor �elds and app ear

as quarks or leptons according to their b eing able or not to undergo strong in teractions.

This whole picture is called the standar d mo del of the elemen tary particles.

On the other hand, the form of in teraction longer kno wn is undoubtedly gra vitation,
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the classical theory of whic h go es bac k to the origins of classical mec hanics. In fact, the

com bined application of Classical Mec hanics and the theory of Univ ersal Gra vitation

to the problems of celestial mec hanics w as one of the �rst, great and lasting successes

of classical ph ysics. Ho w ev er, the situation of the theory of gra vitation within the order

of the ideas of ph ysics has alw a ys b een shrouded b y a certain cloud of m ystery .

A t its inception the theory of gra vitation w as not ev en a �eld theory in the sense in

whic h w e use this concept to da y , but a theory of action at a distance. The question of

the origin of this force w as one whic h could not ev en b e form ulated clearly . With the

disco v ery of Relativit y the theory of gra vitation w as the main obstacle, resisting to the

direct application of the relativistic principles. The compatibilization of the theory of

gra vitation with the principles of relativit y w as accomplished with the creation of the

theory of General Relativit y , no w a w ell established theory and one of the most b eautiful

conquests of the h uman in tellect. With this the theory of gra vitation de�nitely b ecomes

a �eld theory , although the gra vitational w a v es predicted b y it ha v e not b een, un til no w,

observ ed directly . Besides, the theory presen ts an elegan t explanation of the origin of

the gra vitational in teractions in terms of the curv ature of the geometry of space-time.

Ho w ev er, the status to b e attributed to the theory remained rather obscure. Its

geometric and profoundly non-linear c haracter puts it in clear con trast with all other

�eld theories of in teraction of ph ysics. If, on the one hand, General Relativit y can b e

understo o d simply as a relativistic theory of gra vitation, on the other hand it can also

b e understo o d as a kind of generalization of Relativit y . While Relativit y con tains at

its cen ter the principle of the constancy of the sp eed of ligh t and Quan tum Mec han-

ics con tains the principle of uncertain t y , General Relativit y con tains the principle of

equiv alence, whic h is in timately asso ciated to the concept of lo calit y whic h dominates

the theory . Hence, General Relativit y mixes up the concepts of theory of principle and

theory of substance.

In no asp ect the singularit y of the theory sho ws itself more clearly than in the one

related to the quan tization e�ort. Since the b eginning the theory resisted consisten tly to

all the trials at making it compatible with the principles of Quan tum Mec hanics, whic h

w ere man y and v aried. It m ust b e said that there is no direct exp erimen tal evidence

implying a need to quan tize General Relativit y . What exists is a logical imp erativ e to

mak e the theory of gra vitation compatible with the fundamen tal concepts of Quan tum

Mec hanics, if w e w an t to b eliev e that this last one is a true theory of principle with

completely general v alidit y .

In the e�ort, unsuccessful to this da y , to bring the relativistic gra vitation of General

Relativit y and Quan tum Mec hanics to a co existence in a unique logical sc heme, one has

alw a ys started from the p oin t of view that General Relativit y is a classical �eld theory

whic h should b e quan tized according to some sc heme follo wing the basic directiv es of

the quan tization of Electro dynamics and Gauge Theories. In this w a y , the dominan t

image of General Relativit y in this e�ort is as a theory of substance, a classical theory

of in teraction, not as a theory of principle. Ho w ev er, after an enormous n um b er of the

most v aried trials for the quan tization of General Relativit y , in whic h man y di�eren t
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tec hniques and man y mo di�cations of the classical theory w ere tried, no de�nitiv e results

ha v e b een obtained.

P arallel to this, the semi-classical analysis of the theory , in whic h one studies the

quan tization of other �elds in the presence of a classical gra vitational �eld, that is the

so-called Quan tum Field Theory in Curv ed Space-Time, presen ts some in teresting and

suggestiv e results. These results, asso ciated to the horizons whic h exist in the solutions

of General Relativit y , establish an in teresting connection with thermo dynamics. W e

m ust observ e, ho w ev er, that these results do not pro vide a complete view of the ph ysics

in v olv ed, con taining in fact some parado xes.

F rom whatev er angle one examines the nature of the theory of gra vitation, a cloud of

doubt p ersists, sp ecially with resp ect to its relationship with Quan tum Mec hanics. One

ma y iden tify the v ery geometrical c haracter of the classical theory as the ro ot of the dif-

�culties. Observ e that the fundamen tal principle con tained in the theory , the principle

of equiv alence, �nds its expression exactly in this geometrical c haracter. Indications

are that the fundamen tal principle of lo calit y in General Relativit y con
icts in an un-

a v oidable w a y with the non-lo cal c haracter in tro duced through Quan tum Mec hanics b y

the principle of uncertain t y .

One of the di�culties one �nds in the e�ort of quan tization of General Relativit y is

our still limited kno wledge of Quan tum Field Theory in general. A fair p ortion of these

di�culties is of a tec hnical c haracter, ho w ev er, after so man y trials for so long, it is no

longer p ossible to b eliev e that all di�culties whic h confron t us in the quan tization of

gra vit y are of a tec hnical c haracter. Certainly there m ust b e a fundamen tal di�cult y

of a conceptual c haracter, ev en if w e are not y et capable of iden tifying it clearly .

It is not surprising that our understanding of Quan tum Field Theory is limited,

for these are recen t, complex and sophisticated theories, expressed b y mathematics

o v er whic h our con trol is still v ery limited. The extraordinary and ev en surprising

success of the predictions of p erturbation theory in Quan tum Electro dynamics giv es us,

p erhaps, a distorted idea of the depth of our understanding of Quan tum Field Theory

in general, ev en with resp ect to theories whic h are formally simpler that Quan tum

Electro dynamics, lik e the ��

4

p olynomial mo dels.

In this w ork w e wish to examine some asp ects of this question, using as a lab oratory

the ��

4

mo del. Through the analysis of some basic prop erties of the structure of this

mo del w e will b e tak en to the examination of a particularly in teresting asp ect, whic h

relates the quan tization of the mo del directly to the concept of a lo cal geometry in space-

time. Although the ideas will b e presen ted in the restricted con text of this lab oratory

mo del with scalar �elds, they in tro duce the analysis of a new asp ect of the quan tization

of �eld theories and suggest new and in teresting lines of researc h for the exploration

of the p ossibilit y of extension of these ideas to more realistic mo dels, con taining v ector

and spinor �elds.

It is in teresting to record here the philosoph y whic h w e adopt with resp ect to the

de�nition of Quan tum Field Theories. There is a w a y of thinking according to whic h

a Quan tum Field Theory is what one gets b y applying to a giv en classical �eld theory
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some \quan tization pro cess". This is not the standp oin t whic h w e adopt, b ecause what

is mean t b y the \quan tization pro cess" is not a unique and w ell-de�ned mathemat-

ical pro cedure. Unlik e this, w e adopt from the start a certain giv en de�nition of the

quan tum theory , while the corresp onding classical theory should b e obtained from the

quan tum theory b y means of a classical limit, whic h consists of an appro ximation for

long w a v elengths.

In principle it is p ossible that sev eral di�eren t de�nitions of the quan tum theory ha v e

the same classical limit, or that no quan tum theory has a giv en classical limit. The

determination of the classical limit of a quan tum theory is part of the analysis of the

nature of this quan tum theory and is not determined \a priori". If, on the one hand, w e

adopt a giv en de�nition for the quan tum theory with the in ten tion that it b e complete

and consisten t, on the other hand w e do not assume an y \a priori" p osition ab out the

uniqueness or ph ysical relev ance of this de�nition. The correctness of the c hoice of the

detailed de�nition of a quan tum theory can only b e judged from the prop erties of the

resulting theory .

In this w ork w e will b e using a lab oratory mo del to whic h no fundamen tal ph ysical

relev ance is in tended, but whic h w e b eliev e to b e a go o d lab oratory to illustrate the

w orking of the mathematics in v olv ed in the de�nition of a Quan tum Field Theory . The

de�nition w e use for the quan tum theory in this mo del b y means of the Euclidean

lattice is the de�nition whic h is univ ersally used b y the researc hers in this area, for this

particular mo del. Ho w ev er, it is certainly not the only p ossible de�nition.
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Chapter 2

Quan tum Fields on the Lattice

The �rst step for the de�nition of a quan tum �eld theory within the formalism of the

Euclidean lattice is the de�nition of a certain mathematical structure on �nite lattices.

This structure will con tain exclusiv ely a certain n um b er, p ossibly large but �nite, of

dimensionless parameters and functions. The theory will b e de�ned as the limit of a

sequence of �nite lattices, with increasingly larger sizes, satisfying certain conditions.

W e will call this limit the c ontinuum limit .

Some ph ysical quan tities are de�ned at the b eginning of this pro cess and remain

unaltered un til its end. One quan tit y of this t yp e is the the in teger n um b er d of

dimensions of the Euclidean space-time in whic h w e de�ne the theory . Another quan tit y

of this t yp e is the order N of the symmetry group w e use to de�ne the mo del. Other

quan tities will b e parameters that, although constan t in eac h lattice, will v ary in the

con tin uum limit. Among these is the n um b er N of lattice sites in eac h space-time

direction, whic h c haracterizes the size of the lattice. Other parameters of this t yp e will

b e the mass parameter � and the dimensionless coupling constan t � . Finally , w e will

ha v e dimensionless random v ariables, whic h 
uctuate in eac h �nite lattice according

to a giv en probabilit y distribution, that is, the dimensionless dynamical �eld v ariables,

de�ned in an in ternal space of dimension N , whic h w e will denote as ~' , or b y its

comp onen ts '

i

, i = 1 ; : : : N .

2.1 De�nition of the Classical Theory

Initially w e will illustrate the pro cess considering the de�nition on the lattice of the

classic al �eld theory , using as an example the ��

4

mo del. Later w e will examine in

some detail the de�nition of the quan tum theory . W e consider, therefore, a h yp er-cubic

lattice of size N in d dimensions, that is, a set of N

d

p oin ts, whic h w e will call sites ,

arranged as a d -dimensional cub e with N p oin ts along eac h side. W e asso ciate to these

p oin ts the concept of next neigh b or, sym b olized b y the in tro duction of connections

or links b et w een them. W e include links connecting the sites at the b oundary of the

cub e with the sites at the opp osite b oundary , so as to implem en t p erio dic b oundary
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conditions. Note that, at this stage, there is no notion of distance in the lattice.

W e de�ne no w the Euclidean action of the system as

S

N

=

1

2

dN

d

X

l

�

l

~' � �

l

~' +

�

2

N

d

X

s

~' � ~' +

�

4

N

d

X

s

( ~' � ~' )

2

�

N

d

X

s

~

j � ~'; (2.1)

where

P

dN

d

l

represen ts a sum o v er all the dN

d

links of the lattice, �

l

~' is the di�erence

b et w een the �elds at eac h of the t w o ends of a link,

P

N

d

s

represen ts a sum o v er all the

N

d

sites of the lattice, the dot denotes scalar pro duct in the in ternal space of the �elds

and

~

j is an external source. Note that w e ma y separate this action in t w o parts, as

S

N

= S

0

+ S

V

, where S

0

is the action of the free theory , whic h is quadratic on the �elds

and hence exactly soluble,

S

0

=

1

2

dN

d

X

l

�

l

~' � �

l

~' +

�

2

N

d

X

s

~' � ~' �

N

d

X

s

~

j � ~' ;

while S

V

is the part in v olving the quartic term of the p oten tial, whic h couples the �eld

comp onen ts in a non-linear w a y ,

S

V

=

�

4

N

d

X

s

( ~' � ~' )

2

:

The classical solution of the mo del on a �nite lattice is the con�guration of the �eld

~' whic h minim ize s the function S

N

, whic h has a lo w er b ound if � > 0 or if � = 0 with

� � 0. In order to tak e the con tin uum limit, it is necessary that w e establish a sc ale in

the system, in tro ducing a dimensional parameter, in suc h a w a y that it will b e p ossible

to de�ne the concept of distance b et w een p oin ts on the lattice. Classically , w e do this

b y in tro ducing an external scale in the system.

W e assume that, in some system of units external to the system, our cubic lattice

has sides of length L . W e de�ne then the lattice spacing as a = L= N , the squared mass

as m

2

= �a

� 2

, the dimensional coupling constan t as � = �a

d � 4

, the dimensional �eld

as

~

� = ~'a

(2 � d ) = 2

and the dimensional external source as

~

J =

~

j a

� ( d +2) = 2

. Besides, w e

ma y decomp ose the sum o v er links, con v enien tly , as

P

dN

d

l

=

P

N

d

s

P

d

�

, where

P

d

�

is a

sum o v er the d p ositiv e directions from a giv en site. With all this, w e ma y write the

action as

S

N

=

N

d

X

s

a

d

2

4

1

2

d

X

�

�

�

~

�

a

�

�

�

~

�

a

+

m

2

2

~

� �

~

� +

�

4

(

~

� �

~

� )

2

�

~

J �

~

�

3

5

;

where �

�

is a di�erence b et w een neigh b ors in the direction � . T aking no w the limit

N ! 1 with �xed L and a ! 0, w e ha v e that the sum

P

N

d

s

a

d

appro ximates the in tegral

R

d

d

x , the ratio �

�

=a appro ximates the partial deriv ativ e @

�

, and w e ha v e therefore that

S

N

! S where
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S =

Z

d

d

x

"

1

2

d

X

�

@

�

~

� � @

�

~

� +

m

2

2

~

� �

~

� +

�

4

(

~

� �

~

� )

2

�

~

J �

~

�

#

: (2.2)

Hence w e reco v er the classical �eld theory in its usual form. Note that the dimensional

parameters are relativ e to the external scale whic h w as in tro duced to de�ne L . Note

also that, in order that m and

~

J b e �nite in the limit, it is necessary , resp ectiv ely , that

� ! 0 and

~

j !

~

0 . Naturally , for p oin t sources w e will ha v e that

~

J div erges at a certain

p oin t as a delta function. Besides, in order that � b e �nite and non-zero in the limit,

it is necessary that � ! 0 (for d < 4), � � 1 (for d = 4) or � ! 1 (for d > 4). Finally ,

in order that �

i

b e �nite and non-zero in the limit, w e m ust ha v e '

i

! 1 (for d < 2),

'

i

� 1 (for d = 2) or '

i

! 0 (for d > 2).

Note that the in tro duction of an external scale could b e, in principle, a v oided, since

the theory con tains the in ternal dimensional parameter m whic h can, in principle, b e

used as a unit to measure the others, as for example the size L of the b o x. In fact, if

w e wish to see our mo del as a lab oratory for the univ erse and not as a mo del for only a

lo calized part of it, then the in tro duction of an external scale do es not mak e sense and

w e are forced to use this in ternal scale. Ho w ev er, in the classical theory it is not clear

what is the pro cedure asso ciated to m whic h could b e used to de�ne distances. On the

other hand, in the quan tum theory there is suc h a pro cedure, as w e shall see. This is

precisely the p oin t of view whic h w e w an t to explore in this w ork, in the con text of the

quan tum theory .

2.2 De�nition of the Quan tum Theory

W e ma y use the lattice to de�ne the quan tum theory in a w a y whic h is similar to

the pro cess describ ed ab o v e. The fundamen tal di�erence b et w een this pro cedure and

the traditional approac h is that, instead of �rst taking the con tin uum limit and then

consider the quan tization of the classical con tin uum theory whic h results, w e in v ert the

order of these op erations. W e �rst de�ne a v ersion of the quan tum theory on eac h �nite

lattice and afterw ards w e consider the limit of the sequence of these �nite quan tum

theories as w e increase the lattice inde�nitely , k eeping satis�ed certain conditions on

some of the observ ables of the mo del. This limit pro duces the Euclidean quan tum �eld

theory and, as a �nal step, the Loren tzian quan tum �eld theory is de�ned b y means of

the analytic extension of the observ ables, b y taking imaginary Euclidean times.

In eac h �nite lattice w e de�ne the quan tum theory as a statistical mo del with a

�nite n um b er of degrees of freedom. The ph ysically relev an t quan tities of the theory

are the a v erage v alues, on a certain ensem ble, of certain functions O [ ' ] of the �elds. The

ensem ble in question is de�ned b y the Euclidean action. The observ ables are de�ned as

hO i =

R

[ d' ] O [ ' ] e

� S

N

[ ' ]

R

[ d' ] e

� S

N

[ ' ]

; (2.3)
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where [ d' ] =

Q

N

d

s

Q

N

i

d'

i

( s ) and the m ultiple in tegrals are o v er all the comp onen ts of

the �eld at all the sites, ha ving therefore dimension N

d

N . The observ ables formed b y

simple pro ducts of the �elds, whic h w e call correlation functions and whic h, b y analytic

extension, pro duce the Green's functions of the system, are particularly imp ortan t. W e

will b e pa ying particular atten tion to the one- and t w o-p oin t functions, whic h relate

resp ectiv ely to the exp ectation v alue of the �eld and the renormalized mass, whic h in

turn measures the in v erse of the correlation length of the system,

g

(1) ;i

( s ) = h '

i

( s ) i ;

g

(2) ;i

( s; s

0

) = h '

i

( s ) '

i

( s

0

) i :

In order to tak e the con tin uum limit w e consider some conditions in v olving these

observ ables. F or example, for the case

~

j =

~

0 , w e ma y tak e a limit in whic h w e imp ose

that the renormalized mass m

R

and the exp ectation v alue of the �eld ~ v

R

= h ~' i are giv en

constan ts. The maxim um n um b er of conditions that w e can imp ose is the n um b er of

free parameters w e ha v e in the mo del, whic h allo w us to adjust the v alues of these

observ ables in eac h �nite lattice. In our case w e ha v e t w o parameters, � and � , hence

w e ma y imp ose at most t w o conditions, lik e the ones ab o v e. Ho w ev er, it is p ossible that

the structure of the mo del correlates the v alues of the observ ables in suc h a w a y that

it ma y , in fact, not b e p ossible to giv e to them an y v alues that w e ma y wish.

As an example of the con tin uum limit w e ma y tak e the free theory , where � = 0

and whic h has the single free parameter � . In this case it is necessary that w e ha v e

� > 0 for the theory to b e w ell-de�ned. Assuming also, for simplicit y , the absence of

external sources, that is that

~

j =

~

0, w e ma y tak e in this case a limit in whic h ~ v

R

=

~

0

and m

R

6= 0. In this mo del it results from direct calculation that m

2

R

= �a

� 2

, so that

in this limit w e will necessarily ha v e � ! 0. W e ma y also tak e a limit in whic h m

R

= 0

and ~ v

R

6=

~

0, but it is not p ossible to ha v e b oth ~ v

R

and m

R

non-zero.

The renormalized mass m

R

is de�ned as the p osition of the p ole of the t w o-p oin t

function. In general it will not b e related to � in suc h a simple w a y as in the free theory .

In most mo dels the renormalized mass will b e a non-trivial function of b oth � and � .

It is con v enien t to de�ne a renormalized v ersion of � as �

R

= m

2

R

a

2

. W e see then that,

in an y ph ysically in teresting limit, w e m ust ha v e �

R

! 0, otherwise the renormalized

mass will b e in�nite and there will b e no propagation of particles in the Loren tzian

v ersion of the theory .

In the Euclidean v ersion the parameter �

R

is related to the dimensionless correlation

length of the mo del, whic h is measured in terms of the n um b er of sites and links crossed

in order that the correlation b et w een t w o v alues of the �eld fall b y a certain factor and

whic h can b e obtained from the t w o-p oin t correlation function. In this w a y it b ecomes

clear that it can b e used to de�ne distances: in order to kno w the distance b et w een t w o

p oin ts on the lattice it su�ces to coun t the n um b er of correlation lengths that one can

�t b et w een them.

In a similar w a y the exp ectation v alue ~ v

R

of the �eld can b e obtained from the

one-p oin t functions and the renormalized coupling constan t �

R

from the t w o- and four-

p oin t functions. The solution of the theory consists of the determination, on eac h �nite

8



lattice, of the functions ~ v

R

( �; � ), �

R

( �; � ) and �

R

( �; � ) whic h relate the renormalized

quan tities to the parameters of the theory and the subsequen t taking of the con tin uum

limit with conditions on some of the observ ables.

2.3 Sto c hastic Mon te-Carlo Sim ulations

Sto c hastic sim ulations are the main exploration and calculation tec hnique in this re-

searc h area. They enable us to obtain go o d n umerical estimates for the observ ables

de�ned in (2.3). Their foundations are w ell kno wn and will not b e rep eated here. It

su�ces to sa y that they are a tec hnique whic h allo ws us to ev aluate, with a measurable

precision, the ratios b et w een high-dimensional m ultiple in tegrals whic h app ear in the

de�nition (2.3) for the observ ables. This is done b y the generation of a sequence of �eld

con�gurations in suc h a w a y that the statistical distribution of these con�gurations con-

v erges to the distribution de�ned b y the exp onen tial of the Euclidean action. In this

w a y , the sim ulation tec hniques are iden tical to those used in the study of Statistical

Mec hanics, except for the fact that the sim ulations are realized more often in four than

in three dimensions.

There are man y di�eren t w a ys to generate an appropriate sequence of con�gura-

tions. W e denominate as sto chastic evolution the pro cess of successiv e generation of

con�gurations. In order that the generated statistical distribution of �elds con v erge to

the correct limit, it is su�cien t that the algorithms used to generate eac h con�gura-

tion form the previous one satisfy a condition whic h is kno wn b y the name of detaile d

b alancing . The algorithms used in our programs are of sev eral t yp es. The sto c hastic

v ariations of the �elds in the ��

4

mo del are decomp osed in to radial and angular parts.

F or the sto c hastic ev olution of the angular part w e use the W ol� algorithm [1]. F or this,

it w as necessary to adapt it to mo dels with v ariable-length v ectors in the presence of

external sources. The W ol� algorithm is extremely e�cien t and impro v es considerably

the qualit y of the n umerical results.

F or the ev olution of the radial part w e used the Metrop olis algorithm [2]. In this

sector of the co de the part of the action in v olving the p oten tial, b eing strictly lo cal, is

treated in a particular w a y , b y means of a c hange of v ariables and an in terp olation of the

in v erse of the in tegral of the exp onen tial of the p oten tial. This approac h for the radial

part is v ery e�cien t for dealing with the usual theory , without sources, but rev ealed

ha ving some limitations in the presence of v ery strong external sources, forcing us to

limit the sim ulations to v alues of the external source b elo w a certain maxim um limit.

A re-structuring of the co de to eliminate these limitations is curren tly in our plans, but

they did not actually compromise the utilit y of the curren t co de for this w ork.

It is in teresting to record here the relation b et w een the b oundary conditions and

the critical b eha vior of the mo del. W e use in the sim ulations p erformed in this w ork

p erio dic b oundary conditions. In this case the in ternal S O ( N ) symmetry of the mo dels

is alw a ys brok en on �nite lattices and there are no phase transitions except in the

con tin uum limit. Ho w ev er, it is p ossible to de�ne represen tations of the mo dels whic h

9



presen t phase transitions ev en on �nite lattices. F or this it is necessary to use on the

�nite lattices, instead of p erio dic b oundary conditions, �xe d b oundary conditions. In

this kind of represen tation, instead of connecting eac h b oundary of the lattice to the

opp osite b oundary through links, w e simply �x the v alue of some of the quan tities of

the theory , in general the �eld itself, along the b oundary .

This kind of b oundary condition ma y b e useful in the future for the dev elopmen t of

the w ork w e presen t here, due to the fact that it w ould allo w us to examine in greater

detail the geometry of small regions of space. Ho w ev er, these b oundary conditions are

still p o orly dev elop ed and the curren t v ersions cause distortions in the critical exp onen ts

of the mo dels. There are ideas to impro v e this kind of b oundary condition, whic h are

curren tly sub ject of researc h in our group [3]. The basic idea is that w e should not �x

the quan tum �elds at the b oundary but instead the v alues of some observ ables. It will

b e necessary to �rst dev elop these ideas if �xed b oundary conditions are to b e of real

use in this w ork.
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Chapter 3

Some Relev an t F acts

W e describ e in this c hapter some of the most imp ortan t prop erties of the theory ac-

cording to its de�nition in the Euclidean lattice. F rom these fundamen tal prop erties

w e will induce the basic motiv ation for this w ork.

3.1 Critical Beha vior

As w e sa w b efore, in the con tin uum limit of the free theory w e necessarily ha v e that

�

R

= � ! 0, while in the in teracting theory w e ha v e �

R

( �; � ) ! 0. On the other

hand, the Euclidean system that w e de�ne in eac h �nite lattice is a statistical system

whic h, in the con tin uum limit, has a second-order phase transition the order parameter

of whic h is the exp ectation v alue of the �eld, v

R

= j ~ v

R

j . The transition region, in this

case a critical curv e in the ( �; � ) plane, is the region where �

R

! 0, and therefore an y

ph ysically in teresting con tin uum limit should con v erge to this critical curv e.

This is a general prop ert y of the de�nition of Quan tum Field Theories on the Euc-

lidean lattice. If w e cannot �nd a represen tation on the �nite lattices whic h leads to a

statistical system with a second-order phase transition, w e cannot de�ne the theory , for

in �rst-order phase transitions, in whic h �

R

6! 0 in the critical region, it is not p ossible

to tak e w ell-de�ned con tin uum limits, with �nite renormalized masses.

The critical diagram of the ��

4

mo del can b e found in �gure 3.1. This is a diagram

in the space of the parameters of the mo del, in our case the ( �; � ) plane. The con tin uum

limits can b e represen ted b y paths in this diagram, whic h w e call 
ows . All limits of

ph ysical in terest con v erge to the critical curv e. The ensem ble of the theory is Gaussian

in the half-axis � � 0, � = 0 and the free theory limits 
o w along this axis con v erging

to the Gaussian p oin t � = 0, � = 0, where the critical curv e b egins. The theory do es

not exist in the half-axis � < 0, � = 0 and in the half-plane � < 0.

The critical curv e divides the diagram in t w o regions, whic h constitute the t w o

phases of the mo del. The symmetric phase is c haracterized b y ha ving ~ v

R

!

~

0 in the

N ! 1 limit, while in the brok en-symmetri c phase w e ha v e, for one of the comp onen ts

of the �eld, v

R;i

6= 0 ev en in the N ! 1 limit. By con v en tion w e c ho ose the comp onen t

11
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Figure 3.1: The critical curv e of the ��

4

mo del.

in the direction of whic h the symmetry is brok en, whic h w e name the longitudinal

comp onen t, as the N -th comp onen t of the �eld. F or the other comp onen ts, whic h

w e name tr ansversal comp onen ts, w e alw a ys ha v e v

R;i

= 0, ev en on �nite lattices.

With p erio dic b oundary conditions w e will alw a ys ha v e v

R; N

6= 0 for the longitudinal

comp onen t on �nite lattices.

In the neigh b orho o d of the Gaussian p oin t the critical curv e di�ers v ery little from

a straigh t line. F or the mo del with S O (2) symmetry whic h w e used in the sim ulations

describ ed later, it is at appro ximately 60

o

from the � < 0 half-axis in d = 4 and at

appro ximately 45

o

in d = 3. In d = 4 the larger lattice whic h w e used, with N = 8,

already has a b eha vior reasonably close to the critical b eha vior of the con tin uum limit.

In d = 3 the N = 8 lattice is relativ ely more distan t from the limit, so that w e will

examine the critical situation p erforming the sim ulation at 50

o

. This is due to the

fact that the pro ximit y to the con tin uum limit, in terms of the critical b eha vior, is

appro ximately prop ortional to the total n um b er N

d

of sites of the lattice.

3.2 Discon tin uit y of the Con�gurations

One prop ert y of the con tin uum limit of the ��

4

mo del whic h in terests us in particular is

the fact that the t ypical con�gurations of the �elds of the mo del, whic h con tribute in a

dominan t w a y to the exp ectation v alues, are discon tin uous functions at all p oin ts. One

can sho w, analytically in the case of the free theory and n umerically for the in teracting

mo dels, that the quan tit y h (�

l

'

i

)

2

i on an y link of the lattice has a �nite and non-zero
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limit [4 ].

Since the di�erence �

l

is tak en b et w een neigh b ors this means that, on a v erage,

v alues of the �elds ~' at in�nitesimally close p oin ts di�er b y a �nite quan tit y in the

limit and hence that the �elds are t ypically discon tin uous at all p oin ts. F or d > 2

this implies that the discon tin uities of the dimensional �eld

~

� b ecome in�nite in the

con tin uum limit. The same conclusions can b e deriv ed analytically in the case of op en

electro dynamics without sources [4] and observ ed n umerically in other cases lik e, for

example, the Non-Linear Sigma Mo dels.

This basic fact of the structure of the theory imme diatel y puts in profound doubt

the usual notion w e ha v e ab out what it means to quan tize the gra vitational �eld. The

usual w a y to think ab out the pro cess of quan tization of General Relativit y in v olv es

the conception of the �eld con�gurations in the form of a 
uctuating geometry for

space-time. It is extremely arti�cial to think of the quan tized gra vitational �eld as a


uctuating geometry if the con�gurations are so profoundly discon tin uous, completely

prev en ting the in tro duction of the concept of con�gurations of the theory as geometrical

ob jects.

This prop ert y of the dominan t con�gurations of the quan tum �elds has imp ortan t

consequences for the analysis of the p erturbativ e expansion of the mo del on the Euc-

lidean lattice. It constitutes the basic mec hanism resp onsible for the div ergences whic h

app ear in the p erturbativ e expansion in the con tin uum limit. Besides, it imme diately

in tro duces doubts ab out the role that the top ology of the �eld con�gurations ma y pla y

in the dynamics of the mo del.

3.3 T rivialit y of the Mo del

A remark able prop ert y of the ��

4

mo dels in four or more dimensions is what is usually

called the triviality of these mo dels. This trivialit y is a prop ert y of the structure of the

mo dels and means that, in the con tin uum limit, the correlation functions of the mo dels

are iden tical to the corresp onding correlation functions of the free theory .

The most imp ortan t asp ect of this fact is that the four-p oin t functions are factor-

izable in pro ducts of t w o-p oin t functions. This, in the in terpretation of the Loren tzian

theory , means that the particles of the mo del b eha v e as free particles and do not in ter-

act with one another. This app ears in the observ ables as the fact that the dimensional

coupling constan t �

R

v anishes. In d > 4 this simply means that �

R

is �nite, while in

d = 4 it means that �

R

! 0 in the limit. In d = 3 it is kno wn that the theory is not

trivial, ha ving a �nite and non-zero limit for �

R

, whic h, once more, means that �

R

! 0

in the limit.

All this implies that w e should ha v e �

R

= 0 o v er the critical curv e in d = 3 and

d = 4. Sim ulations whic h w e realized under certain sp eci�c conditions seem to indicate

that, in fact, �

R

= 0 in all the parameter space of these mo dels, ev en on �nite lattices.

Ho w ev er, our statistics is still v ery p o or and w e cannot state this with certain t y . F or

this it will b e necessary to impro v e the n umerical tec hniques and p erform m uc h more
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extensiv e n umerical w ork.

Ho w ev er, in c hapter 4 w e will sho w some facts whic h seem to indicate the same

conclusion. In the analysis of the lo cal observ ables for the renormalized mass, presen ted

in that c hapter, w e will see that certain relations of the free theory seem to b e satis�ed

b y the in teracting mo del ev en on �nite lattices. W e do not kno w y et whether it is

p ossible to use this approac h to p erform a deep er analysis of the question of trivialit y ,

something whic h w e in tend to try to do in the future.

3.4 Action of External Sources

The in tro duction of external sources in the mo del will pla y a fundamen tal role in this

w ork. In the usual treatmen t this in tro duction is done primarily within the framew ork

of the e�ectiv e action formalism and is limited to in�nitesimal sources. In that form-

alism the external sources are used basically to allo w the generation of the correlation

functions b y means of functional di�eren tiation and, at the end of the pro cess, the

sources are put to zero. In this w ork, in con trast to this, w e will b e in tro ducing strong

external sources and examining in more detail their action on the system.

The ph ysical in terpretation of the external sources is that they represen t the in tro-

duction of classical ob jects in the theory , whic h generically can b e sources of particles,

suc h as accelerators, or absorb ers of particles, suc h as detectors. F or this reason, they

are represen ted in the theory as giv en �xed functions and not as 
uctuating random

v ariables. The idea is that in a more complete represen tation the sources are related to

some other ph ysical system, whic h w e are not represen ting directly in our mo del. F or

the purp ose of studying their e�ect in our mo del w e exc hange the 
uctuating v ariables

of the quan tum ob jects of this other system b y their exp ectation v alues, whic h w e treat

as giv en �xed functions.

The most immediate e�ect of the in tro duction of an external source in our mo del is

a c hange in the exp ectation v alue of the �eld ~ v

R

, whic h b ecomes di�eren t from zero in

either phase. Besides, if the external source is not constan t o v er the lattice, ~ v

R

b ecomes

dep enden t on p osition. W e will b e examining in particular the case of a p oin t source

orien ted in the direction of '

N

. In the case of the free theory w e can presen t a general

solution for ~ v

R

, giv en a generic source:

~ v

R

( s ) =

N

d

X

s

0

~

j ( s

0

) K ( s; s

0

) ;

where K is the propagator in co ordinate space,

K ( s; s

0

) =

1

N

d

N

d

X

k

cos

h

2 �

N

k

�

( n

�

� n

0

�

)

i

�

2

( k ) + �

and where n

�

are the in teger co ordinates of a site s of the lattice, in units of n um b ers

of sites. The dimensional co ordinates x

�

whic h describ e the p ositions of the sites are
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giv en b y x

�

= a n

�

, where n

�

= 1 ; : : : ; N for � = 1 ; : : : ; d . The sum

P

N

d

k

runs o v er

the N

d

F ourier mo des of the lattice and k

�

are in teger v ariable that index these mo des.

In general w e adopt for them the in terv al of v alues k

�

= k

m

; : : : ; 0 ; : : : ; k

M

, where

k

m

= 1 � N = 2 and k

M

= N = 2 for lattices with ev en N , while k

m

= � ( N � 1) = 2 and

k

M

= ( N � 1) = 2 for lattices with o dd N . The quan tities

�

2

( k ) = 4

"

sin

2

 

� k

1

N

!

+ : : : + sin

2

 

� k

d

N

!#

are the eigen v alues of the Laplacian on the lattice. In the con tin uum limit the square

of the momen tum relates to these eigen v alues b y p

�

p

�

= p

2

= lim

a ! 0

[ �

2

( k ) =a

2

]. The

sums ma y b e written explicitly as

N

d

X

s

=

N

X

n

1

=1

: : :

N

X

n

d

=1

;

N

d

X

k

=

k

M

X

k

1

= k

m

: : :

k

M

X

k

d

= k

m

:

Subtracting from the �eld its exp ectation v alue w e ha v e the shifted �eld v ariable

~'

0

= ~' � ~ v

R

, whic h has zero exp ectation v alue and all correlation functions iden tical to

the ones for the free theory without external sources. This is, clearly , a consequence of

the linearit y of the free theory . F or a p oin t source at the origin w e ha v e, in particular,

that

~

j ( s

0

) =

~

j

0

�

0 ;s

0

and then

~ v

R

( s ) =

~

j

0

K ( s; 0) =

~

j

0

N

d

N

d

X

k

cos

�

2 �

N

k

�

n

�

�

�

2

( k ) + �

:

Note that, at the p osition of this singular source, ~ v

R

( s = 0) has a �nite and non-zero

con tin uum limit for d > 2, b ecause the quan tit y K (0 ; 0) = f

0

( N ; d; � ), where

f

0

( N ; d; � ) =

1

N

d

N

d

X

k

1

�

2

( k ) + �

; (3.1)

has a �nite and non-zero limit for d > 2 [4]. A t this p oin t the exp ectation v alue of the

dimensional �eld

~

V

R

= h

~

� i div erges for d > 2. On the other hand, since w e will ha v e

a �nite

~

V

R

at all other p oin ts, it follo ws that at all p oin ts except the lo cation of the

source w e shall ha v e ~ v

R

! 0 in the limit, for d > 2.

3.5 Finite In v ariances

There are symmetrie s of sev eral t yp es in the mo del. All these symmetries are familiar

and ha v e complete and explicit realizations in the con tin uum limit, if w e also mak e the
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dimensions of the b o x con taining the mo del tend to in�nit y . Both the represen tation

of the mo del inside a �nite b o x and its realization on a discrete lattice a�ect some of

these symmetri es. Ho w ev er, the represen tation on the lattice k eeps remnan ts of the

complete symmetrie s, whic h allo w us to iden tify that the symmetri es will b e restored

in the in�nite-v olume con tin uum limit.

First w e ha v e the in ternal in v ariance with whic h w e de�ned the mo del, in our case

an in v ariance b y transformations of S O ( N ) in the space of the �elds. This in v ariance

is the only one that sta ys in tact on the classical mo del de�ned on a �nite lattice. It is

not a�ected b y either the �niteness of the b o x or the discrete c haracter of the lattice

and, for N > 1, it is a con tin uous symmetry . This symmetry is brok en, ho w ev er, b y the

dynamics of the quan tum theory and ma y or ma y not b e reco v ered in the con tin uum

limit. It is this symmetry that de�nes the phase structure in the critical diagram of the

mo del.

The spatial symmetrie s of rotation are brok en, of course, b y the in tro duction of a

discrete lattice in a �nite cubic b o x. Ho w ev er, the rotation symme tries remain enco ded

in the system in an indirect w a y . F or example, w e ha v e the fact that the propagator

of the theory in momen tum space is a function only of �

2

( k ) and not of the sev eral

comp onen ts and v alues of k

�

indep enden tly . In fact, the propagator has, as a function

of �

2

( k ), exactly the same form that the propagator of the con tin uum limit has as a

function of p

2

. All quan tities whic h in the con tin uum are functions of p

2

b ecome, on

�nite lattices, functions of �

2

( k ). In this w a y , the quan tities �

2

( k ) w ork as a kind of

�lter whic h allo ws us to comp ensate the distortions in tro duced b y the �niteness of the

b o x and the discrete c haracter of the lattice. Besides this, there remains in explicit form

a discrete remnan t of the rotation symmetri es, constituted b y the rotations b y � = 2.

The spatial symmetries of translation are also mo di�ed b y the in tro duction of the

�nite b o x and of the discretization. In the case of the in tro duction of the �nite b o x the

adoption of p erio dic b oundary conditions still allo ws us to k eep these symmetri es in

the form of p erio dic translation symmetr ies along the torus de�ned b y these b oundary

conditions. The discretization on the lattice breaks the con tin uous c haracter of these

symmetri es, c hanging them in to discrete symmetries, in whic h w e translate along the

lattice b y an in teger n um b er of sites in eac h direction. In this w a y , so long as there

are no p osition-dep enden t external sources in the action of the mo del, the translation

symmetri es remain v alid in a discrete form.

The spatial symmetrie s will pla y an imp ortan t role in this w ork. In the absence of

p osition-dep enden t external sources all ph ysical quan tities of the mo del, in particular

the correlation length, will ha v e discrete translation and rotation in v ariances. With

this, it is eviden t that the geometry generated on the lattice b y the quan tization of

the mo del will b e 
at. It is the breaking of these symmetri es b y the in tro duction of

lo calized external sources whic h will b e resp onsible for the generation of curv ature.
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Chapter 4

Lo cal Observ ables for the Mass

W e sho w here, b y n umerical means, that certain non-trivial relations among observ ables

of the ��

4

mo del are satis�ed v ery precisely , p ossibly exactly so. These relations can b e

deriv ed b y means of p erturbativ e metho ds and are iden tical in form to the corresp onding

relations for the free theory , di�ering from them only b y the exc hange of the mass b y

the renormalized mass.

4.1 P erturbation Theory on the Lattice

Let us consider the ��

4

mo del de�ned b y the action giv en in equation (2.2) and quan t-

ized on the lattice according to the sc heme describ ed in Chapter 2, using the lattice

action giv en in equation (2.1). It is p ossible to dev elop for this mo del a p erturbativ e

metho d on �nite lattices, in the w a y describ ed in reference [5].

This approac h is v ery useful and, although it has a p erturbativ e c haracter, the res-

ulting appro ximations are b etter describ ed as Gaussian appro ximations for the mo del.

Prop erly sp eaking it is not an expansion but a go o d appro ximation for some of the

observ ables of the theory . The approac h is useful to deal with the one- and t w o-p oin t

functions, but not for the four-p oin t function. In the symmetri c phase the appro xim-

ation for the renormalized mass is giv en, in terms of the parameters � and � of the

mo del, b y

�

R

= � + ( N + 2) �f

0

0 ;i

( N ; d; �

R

) ;

for eac h i -th �eld comp onen t, with

f

0

0 ;i

( N ; d; �

R

) = f

0

( N ; d; �

R

) +

�

i N

� 1

N

d

�

R

; (4.1)

where f

0

0 ;i 6= N

is the function f

0

de�ned in (3.1) without the zero-mo de term and f

0

0 ; N

=

f

0

. In the brok en-symmetri c phase w e ha v e

�

R

= � 2 �

i N

[ � + ( N + 2) �f

0

( N ; d; �

R

)] :
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Note that �

R

= 0 for the transv ersal comp onen ts, whic h are Goldstone b osons.

These are not, in fact, explicit solutions for �

R

but equations determining �

R

in

terms or � and � , b ecause their righ t-hand sides dep end themselv es on �

R

. A com-

parison of these predictions for �

R

with n umerical estimates, as presen ted in [5], sho ws

that they are v ery go o d appro ximations, ev en surprisingly so but, still, they are not

exact and the di�erences can b e clearly seen for large v alues of � .

In this same p erturbativ e sc heme it is p ossible to deriv e results for other observ ables

of the theory , whic h do not in v olv e the renormalized coupling constan t �

R

, for example

for the exp ectation v alue of the �eld, ~ v

R

= (0 ; : : : ; 0 ; v

R

), for whic h one gets, in the case

~

j =

~

0, v

R

= 0 in the symmetric phase and, in the brok en-symmetri c phase,

v

R

=

q

�

R

= (2 � ) :

F or the width of the 
uctuations of the �eld at sites w e ha v e

h ( '

i

� v

R;i

)

2

i = h '

2

i

i � v

2

R;i

= f

0

0 ;i

( N ; d; �

R

) : (4.2)

Finally , for the �nite di�erences on the lattice w e ha v e

h (�

l

'

i

)

2

i = h [ '

i

( x + a

�

) � '

i

( x )]

2

i

=

1

N

d

N

d

X

k

4 sin

2

�

�

k

�

N

�

�

2

( k ) + �

R

= f

1

( N ; d; �

R

) ;

h (�

d

'

i

)

2

i = h [ '

i

( x + a

�

1

+ a

�

2

) � '

i

( x )]

2

i

=

1

N

d

N

d

X

k

4 sin

2

�

�

k

�

1

+ k

�

2

N

�

�

2

( k ) + �

R

= f

2

( N ; d; �

R

) ; (4.3)

where �

l

is the di�erence b et w een the �elds at the t w o ends of a link, �

d

is the di�erence

b et w een the �elds at the t w o ends of a plaquette diagonal and a

�

is a displacemen t b y

the lattice spacing a in the direction � . A plaquette is a set of four sites forming a square

in one of the lattice planes, that is, it is the basic geometrical elemen t of dimension

t w o, whic h pla ys an imp ortan t role in Gauge Theories.

4.2 Lo cal Observ ables for �

R

Although the observ ables of the mo del are, in general, functions of N , d , � and �

indep enden tly , one can see that all these p erturbativ e results can, with the exception of

the one for v

R

, b e written in terms of �

R

( �; � ), instead of in terms of � e � separately

and indep enden tly . Note ho w ev er that the relation (4.2) in v olv es v

R

in its left-hand
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side and that, due to this, h '

2

i b y itself cannot b e expressed only in terms of �

R

, unless

v

R

� 0. On the other hand, the relations (4.3) do not dep end on v

R

and consequen tly

ma y b e written exclusiv ely in terms of �

R

. Besides, the functions f

0

0 ;i

, f

1

and f

2

ha v e

exactly the same form as the corresp onding exact results for the free theory , di�ering

from them only b y the exc hange of the parameter � of the free theory b y �

R

.

It is also p ossible to calculate the propagator of the theory in momen tum space,

resulting

e

g

(2) ;i

( k ) = h

e

'

�

i

( k )

e

'

i

( k ) i =

1

N

d

1

�

2

( k ) + �

R

in either phase, so long as �

R

is the appropriate expression in eac h phase and for eac h

�eld comp onen t. In this expression

e

'

i

( k ) is the �nite F ourier transform of the �eld on

the lattice [6], giv en b y

e

'

i

( k ) =

1

N

d

N

d

X

s

'

i

( s ) e

{

2 �

N

k

�

n

�

:

Besides, from a �t to the n umerical propagator of an expression lik e

1

N

d

R

�

2

( k ) + �

R

;

similar to the previous one, one can estimate v ery w ell �

R

, as is sho wn in [5]. The �ts

done use a limited but su�cien t n um b er of v alues of the momen ta. In general they are

v ery go o d and it is observ ed that the residue of the propagator comes out consisten tly

as R = 1 within n umerical errors, whic h w e b eliev e to b e one more indication of the

trivialit y of the mo dels. The use of a limited n um b er of v alues of the momen ta is due

to historical issues of a tec hnical c haracter in the dev elopmen t of our computer co des

and w e ha v e plans to c hange this strategy and starts calculating the observ ables for

a complete set of v alues of the momen ta. There is a p ossibilit y that the use of this

limited set of v alues of the momen ta has in tro duced some small systematic errors whic h

w e detected in the n umerical results.

Note that, unlik e the momen tum -space propagator, the observ ables de�ned in (4.2)

and (4.3) are lo c al ob jects on the lattice, in v olving at most t w o neigh b oring sites. Note

also that the relation of these lo cal observ ables to the renormalized mass is clear and

in tuitiv e, since they are directly related to the 
uctuations of the �elds at sites and the

correlations b et w een �elds across links and diagonals,

h (�

l

'

i

)

2

i = 2 h '

2

i

i � 2 h '

i

( l

+

) '

i

( l

�

) i ;

where '

i

( l

+

) and '

i

( l

�

) are the �elds at the t w o ends of the link or diagonal, while the

renormalized mass �

R

is directly related to the correlation length of the theory .

These considerations lead to the p ossibilit y of testing the p erturbativ e relations giv en

in (4.2) and (4.3), v erifying ho w w ell they are satis�ed if used to relate the n umerical

v alues of �

R

with the n umerical v alues of h '

2

i

i � v

2

R;i

, h (�

l

'

i

)

2

i and h (�

d

'

i

)

2

i . Note

that ev erything here happ ens on �nite lattices of arbitrary size.
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4.3 T ests of the Lo cal Observ ables

W e p erformed suc h a comparison, whic h sho w ed that the relations (4.3) are satis�ed,

within errors compatible with our n umerical precision, despite their p erturbativ e origin,

for all v alues of the parameters of the mo del for whic h w e w ere able to p erform the

comparisons. In the case of the relation (4.2) the same is v alid for the transv ersal �eld

comp onen ts, for whic h v

R;i

= 0, but a small di�erence app ears for the longitudinal

comp onen t, in the direction of whic h the symmetry is brok en and for whic h, therefore,

v

R; N

6= 0.

T o b etter understand these results it is imp ortan t to p oin t out that our treatmen t

of the zero-mo de in the computer sim ulations is v ery di�eren t for the transv ersal and

longitudinal comp onen ts: the zero-mo de of the transv ersal comp onen ts is eliminated

from the theory b y means of the symmetry transformations of the mo del, that of the

longitudinal comp onen t is not. It is through these transformations that w e k eep the

direction of symmetry breaking �xed along the comp onen t '

N

.

As one can see, unlik e the form ulas f

0

0 ;i 6= N

, f

1

and f

2

, the form ula f

0

0 ; N

con tains

an infra-red div ergence in v olving the zero-mo de, that is, a term prop ortional to 1 =�

R

,

whic h div erges if �

R

! 0. Note that there is no div ergence in this term in the con tin uum

limit, since in this case w e ha v e �

R

! 0 as N

� 2

when N ! 1 , so that 1 = ( N

d

�

R

) go es

in fact to zero for d > 2. In the same manner as this term, the di�erence observ ed for

the longitudinal comp onen t in the relation (4.2) decreases with the size of the lattice

and should disapp ear in the con tin uum limit.

It b ecomes clear that the observ ed di�erence is due to the e�ect of the zero-mo de.

F or the transv ersal comp onen t, the zero-mo de of whic h w as eliminated, this term is

absen t from the sum and the form ula seems to b e satis�ed with precision. F or the

longitudinal comp onen t the term of the zero mo de is presen t and the form ula is not

exactly satis�ed. The presence of the zero-mo de in f

0

0 ; N

is related to its dep endence

on v

R

whic h, as w e sa w, cannot b e written exclusiv ely in terms of �

R

. Note that the

observ ables h (�

l

'

i

)

2

i and h (�

d

'

i

)

2

i , the form ulas for whic h seem to b e realized exactly ,

do not in v olv e the zero mo de at all.

In order to p erform the tests w e measured �

R

b y means of the �t to the n umerical

propagator in momen tum space and measured indep enden tly the observ ables ~ v

R

, h '

2

i

i ,

h (�

l

'

i

)

2

i and h (�

d

'

i

)

2

i , for eac h set of v alues of the parameters. F rom these observ ables

corresp onding v alues for �

R

w ere obtained b y n umerical in v ersion of the form ulas f

0

0 ;i

,

f

1

and f

2

giv en in (4.1) and (4.3).

A sampling of the results can b e found in �gures 4.1 and 4.2, while a mo de complete

set can b e found in App endix A.1. The parameters r and � that app ear in these graphs

relate to � and � b y

� = � r cos ( � ) ;

� = r sin( � ) :

As can b e seen in these �gures, with the exception of a few o ccasionally large statistical


uctuations or one or other p ossible imp erfection in the �t used to obtain �

R

from the
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Figure 4.1: T est for the transv ersal comp onen t.
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Figure 4.2: T est for the longitudinal comp onen t.
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momen tum -space propagator, the results coincide in an essen tially exact w a y , ev en for

large v alues of the coupling constan t.

One can see that the lo cal observ ables constitute a tec hnically v ery go o d w a y to

measure �

R

in these mo dels. The extreme regularit y and precision of these results,

as w ell as their remark able consistency with one another, raised the conjecture that

equations (4.2) for the case of the transv ersal comp onen ts and (4.3) are in fact satis�ed

exactly on �nite lattices. F urthermore, the follo wing more general conjecture is strongly

suggested: that there exists a pair of functions h

1

( �; � ) and h

2

( �; � ) suc h that, for ev ery

observ able O of the theory , the exp ectation v alue

hO i =

R

[ d' ] O [ ' ] e

� S

E

( �;� )

R

[ d' ] e

� S

E

( �;� )

is equal to the corresp onding exp ectation v alue in the free theory with mass parameter

�

R

= h

1

( �; � ) and �eld exp ectation v alue v

R

= h

2

( �; � ), that is,

hO i =

R

[ d' ] O [ ' ] e

� S

0

( v

R

;�

R

)

R

[ d' ] e

� S

0

( v

R

;�

R

)

:

If this could b e demonstrated it w ould immediatel y imply , of course, the trivialit y

of the theory . Ma yb e this conjecture is v alid on �nite lattices only for some observ ables

but, if the theory is in fact trivial, it m ust b e true in the con tin uum limit for al l

observ ables. In an y case it seems that the theory , whic h can ha v e at most t w o free

parameters, is suc h that h

1

e h

2

ma y b e c hosen as these parameters.

4.4 Extrap olation for the Use of the Observ ables

It is imp ortan t to note that the observ ables of the t yp e (4.3) in v olving �

l

and �

d

su�ce

to de�ne the geometry on the lattice, b ecause they allo w us to measure the renormalized

mass in a lo cal w a y and, hence, the correlation lengths asso ciated to links and diagonals.

These elemen ts are su�cien t to de�ne the lattice as a simplicial complex, that is, to

de�ne completely an in trinsic metrical geometry o v er it.

The observ ables whic h w e used in this w ork relate only to the links b et w een sites and

to sites separated b y a t w o-dimensional diagonal con tained in one of the lattice planes.

Ho w ev er, it is p ossible to de�ne observ ables that measure �

R

for t w o neigh b oring sites

along an y direction of a lattice of higher dimension:

h [ '

i

( x + a

�

1

+ : : : + a

�

3

) � '

i

( x )]

2

i =

1

N

d

N

d

X

k

4 sin

2

�

�

k

�

1

+ ::: + k

�

3

N

�

�

2

( k ) + �

R

= f

3

( N ; d; �

R

) ;

h [ '

i

( x + a

�

1

+ : : : + a

�

4

) � '

i

( x )]

2

i =

1

N

d

N

d

X

k

4 sin

2

�

�

k

�

1

+ ::: + k

�

4

N

�

�

2

( k ) + �

R

= f

4

( N ; d; �

R

) :
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With this it is p ossible, in principle, to obtain the complete in trinsic geometry of a

four-dimensional lattice. Here w e limited ourselv es to examine only the links and t w o-

dimensional diagonals for tec hnical reasons and due to the fact that this su�ces for,

at least, a �rst examination of the generated geometry , through its t w o-dimensional

sections.

Note that, from the p oin t of view of this w ork, the use of these lo cal observ ables is

only a tec hnique whic h allo ws us to measure �

R

in a lo cal w a y in sim ulations with sizes

limited b y the curren t a v ailabilit y of computer resources. This is a tec hnique that ma y

apply only to the ��

4

mo dels, but it is p ossible to form ulate, in principle, a sc heme to

do this in an arbitrary mo del. It is enough to imagine that w e ha v e a v ery large lattice,

whic h can b e divided in to a large n um b er of small b o xes, eac h one still con taining a

su�cien tly large n um b er of sites.

Inside eac h of these small b o xes w e use F ourier transforms with momen ta along eac h

direction, with w a v elengths su�cien tly small to �t inside the b o xes, to calculate the

renormalized mass asso ciated to eac h direction b y means of a �t to the propagator.

W e assume, of course, that the b o xes are m uc h smaller than the t ypical distance in

whic h the renormalized mass v aries and that the n um b er of a v ailable mo des inside eac h

b o x is v ery large, allo wing a go o d �t to the propagator. F or an approac h lik e this to

b e successful, it is ob vious that an extremely large lattice w ould b e needed, whic h is

curren tly out of our reac h in practice.

In this w ork w e will b e, therefore, using the lo cal observ ables to measure the metrical

geometry of the lattice. Ho w ev er, w e will b e doing this under conditions di�ering from

those in whic h it is p ossible to test them b y comparison to the results obtained b y

means of F ourier transforms, for w e will b e in tro ducing p osition-dep enden t external

sources, whic h break the translation symmet ries. It is necessary , therefore, to consider

the errors that ma y b e in tro duced b y this extrap olation, ev en if the tests p erformed

co v er a considerable amplitude of situations with no imp ortan t c hange in the results

ha ving b eing observ ed. W e can argue in sev eral di�eren t w a ys that this approac h is at

least qualitativ ely correct, pro viding at least a go o d appro ximation of the real situation.

A �rst justi�cation is based in the v ery trivialit y of the theory: if the theory is in

fact trivial, as all leads us to b eliev e, then the t w o-p oin t correlations are the same as

those of the free theory and hence the lo cal observ ables should pro duce go o d results, at

least in the con tin uum limit, ev en in the presence of arbitrary external sources. Note

that w e are only in terested in using the observ ables to measure �

R

and not v

R

or �

R

.

T o form ulate our second justi�cation, w e �rst observ e that, for the calculation of

the correlation length, the t w o-p oin t correlation functions m ust b e calculated for the

shifted �eld ~'

0

whic h has an exp ectation v alue equal to zero. As w as discussed b efore,

the precise functioning of the observ ables (4.3) seems to b e related to the fact that,

b eing constan t, ~ v

R

do es not app ear in these observ ables, whic h in v olv e deriv ativ es, so

that they can b e written indi�eren tly in terms of either ~' or ~'

0

. With the in tro duction

of p osition-dep enden t external sources ~ v

R

will b e no longer constan t and therefore will

no longer cancel from these observ ables. W e will ha v e no w for, as an example, the �rst
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observ able in (4.3)
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W e observ e no w that, while the quan tum �elds are discon tin uous in the limit, the ob-

serv ables of the theory , as for example ~ v

R

, are, in con trast to this, con tin uous. Therefore,

while �

l

'

i

� 1, �

l

v

R;i

! 0 in the limit. With this it b ecomes clear that these observ-

ables are dominated b y the discon tin uous b eha vior of the �elds and that the di�erences

b et w een the v alues of v

R

at nearb y sites can in tro duce, at most, small c hanges in the

v alue of the observ ables, c hanges whic h should v anish in the con tin uum limit.

Finally , w e note that the functions f

0

0 ;i 6= N

, f

1

and f

2

, considered as functions of �

R

for giv en N and d , ha v e as images �nite in terv als (0 ; f

M

), with f

M

of the order of one,

while �

R

v aries in the domain (0 ; 1 ). In this w a y , dep ending on the v alue obtained

n umerically for the observ ables, it ma y or ma y not b e p ossible to in v ert these functions

to obtain the corresp onding v alues of �

R

. In fact, for some test runs with v ery p o or

statistics w e v eri�ed that the in v ersion sp oradically fails due to the large n umerical

errors. Ho w ev er, it nev er fails for f

1

and f

2

in pro duction runs with large statistics.

This fact indicates that the observ ables are in fact closely related to the form ulas f

1

and f

2

and that the v alues of �

R

obtained from them should not con tain excessiv ely

large errors.
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Chapter 5

Geometry Generated on the Lattice

In order to examine the c haracter of the geometry generated on the lattice w e p erformed

sim ulations of the mo del in four dimensions with a constan t source lo cated on a line of

sites along the direction � = 1, whic h w e c hose arbitrarily as the temp oral direction.

In order to obtain the renormalized masses at eac h link and diagonal w e measured o v er

them the observ ables de�ned in (4.3), but using the shifted �eld v ariables ~'

0

instead of

~' . W e c hose to examine the t w o-dimensional spatial sections con taining the origin. In

this w a y w e can examine the resulting geometry through the construction of emb e ddings

of these t w o-dimensional sections.

5.1 Numerical Results: Geometry of the Section

In �gures 5.1 to 5.3 w e can observ e the result of this pro cess for some in teresting cases.

A more complete set of graphs can b e found in App endix A.2. F or the construction of

the geometries sho wn in these graphs w e used the mass of the longitudinal comp onen t

and the largest v alue of the external source that w e w ere able to run, j

0

= 10. In

graph 5.1, whic h corresp onds more clearly to the symmet ric phase, w e can see that

the resulting geometry has a v ery lo calized curv ature, with a short range around the

lo cation of the source. In graph 5.2, whic h corresp onds to our b eing more deeply in to

the brok en-symmetri c phase, w e see a clear tendency to conicit y , that is, a geometry

with little lo cal curv ature but with a conical singularit y at the p osition of the source. In

these cases a fold in the em b edding frequen tly app ears, along the b order of the lattice.

In the graph 5.3, whic h corresp onds to a p osition close to the critical transition in

the phase diagram, w e ha v e a clearly curv ed geometry , whic h seems to b e dev eloping

a horizon in the imm ediacy of the source. It is v ery in teresting that this b eha vior is

related to the critical transition region, to where the con tin uum limits m ust tend.

In �gures 5.4 to 5.6 w e can see similar graphs, for the construction of whic h the mass

of the transv ersal comp onen t w as used. F or this comp onen t w e ha v e, in the symmetric

phase, an essen tially 
at geometry , with folds in the em b edding probably asso ciated

to n umerical errors at the origin, where the singular source is lo cated. In the brok en-

25



Imersao para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Figure 5.1: Em b edding in the symmetric phase, in four dimensions, with j

0

= 10,

longitudinal comp onen t.

Imersao para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Figure 5.2: Em b edding in the brok en-symmetri c phase, in four dimensions, with j

0

= 10,

longitudinal comp onen t.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Figure 5.3: Em b edding in the critical region, in four dimensions, with j

0

= 10, longit-

udinal comp onen t.

Imersao para SO(2), d=4, N=8, r=1, ang=90, i=1, j=10.
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Figure 5.4: Em b edding in the symmetric phase, in four dimensions, with j

0

= 10,

transv ersal comp onen t.
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Imersao para SO(2), d=4, N=8, r=1, ang=30, i=1, j=10.
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Figure 5.5: Em b edding in the brok en-symmetri c phase, in four dimensions, with j

0

= 10,

transv ersal comp onen t.

Imersao para SO(2), d=4, N=8, r=1, ang=60, i=1, j=10.
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Figure 5.6: Em b edding in the critical region, in four dimensions, with j

0

= 10, trans-

v ersal comp onen t.
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symmetri c phase the geometry collapses, since the mass of this comp onen t go es to zero

there and it cannot in fact de�ne a geometry . It is in teresting that in the critical region,

unlik e what happ ens in the other regions, the mass of the transv ersal comp onen t de�nes

a geometry v ery similar with that de�ned b y the mass of the longitudinal comp onen t.

The main di�erence seems to b e a global c hange of scale, probably due to the imp er-

fect reconstitution of the symmetry in the transition region, whic h is c haracteristic of

relativ ely small lattices with p erio dic b oundary conditions.

Imersao para SO(2), d=4, N=8, r=1, ang=180, i=2, j=10.
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Figure 5.7: Em b edding for the free theory , in four dimensions, with j

0

= 10, longitudinal

comp onen t.

In these sim ulations � = 180

o

corresp onds to the free theory , in whic h the geometry

should b e 
at, with or without external source. This p oin t w as used as a reference for

tests of the programs and an example of the results ma y b e seen in �gure 5.7. W e also

v eri�ed that the generated geometry is 
at for the in teracting theory , so long as j

0

is

constan t throughout the lattice.

W e also p erformed some sim ulations with a somewhat smaller v alue of the external

source, j

0

= 5, with the ob jectiv e of determining the c haracter of its in
uence on

the formation and p osition of the horizon. W e can see some results in �gures 5.8 to

5.10. As w e see, the formation of a horizon is less visible in this case, whic h probably

indicates that it w ould b e forming closer to the cen ter, b elo w the resolution of the

lattice. Presumably , if w e are to b e able to see the formation of a horizon in this case

a larger lattice will b e needed.

Finally , w e p erformed some sim ulations in three dimensions, with the same t yp e and
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Imersao para SO(2), d=4, N=8, r=1, ang=70, i=2, j=5.
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Figure 5.8: Em b edding in symmetri c the phase, in four dimensions, with j

0

= 5, lon-

gitudinal comp onen t.

Imersao para SO(2), d=4, N=8, r=1, ang=50, i=2, j=5.
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Figure 5.9: Em b edding in the brok en-symmetri c phase, in four dimensions, with j

0

= 5,

longitudinal comp onen t.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=5.
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Figure 5.10: Em b edding in the critical region, in four dimensions, with j

0

= 5, longit-

udinal comp onen t.

Imersao para SO(2), d=3, N=8, r=1, ang=90, i=2, j=10.
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Figure 5.11: Em b edding in the symmetri c phase, in three dimensions, with j

0

= 10,

longitudinal comp onen t.
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Imersao para SO(2), d=3, N=8, r=1, ang=30, i=2, j=10.
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Figure 5.12: Em b edding in the brok en-symme tric phase, in three dimensions, with

j

0

= 10, longitudinal comp onen t.

Imersao para SO(2), d=3, N=8, r=1, ang=50, i=2, j=10.
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Figure 5.13: Em b edding in the critical region, in three dimensions, with j

0

= 10,

longitudinal comp onen t.
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v alue of the source, with the ob jectiv e of c hec king the kind of geometry whic h app ears

in this case. The main p oin t of in terest w as v erifying whether in this case the generated

geometry is lo cally 
at and, in particular, if there is a conical singularit y at the origin.

Graphs with the results can b e seen in �gures 5.11 to 5.13. As one can observ e, on �nite

lattices the geometry in three dimensions is qualitativ ely similar to that whic h app ears

in four dimensions. Naturally , w e should k eep in mind that the dimensional v ariables

of the theory scale in di�eren t w a ys in three and four dimensions and that, therefore,

there ma y b e a signi�can t di�erence in the con tin uum limit.

5.2 Numerical Metho ds Used

The sim ulations turned out to b e v ery long in the equipmen t whic h has b een a v ailable

for this w ork. F or the largest lattice w e could run, with N = 8, some p oin ts to ok

almost 1000 hours in one pro cessor of the fastest computer a v ailable for our use, so

that w e could generate go o d statistics. In order to impro v e the statistics, considering

that the temp oral translation symmetry is not brok en b y the source w e in tro duced, w e

a v eraged o v er the N spatial sections p erp endicular to the time axis. Still to impro v e

the statistics w e a v eraged, in the case of the four-dimensional space-time, o v er the three

t w o-dimensional sections con taining the origin whic h exist in the spatial section of three

dimensions.

F or the construction of the em b eddings it is necessary to solv e an em b edding prob-

lem whic h consists, in this case, of �nding a surface in a three-dimensional Euclidean

space ha ving the same in trinsic geometry of our section. This problem w as solv ed n u-

merically b y a sto c hastic relaxation pro cess of the t yp e of a �

2

�tting. Let `

i

b e the

lengths asso ciated to eac h one of the 2 dN

d

links and diagonals, whic h result from the

quan tization pro cess and let �

i

b e the distances b et w een the p oin ts at the t w o ends of

eac h link or diagonal, measured in the em b edding space. W e de�ne �

2

as

�

2

=

2 dN

d

X

i =1

w

i

( �

i

� `

i

)

2

;

where the sum runs o v er all the 2 dN

d

links and diagonals and w

i

are w eigh ts in v ersely

prop ortional to the statistical errors asso ciated to eac h `

i

. The sto c hastic relaxation

pro cess is started with the N

d

p oin ts of the lattice in arbitrarily c hosen p ositions in

the em b edding space and b egins to mak e random c hanges in these p ositions with the

aim of minimi zing �

2

. Eac h time that a c hange decreases �

2

it is accepted, otherwise

it is rejected and one tries again from the original p osition. In this w a y w e approac h

the global minim um of �

2

, whic h is zero and corresp onds to a p erfect em b edding, with

eac h �

i

equal to the corresp onding `

i

.

The relaxation pro cess can b e done in man y di�eren t w a ys. If one mak es only inde-

p enden t lo cal v ariations at eac h p oin t, it is susceptible of b eing v ery slo w in approac hing

signi�can tly the global minim um . There is also the risk of the system getting trapp ed
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in lo cal minim a whic h are di�cult to lea v e. Some of these lo cal minima can b e seen

as folds in the resulting em b edding. Whenev er p ossible it is useful to mak e correlated

c hanges of sev eral p oin ts at the same time. Ho w ev er, if the n um b er of correlated p oin ts

in a certain c hange is to o large the probabilit y of rejecting trials increases quic kly .

The pro cess of em b edding b y sto c hastic relaxation tends to w ork b etter when the

in trinsic geometry of the section is more curv ed. Note that the em b edding problem

do es not necessarily ha v e a unique solution. This is ob vious, for example, in the case

of the 
at geometry and can b e easily demonstrated b y the crumpling up of a piece of

pap er. There is a drift within the set of p ossible solutions whic h happ ens along with

the relaxation pro cess. In order to minim iz e this drift w e p erform the relaxation using

all the symmetry constrain ts whic h w e can imp ose.

In our case w e ha v e a symmetry of 8 elemen ts, comp osed b y the four 90

o

rotations

and b y a re
ection of the section. Besides this, w e �x the p osition of the cen tral p oin t

and the direction of the symmetry axis of the section. Ho w ev er, this is not alw a ys

enough to stabilize completely the em b edding, whic h remains sub ject to foldings of

v arious kinds, in sp ecial for the case of the 
at geometry . Small errors in the lengths

of the links and diagonals can ha v e a dramatic e�ect on the em b edding. This happ ens

frequen tly for the links and diagonals whic h connect to the cen tral p oin t at whic h

the singularit y of the source is lo cated, where the n umerical errors tend to b e larger.

These errors are not purely statistical, including also n umerical errors related to the

represen tation of the p oten tial of the theory in the presence of external sources.

The pro cess of sto c hastic relaxation w as executed in eac h case un til the errors fell

b elo w a certain lev el, c hosen to b e compatible with our n umerical errors and so as not

to extend to o m uc h the execution time of the programs. T ypical graphs of the �nal

v alues of �

2

can b e seen in �gures 5.14 to 5.16 and a more complete set can b e found

in App endix A.3. In these graphs the scale of �

2

is relativ e to the a v erage length of the

links and diagonals whic h connect to the p oin t at whic h it is de�ned. In this w a y , the

v alues presen ted corresp ond to the additional displacemen t whic h it w ould b e necessary

to do at eac h p oin t in order that the errors b ecome zero, whic h giv es us a useful in tuitiv e

idea of the qualit y of the �t. T ypically the errors are no more than a few p ercen t in the

w orst cases, in general at the cen ter of the lattice, where the singular source is lo cated.

5.3 Analysis of the Geometry of the Section

The main result w e ha v e to presen t here ab out the relationship b et w een the quan tization

of the �elds and the curv ature of the spatial geometry is of a qualitativ e c haracter, that

is, the simple fact that a curv ed geometry app ears. The lattices whic h w e w ere able to

use un til no w are to o small to allo w us to do m uc h b etter than ev aluate visually the

results. Ho w ev er, ev en a purely visual ev aluation of the results can already giv e us an

in tuitiv ely useful idea ab out the nature of the geometry . It is enough to compare the

the em b edding of �gure 5.3, whic h corresp onds to the critical region, to the em b edding

of a t w o-dimensional section of the Sc h w arzc hild geometry sho wn in �gure 5.17, to
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Figure 5.14: Residual errors in the symmetri c phase, in four dimensions, with j

0

= 10,

longitudinal comp onen t.

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Figure 5.15: Residual errors in the brok en-symme tric phase, in four dimensions, with

j

0

= 10, longitudinal comp onen t.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Figure 5.16: Residual errors in the critical region, in four dimensions, with j

0

= 10,

longitudinal comp onen t.

v erify the qualitativ e similarit y b et w een the t w o. In this last �gure w e included, for the

comparison, an enlarged v ersion of �gure 5.3. The t w o graphs in �gure 5.17 are dra wn

to the same scale and the Sc h w arzc hild radius w as c hosen so as to mak e them as similar

as p ossible.

There still are t w o asp ects of the generated geometry whic h w e can try to examine

with more atten tion, ev en in these limited conditions from the p oin t of view of the

n umerical explorations. The �rst one consists of a comparison of the scalar curv ature

of the generated section with that of the corresp onding section of the Sc h w arzc hild

metric. It is easy to calculate the in trinsic curv ature of a t w o-dimensional section

con taining the origin in the Sc h w arzc hild geometry , outside the horizon. The complete

metric of the geometry is

ds

2

= �

�

1 �

r

0

r

�

dt

2

+

�

1 �

r

0

r

�

� 1

dr

2

+ r

2

h

d�

2

+ sin

2

( � ) d�

2

i

;

where r

0

is the Sc h w arzc hild radius. The section is giv en b y the three-dimensional part

of the metric, that is b y dt = 0, if w e imp ose also that � = � = 2 with d� = 0. Since the

metric is static outside the horizon the Euclidean and Loren tzian sections are iden tical

and w e obtain

ds

2

=

�

1 �

r

0

r

�

� 1

dr

2

+ r

2

d�

2

= A

2

( r ) dr

2

+ r

2

d�

2

;
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Imersao para Schwarzchild, com raio=0.89.
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Figure 5.17: Comparison of the em b edding in the critical region with the em b edding

of a section of the Sc h w arzc hild geometry outside the horizon, sho wn with resolution

compatible to that of the lattice.
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where A ( r ) = (1 � r

0

=r )

� 1 = 2

. Using the basis of 1-forms !

�

giv en b y

!

r

= A ( r ) dr ;

!

�

= r d�;

the metric of the section can b e written as

ds

2

= ( !

r

)

2

+ ( !

�

)

2

;

whic h g

��

= �

��

, so that it is not necessary to di�eren tiate b et w een lo w er and upp er

indices. The connection 1-form !

��

is in this case an ti-symmetric and, solving the

equations

dg

��

= !

��

+ !

� �

;

d!

�

= � !

��

^ !

�

w e obtain

!

r r

= !

��

= 0 ;

!

�r

= � !

r �

=

1

r A ( r )

!

�

:

The curv ature 2-form 


��

is obtained from




��

= d!

��

+ !

��

^ !

��

;

from whic h it follo ws that the non-zero comp onen ts are all equal up to a sign, b eing

giv en b y




r �

=

_

A ( r )

r A

3

( r )

!

r

^ !

�

;

where

_

A ( r ) = dA ( r ) =dr . F rom this w e obtain the curv ature tensor R

�� ��

, whic h relates

to 


��

b y




��

= R

�� j �>� j

!

�

^ !

�

;

from whic h it follo ws that the non-zero comp onen ts ha v e all the same magnitude, with

R

r �r �

=

_

A ( r )

r A

3

( r )

;

the others b eing obtainable b y an ti-symmetry . It follo ws that the non-zero comp onen ts

of the tensor R

��

are
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R

r r

= R

��

=

_

A ( r )

r A

3

( r )

;

and that the scalar curv ature R is giv en b y

R =

2

_

A ( r )

r A

3

( r )

= �

r

0

r

3

:

This result is v alid at an y p oin t outside the horizon, that is for r > r

0

. What matters

most to us ab out it is that it is negativ e and that its magnitude falls when w e mo v e

a w a y from the cen ter.
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Figure 5.18: A cell of the simplicial complex.

It is also easy to calculate the scalar curv ature of our n umerical section b y means

of the Regge calculus. F or this, w e use the in terpretation of our lattice as a simplici al

complex. T aking all the links and diagonals whic h depart from a p oin t, as w ell as all

the neigh b ors connected b y these links and diagonals, w e can build around eac h p oin t

of the section a part of the complex, as �gure 5.18 sho ws. It is comp osed of 8 triangles.

If w e connect the middle p oin ts of the links and diagonals, w e build a small region or

c el l around eac h p oin t. It is easy to v erify that the section can b e divided in suc h a w a y

that eac h p oin t has around it a cell lik e this, while the union of all cells reconstitutes

the section. Under these condition w e ma y de�ne the scalar curv ature at the cen tral

p oin t of the cell as

R =

2 � � �

T

A

;
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where A is the area of the cell whic h is around the p oin t and �

T

=

P

8

i =1

�

i

is the sum of

the 8 in ternal angles of the triangles the v ertices of whic h are at the cen tral p oin t of the

cell at issue. Both the areas and the angles can b e obtained trigonometrically from our

kno wledge of the lengths `

i

of the links and diagonals. With this w e can calculate R

at eac h p oin t along our n umerical section. Since in d = 2 the scalar curv ature su�ces

to de�ne completely the in trinsic geometry , this allo ws for a useful comparison. It

m ust b e recorder here that, as w e de�ned it, the simplicial complex asso ciated to the

t w o-dimensional section is, in fact, three-dimensional. This is due to the fact that w e

use b oth the diagonals of eac h square of the lattice, whic h e�ectiv ely giv es origin to

tetrahedra. Ho w ev er these tetrahedra are quasi-degenerate on �nite lattices and b ecome


at in the con tin uum limit.

This calculation w as p erformed and the result qualitativ ely compared to the result

for the Sc h w arzc hild section. Naturally , the absolute n um b ers are not of m uc h in terest,

since w e are comparing a relativ ely small lattice to the con tin uum limit. But the

resulting sign is correct, b eing negativ e except at the cen tral p oin t where the singularit y

is, at the p oin ts directly connected to it b y a link or diagonal and at the b order of

the lattice, where there are deformations due to the p erio dic b oundary conditions.

Naturally , one realizes that, with the exclusion of so man y p oin ts in relativ ely small

lattices, not man y signi�can t p oin ts remain for a quan titativ e comparison. Ev en so,

on the lattice with N = 8, where there still are t w o signi�can t p oin ts along the radial

direction, one can see that the magnitude of R decreases as w e mo v e a w a y from the

cen ter, as is the case for the Sc h w arzc hild geometry .

The second asp ect whic h w e can try to examine is related to the p ossibilit y that

the generated geometry b e conformally 
at. Since the geometry is generated b y the

v ariation of a single parameter, the renormalized mass, one ma y think at �rst that this

leads inevitable to a conformally 
at geometry . This is due to the fact that a geometry

is conformally 
at if its in v arian t in terv al ds

2

is prop ortional to the in v arian t in terv al

of the 
at geometry . The prop ortionalit y factor ma y dep end on p osition, so that the

geometry is not really 
at, but it ma y b e 
attened b y a simple c hange of scale made

in a lo cal w a y , at eac h p oin t. The crucial p oin t is that, in order that the geometry

b e conformally 
at, the prop ortionalit y factor cannot dep end on dir e ction , but only on

p osition.

Therefore, w e ma y judge whether or not the generated geometry will b e conformally


at examining the magnitude of the scale generated b y the renormalized mass in eac h

direction through a giv en p oin t. Note that the renormalized mass, as w e measure it in

this w ork, is not asso ciated to sites but to links and diagonals, whic h is a re
ection of

the fact that it is related to correlation lengths. Hence, it is p ossible that there is in

fact a dep endence of it on direction. Since the renormalized masses are asso ciated to

the links and diagonals and not directly to the sites, it is necessary to de�ne on eac h

site mass parameters, asso ciated to eac h direction, whic h in terp olate the v alues of the

masses at the links and diagonals whic h connect to the p oin t from eac h of the t w o sides

in eac h direction.
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In our t w o-dimensional sections w e ha v e 4 indep enden t directions a v ailable at eac h

site. F or eac h of these directions w e mak e an a v erage of the masses asso ciates to the t w o

corresp onding links or diagonals, one in eac h side of the site, and asso ciate the result

to the site. W e c hec k then whether or not the v alues obtained at eac h site dep end on

the direction. The result is that in the more curv ed geometries they clearly dep end

on direction, with di�erences signi�can tly larger than the statistical errors. It follo ws,

therefore, that the geometry generated in the four-dimensional space is not conformally


at, except when it is completely 
at. This indicates that the correlations are a�ected

in a di�eren tiated form b y the cen tral source, dep ending on b eing measured in the radial

or angular directions. It is necessary not to confuse this statemen t ab out the geometry

of the space as a whole with an y statemen t ab out the in trinsic geometry of the section,

whic h, b eing t w o-dimensional, is alw a ys conformally 
at.
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Chapter 6

Conclusions and Outlo ok

W e b eliev e that the sim ulations p erformed lea v e little doubt ab out the fact that the in-

tro duction of strong lo calized external sources in the ��

4

mo del generates on the lattice

some form of metrical geometry with in trinsic curv ature. Tw o imp ortan t questions re-

main op en: �rst, w e ha v e the question of whether or not the curv ature of the geometry

generated on �nite lattices b y the pro cess of quan tization of the �elds surviv es the con-

tin uum limit; second, w e ha v e the question of whether or not the resulting geometry is

the one predicted b y Einstein's equation,

R

��

�

1

2

g

��

R = 8 � G T

��

:

W e ha v e not had, un til no w, access to enough computer p o w er to answ er these ques-

tions through n umerical explorations. All that w e can sa y at the momen t ab out the

second question is that the geometry generated on a �nite lattice b y a p oin t source,

judged through the t w o-dimensional spatial sections going through the origin, is qual-

itativ ely similar to the corresp onding section of the Sc h w arzc hild solution. Ho w ev er,

with the rapid progress of computing tec hnology , w e ma y exp ect that the n umerical

explorations will adv ance v ery m uc h in a relativ ely short time.

As to the question of the con tin uum limit, certainly the size of the lattices w e could

use so far is not large enough to enable us to dra w de�nitiv e conclusions. It should

b e said that it is p ossible that the curv ature do es not surviv e the con tin uum limit in

ph ysically acceptable conditions. The reason is that the v ariation of the mass with

p osition is apparen tly due, in this lab oratory mo del, to the shifting of the minim um

of the p oten tial, that is, to the emergence of a non-zero exp ectation v alue ~ v

R

. This

only re
ects the fact that the mo del seems to b e unable to generate t w o indep enden t

dimensional scales. In four dimensions, a limit with a source represen ting a �xed and

�nite p oin t c harge is suc h that j

0

is constan t, while J

0

! 1 as 1 =a

3

. In suc h a limit

w e will ha v e

~

V

R

�nite at all p oin ts except the origin. As w e sa w b efore, if w e wish to

ha v e a �nite

~

V

R

in the con tin uum limit, it is necessary that ~ v

R

v anish in this limit.

Hence, w e should ha v e in the limit that ~ v

R

! 0 for all p oin ts except the origin, where

the external source is lo cated and where

~

V

R

div erges. W e are not able at the momen t
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to decide whether or not it is enough to ha v e

~

V

R

6= 0 in order to generate a curv ed

geometry . Because of this, it is p ossible that in the limit �

R

b ecomes constan t o v er all

the exten t of the lattice and that the generated geometry b ecomes lo cally 
at.

Note that, if this mec hanism is actually realized in the con tin uum limit, one can lo ok

at it as a second kind of trivialit y of the mo del, asso ciated to the trivialit y in its usual

sense. This p ossible result ma y b e in terpreted as the fact that the generated geometry

is short ranged, just as the correlation functions of the massiv e longitudinal comp onen t

of our mo del. With this, the curv ature of the geometry ma y collapse to the origin in the

limit. It is true that there are long-range correlations in the brok en phases of the mo dels

with N > 1, due to the particles of zero mass, the Goldstone b osons asso ciated to the

transv ersal comp onen ts. Ho w ev er, the geometry is de�ned b y the �nite and non-zero

renormalized mass of the longitudinal comp onen t and, if the v arious particles do not

in teract due to the trivialit y of the theory , there is no w a y in whic h these long-range

mo des ma y a�ect the geometry . There remains a p ossibilit y that there is a remnan t of

a top ological c haracter of the generated geometry , in the form of a conical singularit y

at the origin, resulting from the collapse of the curv ature of the geometry to that p oin t.

This leads to the discussion of an ob jection form ulated b y Prof. H. B. Nielsen ab out

the issue of the generated geometry b eing Einstein's geometry . Since it is necessary to

ha v e m

R

6= 0 in order to de�ne a scale and hence the geometry , the �eld correlations

will b e short-ranged. It is therefore to b e exp ected that the v ariations � m

R

of the mass

deca y exp onen tially and the geometry resulting from them should b e lo calized and not

the long-range geometry Einstein's equation. As w e said b efore, it is p ossible that, in

this lab oratory mo del, the trivialit y of the theory prev en ts the Goldstone b osons from

transmitting the e�ects of generation of curv ature to long distances but, in a more

realistic case, for example in a Gauge Theory , w e will ha v e a similar situation, with

zero-mass v ector particles and �nite-mass spinor particles, except that in that case the

particles do in teract in fact with one another.

Another ob jection ab out the generated geometry satisfying Einstein's equation comes

from the study of the geometry in three dimensions. Apparen tly the b eha vior is qualit-

ativ ely the same whic h is seen in four dimensions, unlik e what is implied b y Einstein's

equation. According to it, in three dimensions w e should ha v e only conical singularities

at the lo cation of the source. Naturally , it is p ossible that this is realized in the con-

tin uum limit, but it should b e exp ected that the di�erences b et w een the situations in

three and four dimensions w ould b e clearly visible ev en on �nite lattices. Once more,

in order to mak e progress in this kind of analysis it is necessary that w e b e able to use

larger lattices b oth in three and four dimensions.

Naturally , a most imp ortan t task lying ahead consists of disco v ering and dev eloping

ideas and tec hniques whic h ma y enable us to realize a program lik e the one w e presen ted

here in the standard mo del, including the v ector and spinor �elds. It w ould b e v ery

in teresting to start this program with a study of the case of Electro dynamics.

W e close with an observ ation ab out the p ossible origin of the principle of equiv alence

in a program lik e the one w e presen ted here. In a more complex theory , lik e the
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standard mo del, w e will ha v e sev eral indep enden t dimensional ph ysical scales, related

to the renormalized masses of the v arious particles presen t in the mo del. It is natural

that w e use one of them, p ossibly that of the ligh test massiv e particle, as a scale unit,

measuring all the others in terms of this one. Besides, w e ma y no w in tro duce external

sources of sev eral t yp es, one for eac h t yp e of particle presen t in the mo del. Presumably

the indep enden t in tro duction of an y of these sources should a�ect the v alues of all the

masses, since the �elds in teract with one another.

Ho w ev er, in order that the principle of equiv alence b e v alid, it is necessary that the

r atios b etwe en masses do not dep end on p osition or dir e ction , so that the generated

geometry b e the same from the p oin t of view of an y of the masses, except for the global

c hange of scale due to the exc hange of units. F or this, it is necessary that, whatev er

the t yp e of external source presen t, all the masses v ary in the same way with p osition

and direction. Hence, the principle of equiv alence, in the con text of the ideas presen ted

here, tak es the form of a certain kind of universality of the mec hanism of generation of

curv ature, whic h should hold, at least, for the t yp es of particles and �elds that w e do

in fact �nd in nature. The determination of the existence or not of this univ ersalit y is,

certainly , one of the most imp ortan t tasks w e ha v e ahead.
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App endix A

Graphs

W e presen t in this App endix a reasonably complete sampling of the sim ulations and the

n umerical tests p erformed. More than to simply record the a v ailable data, the in ten tion

is to giv e an idea of the extension of the n umerical w ork whic h it w as p ossible to do.

T ests and sim ulations w ere p erformed in three and four dimensions, for the ��

4

mo del with S O (2) symmetry . With regard to the external sources, tests w ere realized

examining the cases

~

j

0

=

~

0 and

~

j

0

= (0 ; : : : ; 0 ; j

0

), where j

0

is a constan t along that

lattice, with v alues b et w een 1 e 10. Lattices w ere used with ev en N b et w een 2 and 8,

v alues of the parameter r b et w een 0 : 1 and 10 and of the parameter � b et w een 10

o

and

180

o

. The angle to whic h some �gures refer is alw a ys the angle � .

The statistics used in eac h run w as of 200 blo c ks of 50000 lattice sw eeps eac h.

The partial a v erages o v er eac h blo c k w ere recorded and the disp ersion among the

blo c ks w as used for the ev aluation of the statistical errors. W e also measured the

auto-correlation b et w een consecutiv e individual sw eeps, the corresp onding correlation

lengths b eing tak en in to accoun t in the �nal calculation of the errors.

Whenev er p ermitted b y the existing symmetri es, a v erages o v er the lattice w ere made

in order to impro v e the statistics. The e�ect on the �nal errors of the correlations whic h

exist b et w een di�eren t p oin ts of the lattice w as automatically tak en in to accoun t, since

the errors w ere calculated through blo c ks of sw eeps obtained with these a v erages already

included.

The co ordinates of the lattice b eing i

1

; : : : ; i

d

= 1 ; : : : ; N w e c hose arbitrarily i

1

=

1 ; : : : ; N as the co ordinate of the time axis for the sim ulations and w e put the external

source along this axis, in the p osition i

� 6=1

= N = 2. W e mak e a v erages of the observ ables

o v er all the spatial sections p erp endicular to the time axis. In d = 3 a t w o-dimensional

space describ ed b y i

2

; i

3

= 1 ; : : : ; N results. In d = 4 a three-dimensional space de-

scrib ed b y i

2

; i

3

; i

4

= 1 ; : : : ; N results. In this case w e mak e a v erages o v er the three

t w o-dimensional sections giv en b y i

2

= N = 2, i

3

= N = 2 e i

4

= N = 2.

The scales of the em b edding graphs w ere main tained constan t for all v alues of � , for

eac h lattice size and collection of v alues of the other parameters of the mo del.

45



A.1 Observ able T ests

T ests in d = 4 :

(transv ersal comp onen t)
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T ests in d = 4 :

(longitudinal comp onen t)
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T ests in d = 3 :
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A.2 Section Em b eddings

Em b eddings in d = 4 :

(longitudinal comp onen t)
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Imersao para SO(2), d=4, N=6, r=1, ang=40, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=50, i=2, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5

3

3.5

Fig. I-4-2.3

Imersao para SO(2), d=4, N=6, r=1, ang=60, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=70, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=80, i=2, j=10.
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Imersao para SO(2), d=4, N=6, r=1, ang=90, i=2, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5

Fig. I-4-2.7

Imersao para SO(2), d=4, N=6, r=1, ang=120, i=2, j=10.
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Fig. I-4-2.8

Imersao para SO(2), d=4, N=6, r=1, ang=150, i=2, j=10.
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Fig. I-4-2.9

Imersao para SO(2), d=4, N=6, r=1, ang=180, i=2, j=10.
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Fig. I-4-2.10

Imersao para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Fig. I-4-2.11

Imersao para SO(2), d=4, N=8, r=1, ang=40, i=2, j=10.
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Fig. I-4-2.12
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Imersao para SO(2), d=4, N=8, r=1, ang=50, i=2, j=10.
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Fig. I-4-2.13

Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Fig. I-4-2.14

Imersao para SO(2), d=4, N=8, r=1, ang=70, i=2, j=10.
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Fig. I-4-2.15

Imersao para SO(2), d=4, N=8, r=1, ang=80, i=2, j=10.
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Fig. I-4-2.16

Imersao para SO(2), d=4, N=8, r=1, ang=90, i=2, j=10.
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Fig. I-4-2.17

Imersao para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Fig. I-4-2.18
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Imersao para SO(2), d=4, N=8, r=1, ang=150, i=2, j=10.
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Fig. I-4-2.19

Imersao para SO(2), d=4, N=8, r=1, ang=180, i=2, j=10.
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Fig. I-4-2.20

Em b eddings in d = 4 :

(transv ersal comp onen t)

Imersao para SO(2), d=4, N=6, r=1, ang=30, i=1, j=10.
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Fig. I-4-1.1

Imersao para SO(2), d=4, N=6, r=1, ang=40, i=1, j=10.
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Fig. I-4-1.2

Imersao para SO(2), d=4, N=6, r=1, ang=50, i=1, j=10.
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Fig. I-4-1.3

Imersao para SO(2), d=4, N=6, r=1, ang=60, i=1, j=10.
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Fig. I-4-1.4
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Imersao para SO(2), d=4, N=6, r=1, ang=70, i=1, j=10.
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Fig. I-4-1.5

Imersao para SO(2), d=4, N=6, r=1, ang=80, i=1, j=10.
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Fig. I-4-1.6

Imersao para SO(2), d=4, N=6, r=1, ang=90, i=1, j=10.
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Fig. I-4-1.7

Imersao para SO(2), d=4, N=6, r=1, ang=120, i=1, j=10.
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Fig. I-4-1.8

Imersao para SO(2), d=4, N=6, r=1, ang=150, i=1, j=10.
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Fig. I-4-1.9

Imersao para SO(2), d=4, N=6, r=1, ang=180, i=1, j=10.
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Imersao para SO(2), d=4, N=8, r=1, ang=30, i=1, j=10.
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Fig. I-4-1.11

Imersao para SO(2), d=4, N=8, r=1, ang=40, i=1, j=10.
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Fig. I-4-1.12

Imersao para SO(2), d=4, N=8, r=1, ang=50, i=1, j=10.
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Fig. I-4-1.13

Imersao para SO(2), d=4, N=8, r=1, ang=60, i=1, j=10.
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Fig. I-4-1.14

Imersao para SO(2), d=4, N=8, r=1, ang=70, i=1, j=10.
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Fig. I-4-1.15

Imersao para SO(2), d=4, N=8, r=1, ang=80, i=1, j=10.
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Fig. I-4-1.16
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Imersao para SO(2), d=4, N=8, r=1, ang=90, i=1, j=10.
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Fig. I-4-1.17

Imersao para SO(2), d=4, N=8, r=1, ang=120, i=1, j=10.
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Fig. I-4-1.18

Imersao para SO(2), d=4, N=8, r=1, ang=150, i=1, j=10.
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Fig. I-4-1.19

Imersao para SO(2), d=4, N=8, r=1, ang=180, i=1, j=10.
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Fig. I-4-1.20

Em b eddings in d = 3 :

(longitudinal comp onen t)

Imersao para SO(2), d=3, N=6, r=1, ang=30, i=2, j=10.
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Fig. I-3-2.1

Imersao para SO(2), d=3, N=6, r=1, ang=40, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=50, i=2, j=10.
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Fig. I-3-2.3

Imersao para SO(2), d=3, N=6, r=1, ang=60, i=2, j=10.
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Fig. I-3-2.4

Imersao para SO(2), d=3, N=6, r=1, ang=70, i=2, j=10.
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Fig. I-3-2.5

Imersao para SO(2), d=3, N=6, r=1, ang=80, i=2, j=10.
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Fig. I-3-2.6

Imersao para SO(2), d=3, N=6, r=1, ang=90, i=2, j=10.
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Fig. I-3-2.7

Imersao para SO(2), d=3, N=6, r=1, ang=120, i=2, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=150, i=2, j=10.
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Fig. I-3-2.9

Imersao para SO(2), d=3, N=6, r=1, ang=180, i=2, j=10.
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Fig. I-3-2.10

Imersao para SO(2), d=3, N=8, r=1, ang=30, i=2, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. I-3-2.11

Imersao para SO(2), d=3, N=8, r=1, ang=40, i=2, j=10.
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Fig. I-3-2.12

Imersao para SO(2), d=3, N=8, r=1, ang=50, i=2, j=10.
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Fig. I-3-2.13

Imersao para SO(2), d=3, N=8, r=1, ang=60, i=2, j=10.
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Fig. I-3-2.14
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Imersao para SO(2), d=3, N=8, r=1, ang=70, i=2, j=10.
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Fig. I-3-2.15

Imersao para SO(2), d=3, N=8, r=1, ang=80, i=2, j=10.
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Fig. I-3-2.16

Imersao para SO(2), d=3, N=8, r=1, ang=90, i=2, j=10.
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Fig. I-3-2.17

Imersao para SO(2), d=3, N=8, r=1, ang=120, i=2, j=10.
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Fig. I-3-2.18

Imersao para SO(2), d=3, N=8, r=1, ang=150, i=2, j=10.
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Fig. I-3-2.19

Imersao para SO(2), d=3, N=8, r=1, ang=180, i=2, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. I-3-2.20
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Em b eddings in d = 3 :

(transv ersal comp onen t)

Imersao para SO(2), d=3, N=6, r=1, ang=30, i=1, j=10.
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Fig. I-3-1.1

Imersao para SO(2), d=3, N=6, r=1, ang=40, i=1, j=10.
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Fig. I-3-1.2

Imersao para SO(2), d=3, N=6, r=1, ang=50, i=1, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0

0.5

1

1.5

2

2.5

Fig. I-3-1.3

Imersao para SO(2), d=3, N=6, r=1, ang=60, i=1, j=10.
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Fig. I-3-1.4

Imersao para SO(2), d=3, N=6, r=1, ang=70, i=1, j=10.
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Fig. I-3-1.5

Imersao para SO(2), d=3, N=6, r=1, ang=80, i=1, j=10.
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Imersao para SO(2), d=3, N=6, r=1, ang=90, i=1, j=10.
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Fig. I-3-1.7

Imersao para SO(2), d=3, N=6, r=1, ang=120, i=1, j=10.
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Fig. I-3-1.8

Imersao para SO(2), d=3, N=6, r=1, ang=150, i=1, j=10.
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Fig. I-3-1.9

Imersao para SO(2), d=3, N=6, r=1, ang=180, i=1, j=10.
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Fig. I-3-1.10

Imersao para SO(2), d=3, N=8, r=1, ang=30, i=1, j=10.
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Fig. I-3-1.11

Imersao para SO(2), d=3, N=8, r=1, ang=40, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=50, i=1, j=10.
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Fig. I-3-1.13

Imersao para SO(2), d=3, N=8, r=1, ang=60, i=1, j=10.
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Fig. I-3-1.14

Imersao para SO(2), d=3, N=8, r=1, ang=70, i=1, j=10.
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Fig. I-3-1.15

Imersao para SO(2), d=3, N=8, r=1, ang=80, i=1, j=10.
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Fig. I-3-1.16

Imersao para SO(2), d=3, N=8, r=1, ang=90, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=120, i=1, j=10.
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Imersao para SO(2), d=3, N=8, r=1, ang=150, i=1, j=10.
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Fig. I-3-1.19

Imersao para SO(2), d=3, N=8, r=1, ang=180, i=1, j=10.
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Fig. I-3-1.20

Em b eddings with j = 5 :

(longitudinal comp onen t)

Imersao para SO(2), d=4, N=8, r=1, ang=50, i=2, j=5.
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Fig. I-4-2-J.1

Imersao para SO(2), d=4, N=8, r=1, ang=60, i=2, j=5.
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Fig. I-4-2-J.2

Imersao para SO(2), d=4, N=8, r=1, ang=70, i=2, j=5.
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Fig. I-4-2-J.3

Em b eddings with j = 5 :

(transv ersal comp onen t)

Imersao para SO(2), d=4, N=8, r=1, ang=50, i=1, j=5.
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Imersao para SO(2), d=4, N=8, r=1, ang=60, i=1, j=5.
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Fig. I-4-1-J.2

Imersao para SO(2), d=4, N=8, r=1, ang=70, i=1, j=5.
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A.3 Residual Errors

Errors in d = 4 :

(longitudinal comp onen t)

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=30, i=2, j=10.
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Fig. E-4-2.1

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=40, i=2, j=10.
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Fig. E-4-2.2

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=50, i=2, j=10.
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Fig. E-4-2.3

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=60, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=70, i=2, j=10.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

Fig. E-4-2.5

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=80, i=2, j=10.
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Fig. E-4-2.6

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=90, i=2, j=10.
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Fig. E-4-2.7

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=120, i=2, j=10.
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Fig. E-4-2.8

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=150, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=180, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=30, i=2, j=10.
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Fig. E-4-2.11

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=40, i=2, j=10.
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Fig. E-4-2.12

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=2, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

0.005

0.01

0.015

0.02

0.025

Fig. E-4-2.13

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=2, j=10.
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Fig. E-4-2.14

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=2, j=10.
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Fig. E-4-2.15

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=80, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=90, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=120, i=2, j=10.
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Fig. E-4-2.18

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=150, i=2, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=180, i=2, j=10.
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Fig. E-4-2.20

Errors in d = 4 :

(transv ersal comp onen t)

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=30, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=40, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=50, i=1, j=10.
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Fig. E-4-1.3

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=60, i=1, j=10.
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Fig. E-4-1.4

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=70, i=1, j=10.
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Fig. E-4-1.5

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=80, i=1, j=10.
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Fig. E-4-1.6

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=90, i=1, j=10.
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Fig. E-4-1.7

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=120, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=6, r=1, ang=150, i=1, j=10.
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Fig. E-4-1.9

Chi-quadrado para SO(2), d=4, N=6, r=1, ang=180, i=1, j=10.
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Fig. E-4-1.10

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=30, i=1, j=10.
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Fig. E-4-1.11

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=40, i=1, j=10.
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Fig. E-4-1.12

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=1, j=10.
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Fig. E-4-1.13

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=1, j=10.
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=1, j=10.
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Fig. E-4-1.15

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=80, i=1, j=10.
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Fig. E-4-1.16

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=90, i=1, j=10.
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Fig. E-4-1.17

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=120, i=1, j=10.
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Fig. E-4-1.18

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=150, i=1, j=10.
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Fig. E-4-1.19

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=180, i=1, j=10.
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Errors in d = 3 :

(longitudinal comp onen t)

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=30, i=2, j=10.
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Fig. E-3-2.1

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=40, i=2, j=10.
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Fig. E-3-2.2

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=50, i=2, j=10.
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Fig. E-3-2.3

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=60, i=2, j=10.
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Fig. E-3-2.4

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=70, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=80, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=90, i=2, j=10.
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Fig. E-3-2.7

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=120, i=2, j=10.
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Fig. E-3-2.8

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=150, i=2, j=10.
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Fig. E-3-2.9

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=180, i=2, j=10.
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Fig. E-3-2.10

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=30, i=2, j=10.
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Fig. E-3-2.11

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=40, i=2, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=50, i=2, j=10.
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Fig. E-3-2.13

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=60, i=2, j=10.
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Fig. E-3-2.14

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=70, i=2, j=10.
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Fig. E-3-2.15

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=80, i=2, j=10.
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Fig. E-3-2.16

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=90, i=2, j=10.
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Fig. E-3-2.17

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=120, i=2, j=10.
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Fig. E-3-2.18
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=150, i=2, j=10.
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Fig. E-3-2.19

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=180, i=2, j=10.
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Fig. E-3-2.20

Errors in d = 3 :

(transv ersal comp onen t)

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=30, i=1, j=10.
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Fig. E-3-1.1

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=40, i=1, j=10.
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Fig. E-3-1.2

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=50, i=1, j=10.
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Fig. E-3-1.3

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=60, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=6, r=1, ang=70, i=1, j=10.
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Fig. E-3-1.5

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=80, i=1, j=10.
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Fig. E-3-1.6

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=90, i=1, j=10.
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Fig. E-3-1.7

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=120, i=1, j=10.
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Fig. E-3-1.8

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=150, i=1, j=10.
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Fig. E-3-1.9

Chi-quadrado para SO(2), d=3, N=6, r=1, ang=180, i=1, j=10.
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=30, i=1, j=10.
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Fig. E-3-1.11

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=40, i=1, j=10.
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Fig. E-3-1.12

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=50, i=1, j=10.
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Fig. E-3-1.13

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=60, i=1, j=10.
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Fig. E-3-1.14

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=70, i=1, j=10.
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Fig. E-3-1.15

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=80, i=1, j=10.
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Fig. E-3-1.16
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Chi-quadrado para SO(2), d=3, N=8, r=1, ang=90, i=1, j=10.
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Fig. E-3-1.17

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=120, i=1, j=10.
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Fig. E-3-1.18

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=150, i=1, j=10.

-4 -3 -2 -1 0 1 2 3 4 -4
-3

-2
-1

0
1

2
3

4

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Fig. E-3-1.19

Chi-quadrado para SO(2), d=3, N=8, r=1, ang=180, i=1, j=10.
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Fig. E-3-1.20

Errors for j = 5 :

(longitudinal comp onen t)

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=2, j=5.
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Fig. E-4-2-J.1

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=2, j=5.
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Fig. E-4-2-J.2
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Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=2, j=5.
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Fig. E-4-2-J.3

Errors for j = 5 :

(transv ersal comp onen t)

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=50, i=1, j=5.
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Fig. E-4-1-J.1

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=60, i=1, j=5.
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Fig. E-4-1-J.2

Chi-quadrado para SO(2), d=4, N=8, r=1, ang=70, i=1, j=5.
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