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Abstract

We present numerical tests of several simple examples of center series, with the aim
of evaluating the speed with which they converge, as compared to the corresponding
Fourier series. These center series were defined and developed in previous papers, and
constitute an improved form of trigonometric expansion of real functions, related to the
Fourier series. The tests performed are comparative ones, between each Fourier series
and the corresponding first-order center series. They show that, specially in the case
of Fourier series that converge very slowly, the use of the center series can represent
a truly enormous numerical and computational advantage. We also use the numerical
advantage provided by the center series to display the Fourier Conjugate functions of
each example worked out, as well as to test the speed of convergence of their Fourier
series and first-order center series. For the execution of the comparative tests between
the Fourier and first-order center series it was necessary, in some cases, to use also the
second-order center series, as tools for the tests, since these converge even faster than
the first-order center series.

1 Introduction

In a previous paper [2] we introduced the concept of the center series. This constitutes
an improved form of trigonometric expansion of real functions. Starting from the Fourier
expansion of a given real function one may construct from it, even in cases where the Fourier
series is outright divergent, other expressions that converge to the function that originated
the Fourier coefficients, involving certain trigonometric series which we name “center series”,
and which have better convergence characteristics than the original Fourier series. Although
in [2] we give explicit examples only of first-order center series, as commented on that paper
it is also possible to construct higher-order center series, with even better convergence
characteristics. In fact, in this paper we will have the opportunity to calculate and use
some second-order center series.

The construction of center series from Fourier series can be understood and executed
in the context of a correspondence, which was established in an earlier paper [1], between
Definite Parity (DP) Fourier series and certain analytic functions w(z) on the unit disk
of the complex plane, which we refer to as “inner analytic functions”. In this context the
construction of center series is associated to an operation of factorization of the singularities
of w(z) in the complex plane, as explained in [2]. Since center series are currently rather
unfamiliar objects, we present in an appendix of this paper short but complete derivations
of all the center series used, in any role, for the tests that were performed.
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In this paper we present several comparisons between the speed of convergence of DP
Fourier series and that of the corresponding first-order center series, in order to evaluate
the relative efficiency with which each series in the pair represents their common limiting
function. Corresponding comparisons are made also for the corresponding Fourier Conju-
gate (FC) series and their limiting functions. All the concepts and results involved, as well
as the underlying theory, were developed in the two aforementioned papers [1] and [2]. We
direct the reader to the first one for the definition and discussion of concepts and notations,
while most of the center series tested in this paper were first derived in the appendices of
the second one. The short derivations of all the center series used in this paper can be
found in Appendix A.

The center series evaluated here are those obtained from the corresponding DP Fourier
series by a single factorization of the dominant singularities of w(z) on the unit circle, which
we will refer to as the first-order center series. However, in order to execute the comparative
test of the first-order center series and the corresponding DP Fourier series, in some cases
it was necessary to use the second-order center series, obtained by a double factorization of
the dominant singularities, as tools to produce high-precision numerical representations of
the limiting functions. These high-precision representations were then used as gauges for
the tests with both types of series.

The efficiency measured and reported is meant in a mathematical sense rather than a
technically computational sense. It is measured in terms of the number of terms of the
series which must be added up to yield a certain predetermined level of precision in the
results. We do, however, report the approximate processing time spent by each run of the
programs used for the measurements. The technical optimization of the computer code
involved was not at all an issue in the numerical tests. The optimization was left to be
done automatically by the compiler, in the most usual and standard way.

2 Tests of Center Series

Three different classes of real functions are represented in the tests. Two of the examples
chosen are of continuous functions, namely the triangular wave and the parabolic wave, the
latter being also differentiable. In these two cases the Fourier series converge quite rapidly,
since the Fourier coefficients ak, with k = 1, 2, 3, . . . ,∞, behave for large values of k as 1/k2

in the first case and as 1/k3 in the second, with the consequence that the improvement
obtained with the use of the center series is modest. All the remaining examples involve
discontinuous functions. In the case of the two forms of sawtooth wave and the two forms of
square wave the functions are discontinuous, but limited. These series converge much slower
that the previous ones, having coefficients that behave as 1/k for large values of k, and in
this case the use of the first-order center series produces very significant improvements in
the rhythm of convergence, and sometimes very large ones.

The two remaining examples are simple series concocted to be convergent almost ev-
erywhere but to have coefficients that behave as 1/

√
k for large values of k, and which due

to this converge much slower than those in the previous class of discontinuous functions.
The resulting functions are not limited, being in fact logarithmically divergent at a single
point. In this case the use of the center series produces truly enormous advantages, to the
point where it is not even possible to measure the improvement in some cases, due to the
enormous time it would take to complete the standard Fourier runs, which could run up to
many years of CPU time. In this case the use of the center series, and in particular of the
second-order center series, represents the qualitative difference between being able to deal
with these functions with numerical ease and not being able to deal with them at all by
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numerical means.
The numerical tests were executed on a one-dimensional regular lattice of points defining

a set of 1000 intervals between θ = −π and θ = π, these two points being identified with
each other by periodic boundary conditions. The special points, which correspond to the
singularities of w(z) on the unit circle, and where the representation of the real functions
by the center series is not defined, were excluded from the set of lattice points. At each
remaining point the two types of series were added up until the absolute value of the
difference between the approximate value obtained and the known exact result fell below
the required threshold. Some care was taken to avoid mistaking for convergence the mere
accidental passages through the limiting value during oscillations. In the case of the simple
piece-wise functions used as examples the exact result is known because we have piece-wise
expressions in closed form for these functions. However, in some cases, and in particular for
the Fourier Conjugate functions of all the functions used as examples, no such expressions
in closed form are available.

In all the cases where exact expressions in closed form for the limiting functions are
not available the following strategy was used. First, the limiting function was obtained
numerically to a high degree of precision at all the points of the lattice to be used in the
tests. The precision target for these calculations was set at ε = 10−16, while the comparison
tests were performed for target precisions ranging from ε = 10−3 to ε = 10−8. Of course the
operation of adding up the series to such high level of precision typically takes a long time. In
fact, in most cases it is practically impossible to do this using the Fourier series. Therefore,
we used the first-order center series for some of these preliminary calculations. This worked
well in the case of the better-behaved examples, namely for those involving functions which
are at least continuous. In all other cases, namely those involving discontinuous functions,
even the first-order center series took too long to achieve the desired high level of precision,
so that in these cases we used the second-order center series, which in all cases was sufficient
for our ends. The derivation of these second-order series can also be found in Appendix A.

In the tables shown in Appendix B we report the number of series terms which were
added in each case, for each series and for each level of precision to be achieved. We
report two results in each case, the average number of terms added, considering all the
valid lattice points in the interval [−π, π], and the maximum number of terms added at
any single point. This usually corresponds to the points right next to a special point, since
these in turn correspond to singularities of w(z) on the complex plane. The ratios reported
express how much more efficient the first-order center series is, as compared to the original
DP Fourier series.

For each example worked out we give explicitly, in the next few sub-sections, the DP
Fourier series and the corresponding first-order center series, for both the original function
and the corresponding FC function. When it is the case, the second-order center series is
also given. The special points are listed explicitly, as well as the value of the original DP
function at those points. In the graphs shown in this paper both the original DP function
and the FC function are plotted using the results from calculations with first-order center
series added up to precision ε = 10−6, on the same graph, in order to illustrate the general
behavior of the functions.

The source code for all the programs used for the numerical calculations in this paper
is freely available online on the web [3]. The compilation structure which is included with
them is meant to work on Linux systems, and all the data reported was produced on a
Debian-Linux distribution version 7.6 running on 2.4 GHz AMD64 hardware with 48 GB
of RAM and two CPUs. These were Intel quad-core Xeon CPUs with hyper-threading
capabilities, but no parallelization of any kind was included in the programs. Therefore,
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Figure 1: One-cycle sawtooth wave: the original function (solid line) and its conjugate
function (dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark
the special point.

all processing times reported are single-CPU, single-core times. Very little was done by
hand in the way of optimization, which was mostly done automatically by the compiler.
However, we do report the time of each run, in order to give some idea of the absolute
efficiency which may be accomplished in practice with each type of series.

2.1 The One-Cycle Sawtooth Wave

Consider the Fourier series of the one-cycle unit-amplitude sawtooth wave, which is just
the linear function θ/π between −π and π, and therefore an odd function of θ, as shown in
Figure 1. The original function is given by the DP Fourier series

fs(θ) =
2

π

∞
∑

k=1

(−1)k+1

k
sin(kθ),

and the corresponding FC function is given by the DP Fourier series

fc(θ) =
2

π

∞
∑

k=1

(−1)k+1

k
cos(kθ).

These two series are convergent almost everywhere, but not absolutely or uniformly con-
vergent. There is a single special point at θ = ±π, where we have for the original function
fs(±π) = 0. At this point the original function is discontinuous and the corresponding FC
function diverges logarithmically. The representation of the original function in terms of
the first-order center series is given by
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fs(θ) =
1

π cos(θ/2)

{

sin(θ/2) +
∞
∑

k=1

(−1)k+1

k(k + 1)
sin[(k + 1/2)θ]

}

,

for θ 6= ±π, and the representation of the corresponding FC function in terms of the first-
order center series is given by

fc(θ) =
1

π cos(θ/2)

{

cos(θ/2) +
∞
∑

k=1

(−1)k+1

k(k + 1)
cos[(k + 1/2)θ]

}

,

for θ 6= ±π. These two series are absolutely and uniformly convergent. The representation
of the original function in terms of the second-order center series is given by

fs(θ) =
1

4π cos2(θ/2)

{

6 sin(θ/2) cos(θ/2) +
∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
sin[(k + 1)θ]

}

,

for θ 6= ±π, and the representation of the corresponding FC function in terms of the
second-order center series is given by

fc(θ) =
1

4π cos2(θ/2)

{

−1 + 6 cos2(θ/2) +

∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
cos[(k + 1)θ]

}

,

for θ 6= ±π. These two series are absolutely and uniformly convergent. The derivation of
the center series can be found in Section A.1 of Appendix A, and the results of the tests
are shown in the tables in Subsections B.1 and B.2 of Appendix B.

2.2 The Standard Square Wave

Consider the Fourier series of the standard unit-amplitude square wave, which is an odd
function of θ, as shown in Figure 2. The original function is given by the DP Fourier series

fs(θ) =
4

π

∞
∑

j=0

1

k
sin(kθ),

where k = 2j + 1, and the corresponding FC function is given by the DP Fourier series

fc(θ) =
4

π

∞
∑

j=0

1

k
cos(kθ),

where k = 2j + 1. These two series are convergent almost everywhere, but not absolutely
or uniformly convergent. There are two special points at θ = 0 and at θ = ±π, where
we have for the original function fs(0) = 0 and fs(±π) = 0. At these points the original
function is discontinuous and the corresponding FC function diverges logarithmically. The
representation of the original function in terms of the first-order center series is given by

fs(θ) =
2

π sin(θ)







1−
∞
∑

j=0

2

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π, and the representation of the corresponding FC
function in terms of the first-order center series is given by
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Figure 2: Standard square wave: the original function (solid line) and its conjugate function
(dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark the special
points.

fc(θ) =
2

π sin(θ)







∞
∑

j=0

2

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π. These two series are absolutely and uniformly
convergent. The representation of the original function in terms of the second-order center
series is given by

fs(θ) =
2

3π sin2(θ)







4 sin(θ)−
∞
∑

j=0

12

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π, and the representation of the corresponding FC
function in terms of the second-order center series is given by

fc(θ) =
2

3π sin2(θ)







cos(θ)−
∞
∑

j=0

12

k(k + 2)(k + 4)
cos[(k + 2)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π. These two series are absolutely and uniformly
convergent. The derivation of the center series can be found in Section A.2 of Appendix A,
and the results of the tests are shown in the tables in Subsections B.3 and B.4 of Appendix B.
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Figure 3: Two-cycle sawtooth wave: the original function (solid line) and its conjugate
function (dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark
the special points.

2.3 The Two-Cycle Sawtooth Wave

Consider the Fourier series of the two-cycle unit-amplitude sawtooth wave, which is an odd
function of θ, as shown in Figure 3. The original function is given by the DP Fourier series

fs(θ) = − 4

π

∞
∑

j=1

1

k
sin(kθ),

where k = 2j, and the corresponding FC function is given by the DP Fourier series

fc(θ) = − 4

π

∞
∑

j=1

1

k
cos(kθ),

where k = 2j. These two series are convergent almost everywhere, but not absolutely or
uniformly convergent. There are two special points at θ = 0 and at θ = ±π, where we
have for the original function fs(0) = 0 and fs(±π) = 0. At these points the original
function is discontinuous and the corresponding FC function diverges logarithmically. The
representation of the original function in terms of the first-order center series is given by

fs(θ) =
1

π sin(θ)







− cos(θ) +
∞
∑

j=1

4

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j, for θ 6= 0 and θ 6= ±π, and the representation of the corresponding FC
function in terms of the first-order center series is given by
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Figure 4: Triangular wave: the original function (solid line) and its conjugate function
(dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark the special
points.

fc(θ) =
1

π sin(θ)







sin(θ)−
∞
∑

j=1

4

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j, for θ 6= 0 and θ 6= ±π. These two series are absolutely and uniformly
convergent. The representation of the original function in terms of the second-order center
series is given by

fs(θ) =
1

4π sin2(θ)







−6 sin(θ) cos(θ) +
∞
∑

j=1

32

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j, for θ 6= 0 and θ 6= ±π, and the representation of the corresponding FC
function in terms of the second-order center series is given by

fc(θ) =
1

4π sin2(θ)







−1 + 6 sin2(θ) +

∞
∑

j=1

32

k(k + 2)(k + 4)
cos[(k + 2)θ]







,

where k = 2j, for θ 6= 0 and θ 6= ±π. These two series are absolutely and uniformly
convergent. The derivation of the center series can be found in Section A.3 of Appendix A,
and the results of the tests are shown in the tables in Subsections B.5 and B.6 of Appendix B.

8



2.4 The Triangular Wave

Consider the Fourier series of the unit-amplitude triangular wave, which is an even function
of θ, as shown in Figure 4. The original function is given by the DP Fourier series

fc(θ) = − 8

π2

∞
∑

j=0

1

k2
cos(kθ),

where k = 2j + 1, and the corresponding FC function is given by the DP Fourier series

fs(θ) = − 8

π2

∞
∑

j=0

1

k2
sin(kθ),

where k = 2j+1. These two series are absolutely and uniformly convergent. There are two
special points at θ = 0 and at θ = ±π, where we have for the original function fc(0) = −1
and fc(±π) = 1. At these points both the original function and the corresponding FC
function function are non-differentiable. The representation of the original function in
terms of the first-order center series is given by

fc(θ) = − 4

π2 sin(θ)







∞
∑

j=0

4(k + 1)

k2(k + 2)2
sin[(k + 1)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π, and the representation of the corresponding FC
function in terms of the first-order center series is given by

fs(θ) =
4

π2 sin(θ)







−1 +
∞
∑

j=0

4(k + 1)

k2(k + 2)2
cos[(k + 1)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π. These two series are absolutely and uniformly
convergent. The derivation of the center series can be found in Section A.4 of Appendix A,
and the results of the tests are shown in the tables in Subsections B.7 and B.8 of Appendix B.

2.5 The Shifted Square Wave

Consider the Fourier series of the unit-amplitude square wave, shifted along the θ axis to
θ′, with θ − θ′ = π/2, so that it becomes an even function of θ, as shown in Figure 5. The
original function is given by the DP Fourier series

fc(θ) =
4

π

∞
∑

j=0

(−1)j

k
cos(kθ),

where k = 2j + 1, and the corresponding FC function is given by the DP Fourier series

fs(θ) =
4

π

∞
∑

j=0

(−1)j

k
sin(kθ),

where k = 2j+1. These two series are convergent almost everywhere, but not absolutely or
uniformly convergent. There are two special points at θ = π/2 and at θ = −π/2, where we
have for the original function fc(π/2) = 0 and fc(−π/2) = 0. At these points the original
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Figure 5: Shifted square wave: the original function (solid line) and its conjugate function
(dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark the special
points.

function is discontinuous and the corresponding FC function diverges logarithmically. The
representation of the original function in terms of the first-order center series is given by

fc(θ) =
2

π cos(θ)







1 +
∞
∑

j=0

2(−1)j

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j + 1, for θ 6= π/2 and θ 6= −π/2, and the representation of the corresponding
FC function in terms of the first-order center series is given by

fs(θ) =
2

π cos(θ)







∞
∑

j=0

2(−1)j

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j+1, for θ 6= π/2 and θ 6= −π/2. These two series are absolutely and uniformly
convergent. The representation of the original function in terms of the second-order center
series is given by

fc(θ) =
2

3π cos2(θ)







4 cos(θ) +
∞
∑

j=0

12(−1)j

k(k + 2)(k + 4)
cos[(k + 2)θ]







,

where k = 2j + 1, for θ 6= π/2 and θ 6= −π/2, and the representation of the corresponding
FC function in terms of the second-order center series is given by
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Figure 6: Parabolic wave: the original function (solid line) and its conjugate function
(dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark the special
points.

fs(θ) =
2

3π cos2(θ)







sin(θ) +
∞
∑

j=0

12(−1)j

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j + 1, for θ 6= π/2 and θ 6= −π/2. These two series are absolutely and
uniformly convergent. The derivation of the center series can be found in Section A.5 of
Appendix A, and the results of the tests are shown in the tables in Subsections B.9 and B.10
of Appendix B.

2.6 The Parabolic Wave

Consider the Fourier series of a unit-amplitude periodic function built with segments of
quadratic functions, joined together so that the resulting function is continuous and differ-
entiable, in such a way that the result is an odd function of θ, as shown in Figure 6. The
original function is given by the DP Fourier series

fs(θ) =
32

π3

∞
∑

j=0

1

k3
sin(kθ),

where k = 2j + 1, and the corresponding FC function is given by the DP Fourier series

fc(θ) =
32

π3

∞
∑

j=0

1

k3
cos(kθ),
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Figure 7: First slow-converging case: the original function (solid line) and its conjugate
function (dashed line) plotted within the periodic interval [−π, π]. The dotted line marks
the special point.

where k = 2j+1. These two series are absolutely and uniformly convergent. There are two
special points at θ = 0 and at θ = ±π, where we have for the original function fs(0) = 0 and
fs(±π) = 0. At these points both the original function and the corresponding FC function
have singularities on their second derivatives. The representation of the original function
in terms of the first-order center series is given by

fs(θ) =
16

π3 sin(θ)







1−
∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
cos[(k + 1)θ]







,

where k = 2j + 1, for θ 6= 0 and θ 6= ±π, and the representation of the corresponding FC
function in terms of the first-order center series is given by

fc(θ) =
16

π3 sin(θ)







∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
sin[(k + 1)θ]







,

where k = 2j+1, for θ 6= 0 and θ 6= ±π. These two series are absolutely and uniformly con-
vergent. The derivation of the center series can be found in Section A.6 of Appendix A, and
the results of the tests are shown in the tables in Subsections B.11 and B.12 of Appendix B.

2.7 The First Slow-Converging Case

The function we will adopt as our original function, which is an odd function of θ, is shown
in Figure 7. It is given by the DP Fourier series
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fs(θ) =
2

π

∞
∑

k=1

1√
k
sin(kθ),

and the corresponding FC function is then given by the DP Fourier series

fc(θ) =
2

π

∞
∑

k=1

1√
k
cos(kθ).

These two series are convergent almost everywhere, but not absolutely or uniformly con-
vergent. There is a single special point at θ = 0, where we have for the original function
fs(0) = 0. However, the function is not continuous at this point, and its lateral limits to
it diverge to ±∞. In fact, at this point both the original function and the corresponding
FC function diverge logarithmically. The representation of the original function in terms
of the first-order center series is given by

fs(θ) =
1

π sin(θ/2)

{

cos(θ/2)−
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

cos[(k + 1/2)θ]

}

,

for θ 6= 0, and the representation of the corresponding FC function in terms of the first-order
center series is given by

fc(θ) =
1

π sin(θ/2)

{

− sin(θ/2) +
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

sin[(k + 1/2)θ]

}

,

for θ 6= 0. These two series are absolutely and uniformly convergent. The representation of
the original function in terms of the second-order center series is given by

fs(θ) =
1

4π sin2(θ/2)
×

×
{

(

8− 2
√
2
)

sin(θ/2) cos(θ/2)+

−
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

sin[(k + 1)θ]

}

,

for θ 6= 0, and the representation of the corresponding FC function in terms of the second-
order center series is given by

fc(θ) =
1

4π sin2(θ/2)
×

×
{

(

2−
√
2
)

−
(

8− 2
√
2
)

sin2(θ/2)+

−
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

cos[(k + 1)θ]

}

,

for θ 6= 0. These two series are absolutely and uniformly convergent. The derivation of the
center series can be found in Section A.7 of Appendix A, and the results of the tests are
shown in the tables in Subsections B.13 and B.14 of Appendix B.
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Figure 8: Second slow-converging case: the original function (solid line) and its conjugate
function (dashed line) plotted within the periodic interval [−π, π]. The dotted lines mark
the special point.

2.8 The Second Slow-Converging Case

The function we will adopt as our original function, which is an odd function of θ, is shown
in Figure 8. It is given by the DP Fourier series

fs(θ) =
2

π

∞
∑

k=1

(−1)k√
k

sin(kθ),

and the corresponding FC function is then given by the DP Fourier series

fc(θ) =
2

π

∞
∑

k=1

(−1)k√
k

cos(kθ).

These two series are convergent almost everywhere, but not absolutely or uniformly con-
vergent. There is a single special point at θ = ±π, where we have for the original function
fs(±π) = 0. However, the function is not continuous at this point, and its lateral limits to
it diverge to ±∞. In fact, at this point both the original function and the corresponding
FC function diverge logarithmically. The representation of the original function in terms
of the first-order center series is given by

fs(θ) =
1

π cos(θ/2)

{

− sin(θ/2) +
∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

sin[(k + 1/2)θ]

}

,

for θ 6= ±π, and the representation of the corresponding FC function in terms of the first-
order center series is given by
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fc(θ) =
1

π cos(θ/2)

{

− cos(θ/2) +
∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

cos[(k + 1/2)θ]

}

,

for θ 6= ±π. These two series are absolutely and uniformly convergent. The representation
of the original function in terms of the second-order center series is given by

fs(θ) =
1

4π cos2(θ/2)
×

×
{

−
(

8− 2
√
2
)

sin(θ/2) cos(θ/2)+

+

∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

(−1)k sin[(k + 1)θ]

}

,

for θ 6= ±π, and the representation of the corresponding FC function in terms of the
second-order center series is given by

fc(θ) =
1

4π cos2(θ/2)
×

×
{

(

2−
√
2
)

−
(

8− 2
√
2
)

cos2(θ/2)+

+
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

(−1)k cos[(k + 1)θ]

}

,

for θ 6= ±π. These two series are absolutely and uniformly convergent. The derivation of
the center series can be found in Section A.8 of Appendix A, and the results of the tests
are shown in the tables in Subsections B.15 and B.16 of Appendix B.

3 Summary of the Numerical Results

The numerical results obtained show that the improvement in convergence speed obtained
with the center series depends first and foremost on whether or not the Fourier series in-
volved are absolutely and uniformly convergent. This is as one would expect on general
grounds. For example, in the case of the parabolic wave, which is continuous and dif-
ferentiable, with Fourier coefficients ak that behave as 1/k3 for large values of k, so that
the Fourier series is absolutely and uniformly convergent, the improvement of the ratio of
the average number of added terms varies from about 1.2 to about 2.8, depending on the
precision lever required. In the case of the triangular wave, which is continuous but not
differentiable, with Fourier coefficients that behave as 1/k2 for large values of k, so that
the Fourier series is still absolutely and uniformly convergent, the improvement of the same
ratio is larger, varying from about 1.9 to about 11.6.

In the cases of the discontinuous functions with Fourier coefficients that behave as 1/k
for large values of k, so that the Fourier series is point-wise convergent almost everywhere
but not absolutely or uniformly convergent, the ratio varies from about 21 to about 6600,
being therefore very significant, specially for the higher levels of precision. In the case of
the functions associated to the slow-converging series, with Fourier coefficients that behave
as 1/

√
k for large values of k, so that the Fourier series is also point-wise convergent almost
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everywhere but not absolutely or uniformly convergent, the same ratio varies from about
1.0 × 104 to about 4.8 × 106, where we consider only the three lower levels of precision,
which were the only ones for which we were able to run the Fourier programs within a
feasible amount of time.

Function a0 a1 a2

One-cycle sawtooth wave 0.6287 1.1530 0.7668

Its conjugate function 0.6259 1.1533 0.9987

Standard square wave 0.6378 1.1553 0.6206

Its conjugate function 0.6388 1.1547 0.7636

Two-cycle sawtooth wave 0.6446 1.1526 0.8442

Its conjugate function 0.6399 1.1530 1.0229

Triangular wave 0.5126 0.3863 0.2718

Its conjugate function 0.4710 0.3958 0.3994

Shifted square wave 0.6380 1.1552 0.6105

Its conjugate function 0.6389 1.1547 0.7585

Parabolic wave 0.4836 0.2016 0.3594

Its conjugate function 0.5442 0.1941 0.2319

First slow-converging wave N/A N/A N/A

Its conjugate function 0.9695 3.0811 223.53

Second slow-converging wave 1.0041 3.0761 241.09

Its conjugate function 0.9693 3.0812 223.75

Table 1: Coefficients of the exponential fits to the ratios of the average numbers of added
terms, as functions o the target precision.

In short, if the original DP Fourier series is already absolutely and uniformly convergent,
as in the first two cases above, then the improvement obtained is modest. Otherwise, since
the center series is always absolutely and uniformly convergent, the improvement obtained
is large. On a finer scale, there is always some improvement when the first-order center
series is used, and further improvement with the second-order one. This is a consequence
of the fact that every factorization of the dominant singularities adds a factor of k to
the denominator of the coefficients of the center series. We see therefore that the greater
improvements come when the coefficients go from the 1/k or 1/k(1/2) behavior in the Fourier
case to the 1/k2 or 1/k(3/2) behavior in the center series case, so that the original series is
not absolutely or uniformly convergent, while the corresponding center series is.

In all cases except the very slow-converging ones the ratios of the average number of
added terms can be fit very well by increasing exponentials, as functions of the logarithms
of the target precision ε,

r = a0 e
a1ξ + a2, (1)

where r is the ratio for the average number of added terms and ξ = − log10(ε). The
coefficients a0, a1 and a2 are always positive and of the order of one, and the correlation
coefficients of the fits are very close to one, while the mean square error is of the order of
about 1% or less. The coefficients obtained for the parameters of these fits can be seen
in Table 1. As one can see there, the fits were also worked out for some of the very slow-
converging cases. In these cases, since we had only three data points available and three
constants to fit, the fits were, of course, exact ones. The only possible justification for our
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producing these fits is, of course, that they work so well on the other cases. Using these fits
one can estimate that, under the circumstances in which we executed the runs, the Fortran
runs for the slow-converging cases, for a precision of 10−8, would take something like a few
tens of thousands of years to complete. This is to be compared to the 30 seconds or so that
it took to run the center series for these functions, with the same precision.

We see therefore that with the utilization of the coefficients in Table 1 the formula in
Equation 1 above can be used as a comparative performance predictor for higher levels of
precision. This should work well for the average number of added terms, and may also
give some idea of the running time, if one takes into consideration the hardware involved.
However, it will probably produce an underestimation of the running time in the case of
the higher precision cases, since it is observed that in these cases the standard Fourier runs
tend to take a disproportionally large amount of time to complete. This is probably related
to technical optimization issues and may depend strongly on the compiler used and on the
details of the hardware.

4 Conclusions

We may conclude that it is always computationally advantageous to use the center series
instead of the corresponding DP Fourier series. In the case of the slower-converging DP
Fourier series the improvement in the speed of convergence can be very large indeed, to the
point where it may represent a qualitative difference in our ability to deal with the function
in a practical manner. With the use of a sufficiently high-order center series, essentially any
real function that gives origin to a set of finite DP Fourier coefficients, and that results in
an inner analytic function that has a finite number of sufficiently soft singularities on the
unit circle, can be very well represented numerically by that center series.

The one limitation to the use of the center series is the need to know, in order to derive
the form of the coefficients of the series, the positions of all the dominant singularities of the
corresponding inner analytic function on the unit circle. However, the construction process
is safe, in the sense that in the worst case scenario all that happens is that one fails to
obtain a better convergence speed. Moreover, this fact can be verified analytically during
the construction of the center series, before any computer time is actually spent. In effect,
the fact of the failure to obtain improvement may itself serve as a guide to search for the
correct positions of the singularities, by what are essentially algebraic means, as explained
in [2].

The position of the singularities can be induced by the qualitative analytical properties
of the function to be represented, such as that it is discontinuous or non-differentiable at
certain points. In physics applications these characteristics are bound to be reflected in
the structure of the problem being dealt with, so that a physical analysis may suffice to
determine the singularities. In any case, whenever it is possible to use them, the center series
constitute a significant improvement in our ability to represent real functions numerically
in practical applications.
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A Derivations of Center Series

In this appendix we give short but complete derivations of all the center series used in
this paper. In each case we start with the complex power series Sz related to the original
DP Fourier series, and construct from it the complex center series Cz. This involves the
positions of the singularities of the corresponding inner analytic function w(z) on the unit
circle. We then write Sz in terms of Cz and take the real and imaginary parts, in order to
obtain the center series corresponding to the original DP Fourier series and of its FC series.

One must keep in mind that the final forms obtained for the functions fc(θ) and fs(θ)
in terms of the center series are only valid away from the special points on the periodic
interval, which correspond to the singular points of w(z) on the complex plane. The values
of the DP real functions at these special points are usually determined very easily by the
original Fourier series.

Starting from eight Fourier Conjugate pairs of DP Fourier series, we derive eight pairs
of first-order center series and six pairs of second-order center series. Of these 44 series a
total of 40 series were used in this paper, of which 16 DP Fourier series and 16 first-order
center series were tested against each other.

A.1 The One-Cycle Sawtooth Wave

Consider the one-cycle unit-amplitude sawtooth wave, given by the sine series

Ss =
2

π

∞
∑

k=1

(−1)k+1

k
sin(kθ).

The corresponding FC series is then

Sc =
2

π

∞
∑

k=1

(−1)k+1

k
cos(kθ),

and the complex power series Sz is given by

Sz =
2

π

∞
∑

k=1

(−1)k+1

k
zk,

of which the two DP Fourier series above are the real and imaginary parts on the unit
circle.

A.1.1 First-Order Center Series

There is a single dominant singularity at z = −1, so that we must use a single factor of
(z + 1) in the construction of the first-order center series,

Sz =
1

z + 1
Cz,

where

Cz =
2

π
(z + 1)

∞
∑

k=1

(−1)k+1

k
zk

=
2

π
z

[

1 +
∞
∑

k=1

(−1)k+1

k(k + 1)
zk

]

,
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where we distributed the factor on the series and manipulated the indices of the result-
ing sums. Unlike the original series, with coefficients that behave as 1/k, this series has
coefficients that go to zero as 1/k2 when k → ∞, and therefore our evaluation of the
set of dominant singularities of w(z) was in fact correct. We have therefore for Sz the
representation

Sz =
2

π

z

z + 1

[

1 +
∞
∑

k=1

(−1)k+1

k(k + 1)
zk

]

.

In order to take the real and imaginary parts of Sz on the unit circle, we observe now that
since z = ρ exp(ıθ) we have on the unit circle

z

z + 1
=

1

2
+

ı

2

sin(θ)

1 + cos(θ)
.

If we write this in terms of θ/2 we get

z

z + 1
=

1

2
+

ı

2

sin(θ/2)

cos(θ/2)
,

and therefore we have for Sz on the unit circle

Sz =
1

π

[

1 + ı

sin(θ/2)

cos(θ/2)

]

[

1 +
∞
∑

k=1

(−1)k+1

k(k + 1)
cos(kθ) + ı

∞
∑

k=1

(−1)k+1

k(k + 1)
sin(kθ)

]

=
1

π cos(θ/2)

{

cos(θ/2) +
∞
∑

k=1

(−1)k+1

k(k + 1)
cos[(k + 1/2)θ] +

+ ı sin(θ/2) + ı

∞
∑

k=1

(−1)k+1

k(k + 1)
sin[(k + 1/2)θ]

}

,

where we collected the real and imaginary terms. The original DP function is given by the
imaginary part,

fs(θ) =
1

π cos(θ/2)

{

sin(θ/2) +
∞
∑

k=1

(−1)k+1

k(k + 1)
sin[(k + 1/2)θ]

}

,

and the corresponding FC function is given by the real part,

fc(θ) =
1

π cos(θ/2)

{

cos(θ/2) +
∞
∑

k=1

(−1)k+1

k(k + 1)
cos[(k + 1/2)θ]

}

.

A.1.2 Second-Order Center Series

There is a single dominant singularity at z = −1, so that we must use a factor of (z + 1)2

in the construction of the second-order center series,

Sz =
1

(z + 1)2
Cz,

where
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Cz =
2

π
(z + 1)2

∞
∑

k=1

(−1)k+1

k
zk

=
1

π
z

[

2 + 3z +
∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
zk+1

]

,

where we distributed the factor on the series and manipulated the indices of the result-
ing sums. Unlike the original series, with coefficients that behave as 1/k, this series has
coefficients that go to zero as 1/k3 when k → ∞, and therefore our evaluation of the
set of dominant singularities of w(z) was in fact correct. We have therefore for Sz the
representation

Sz =
1

π

z

(z + 1)2

[

2 + 3z +
∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
zk+1

]

.

In order to take the real and imaginary parts of Sz on the unit circle, we observe now that
since z = ρ exp(ıθ) we have on the unit circle

z

(z + 1)2
=

1

2[1 + cos(θ)]
.

If we write this in terms of θ/2 we get

z

(z + 1)2
=

1

4 cos2(θ/2)
.

We also have that

2 + 3z = [2 + 3 cos(θ)] + ı[3 sin(θ)]

= [−1 + 6 cos2(θ/2)] + ı[6 sin(θ/2) cos(θ/2)],

and therefore we have for Sz on the unit circle

Sz =
1

4π cos2(θ/2)

{

−1 + 6 cos2(θ/2) +
∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
cos[(k + 1)θ]+

+ı6 sin(θ/2) cos(θ/2) + ı

∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
sin[(k + 1)θ]

}

.

where we collected the real and imaginary terms. The original DP function is given by the
imaginary part,

fs(θ) =
1

4π cos2(θ/2)

{

6 sin(θ/2) cos(θ/2) +
∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
sin[(k + 1)θ]

}

,

and the corresponding FC function is given by the real part,

fc(θ) =
1

4π cos2(θ/2)

{

−1 + 6 cos2(θ/2) +
∞
∑

k=1

4(−1)k+1

k(k + 1)(k + 2)
cos[(k + 1)θ]

}

.
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A.2 The Standard Square Wave

Consider the standard unit-amplitude square wave, given by the sine series

Ss =
4

π

∞
∑

j=0

1

k
sin(kθ),

where k = 2j + 1. The corresponding FC series is then

Sc =
4

π

∞
∑

j=0

1

k
cos(kθ),

where k = 2j + 1, and the complex power series Sz is given by

Sz =
4

π

∞
∑

j=0

1

k
zk,

where k = 2j + 1, of which the two DP Fourier series above are the real and imaginary
parts on the unit circle.

A.2.1 First-Order Center Series

There are two dominant singularities, located at z = 1 and at z = −1, so that we must use
factors of (z − 1)(z + 1) = z2 − 1 in the construction of the first-order center series,

Sz =
1

z2 − 1
Cz,

where

Cz =
4

π

(

z2 − 1
)

∞
∑

j=0

1

k
zk

=
4

π
z



−1 +
∞
∑

j=0

2

k(k + 2)
zk+1



 ,

where k = 2j + 1, and where we distributed the factor on the series and manipulated the
indices of the resulting sums. Unlike the original series, with coefficients that behave as
1/k, this series has coefficients that go to zero as 1/k2 when k → ∞, and therefore our
evaluation of the set of dominant singularities of w(z) was in fact correct. We have therefore
for Sz the representation

Sz =
4

π

z

z2 − 1



−1 +
∞
∑

j=0

2

k(k + 2)
zk+1



 ,

where k = 2j + 1. In order to take the real and imaginary parts of Sz on the unit circle,
we observe now that since z = ρ exp(ıθ) we have on the unit circle

z

z2 − 1
= − ı

2 sin(θ)
,

and therefore we have for Sz on the unit circle
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Sz = − 2

π

ı

sin(θ)







−1 +
∞
∑

j=0

2

k(k + 2)
cos[(k + 1)θ] + ı

∞
∑

j=0

2

k(k + 2)
sin[(k + 1)θ]







=
2

π sin(θ)







∞
∑

j=0

2

k(k + 2)
sin[(k + 1)θ] + ı− ı

∞
∑

j=0

2

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j + 1, and where we collected the real and imaginary terms. The original DP
function is given by the imaginary part,

fs(θ) =
2

π sin(θ)







1−
∞
∑

j=0

2

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j + 1, and the corresponding FC function is given by the real part,

fc(θ) =
2

π sin(θ)







∞
∑

j=0

2

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j + 1.

A.2.2 Second-Order Center Series

There are two dominant singularities, located at z = 1 and at z = −1, so that we must use
factors of (z− 1)2(z+1)2 =

(

z2 − 1
)2

in the construction of the second-order center series,

Sz =
1

(z2 − 1)2
Cz,

where

Cz =
4

π

(

z2 − 1
)2

∞
∑

j=0

1

k
zk

=
4

3π
z



3− 5z2 +
∞
∑

j=0

24

k(k + 2)(k + 4)
zk+3



 ,

where k = 2j + 1, and where we distributed the factor on the series and manipulated the
indices of the resulting sums. Unlike the original series, with coefficients that behave as
1/k, this series has coefficients that go to zero as 1/k3 when k → ∞, and therefore our
evaluation of the set of dominant singularities of w(z) was in fact correct. We have therefore
for Sz the representation

Sz =
4

3π

z

(z2 − 1)2



3− 5z2 +
∞
∑

j=0

24

k(k + 2)(k + 4)
zk+3



 ,

where k = 2j + 1. In order to take the real and imaginary parts of Sz on the unit circle,
we observe now that since z = ρ exp(ıθ) we have on the unit circle

z

(z2 − 1)2
= − z∗

4 sin2(θ)
,
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where z∗z = 1. We also have that

z∗
(

3− 5z2
)

= 3z∗ − 5z

= [−2 cos(θ)] + ı[−8 sin(θ)],

and therefore we have for Sz on the unit circle

Sz =
2

3π sin2(θ)







cos(θ)−
∞
∑

j=0

12

k(k + 2)(k + 4)
cos[(k + 2)θ]+

+ı4 sin(θ)− ı

∞
∑

j=0

12

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j + 1, and where we collected the real and imaginary terms. The original DP
function is given by the imaginary part,

fs(θ) =
2

3π sin2(θ)







4 sin(θ)−
∞
∑

j=0

12

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j + 1, and the corresponding FC function is given by the real part,

fc(θ) =
2

3π sin2(θ)







cos(θ)−
∞
∑

j=0

12

k(k + 2)(k + 4)
cos[(k + 2)θ]







,

where k = 2j + 1.

A.3 The Two-Cycle Sawtooth Wave

Consider the two-cycle unit-amplitude sawtooth wave, given by the sine series

Ss = − 4

π

∞
∑

j=1

1

k
sin(kθ),

where k = 2j. The corresponding FC series is then

Sc = − 4

π

∞
∑

j=1

1

k
cos(kθ),

where k = 2j, and the complex power series Sz is given by

Sz = − 4

π

∞
∑

j=1

1

k
zk,

where k = 2j, of which the two DP Fourier series above are the real and imaginary parts
on the unit circle.
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A.3.1 First-Order Center Series

There are two dominant singularities, located at z = 1 and at z = −1, so that we must use
factors of (z − 1)(z + 1) = z2 − 1 in the construction of the first-order center series,

Sz =
1

z2 − 1
Cz,

where

Cz = − 4

π

(

z2 − 1
)

∞
∑

j=1

1

k
zk

=
2

π
z2



1−
∞
∑

j=1

4

k(k + 2)
zk



 ,

where k = 2j, and where we distributed the factor on the series and manipulated the indices
of the resulting sums. Unlike the original series, with coefficients that behave as 1/k, this
series has coefficients that go to zero as 1/k2 when k → ∞, and therefore our evaluation of
the set of dominant singularities of w(z) was in fact correct. We have therefore for Sz the
representation

Sz =
2

π

z2

z2 − 1



1−
∞
∑

j=1

4

k(k + 2)
zk



 ,

where k = 2j. In order to take the real and imaginary parts of Sz on the unit circle, we
observe now that since z = ρ exp(ıθ) we have on the unit circle

z2

z2 − 1
=

1

2
− ı

2

cos(θ)

sin(θ)
,

and therefore we have for Sz on the unit circle

Sz =
1

π

[

1− ı

cos(θ)

sin(θ)

]



1−
∞
∑

j=1

4

k(k + 2)
cos(kθ)− ı

∞
∑

j=1

4

k(k + 2)
sin(kθ)





=
1

π sin(θ)







sin(θ)−
∞
∑

j=1

4

k(k + 2)
sin[(k + 1)θ] +

− ı cos(θ) + ı

∞
∑

j=1

4

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j, and where we collected the real and imaginary terms. The original DP
function is given by the imaginary part,

fs(θ) =
1

π sin(θ)







− cos(θ) +
∞
∑

j=1

4

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j, and the corresponding FC function is given by the real part,

fc(θ) =
1

π sin(θ)







sin(θ)−
∞
∑

j=1

4

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j.
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A.3.2 Second-Order Center Series

There are two dominant singularities, located at z = 1 and at z = −1, so that we must use
factors of (z− 1)2(z+1)2 =

(

z2 − 1
)2

in the construction of the second-order center series,

Sz =
1

(z2 − 1)2
Cz,

where

Cz = − 4

π

(

z2 − 1
)2

∞
∑

j=1

1

k
zk

= − 1

π
z2



2− 3z2 +
∞
∑

j=1

32

k(k + 2)(k + 4)
zk+2



 ,

where k = 2j, and where we distributed the factor on the series and manipulated the indices
of the resulting sums. Unlike the original series, with coefficients that behave as 1/k, this
series has coefficients that go to zero as 1/k3 when k → ∞, and therefore our evaluation of
the set of dominant singularities of w(z) was in fact correct. We have therefore for Sz the
representation

Sz = − 1

π

z2

(z2 − 1)2



2− 3z2 +
∞
∑

j=1

32

k(k + 2)(k + 4)
zk+2



 ,

where k = 2j. In order to take the real and imaginary parts of Sz on the unit circle, we
observe now that since z = ρ exp(ıθ) we have on the unit circle

z2

(z2 − 1)2
= − 1

4 sin2(θ)
.

We also have that

2− 3z2 =
[

−1 + 6 sin2(θ)
]

+ ı [−6 sin(θ) cos(θ)] ,

and therefore we have for Sz on the unit circle

Sz =
1

4π sin2(θ)







−1 + 6 sin2(θ) +
∞
∑

j=1

32

k(k + 2)(k + 4)
cos[(k + 2)θ]+

−ı6 sin(θ) cos(θ) + ı

∞
∑

j=1

32

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j, and where we collected the real and imaginary terms. The original DP
function is given by the imaginary part,

fs(θ) =
1

4π sin2(θ)







−6 sin(θ) cos(θ) +
∞
∑

j=1

32

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j, and the corresponding FC function is given by the real part,

fc(θ) =
1

4π sin2(θ)







−1 + 6 sin2(θ) +
∞
∑

j=1

32

k(k + 2)(k + 4)
cos[(k + 2)θ]







,

where k = 2j.
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A.4 The Triangular Wave

Consider the unit-amplitude triangular wave, given by the cosine series

Sc = − 8

π2

∞
∑

j=0

1

k2
cos(kθ),

where k = 2j + 1. The corresponding FC series is then

Ss = − 8

π2

∞
∑

j=0

1

k2
sin(kθ),

where k = 2j + 1. Note that due to the factors of 1/k2 these series are already absolutely
and uniformly convergent. The complex power series Sz is given by

Sz = − 8

π2

∞
∑

j=0

1

k2
zk,

where k = 2j + 1, of which the two DP Fourier series above are the real and imaginary
parts on the unit circle.

A.4.1 First-Order Center Series

There are two dominant singularities, located at z = 1 and at z = −1, so that we must use
factors of (z − 1)(z + 1) = z2 − 1 in the construction of the first-order center series,

Sz =
1

z2 − 1
Cz,

where

Cz = − 8

π2

(

z2 − 1
)

∞
∑

j=0

1

k2
zk

=
8

π2
z



1−
∞
∑

j=0

4(k + 1)

k2(k + 2)2
zk+1



 ,

where k = 2j + 1, and where we distributed the factor on the series and manipulated the
indices of the resulting sums. Unlike the original series, with coefficients that behave as
1/k2, this series has coefficients that go to zero as 1/k3 when k → ∞, and therefore our
evaluation of the set of dominant singularities of w(z) was in fact correct. We have therefore
for Sz the representation

Sz =
8

π2

z

z2 − 1



1−
∞
∑

j=0

4(k + 1)

k2(k + 2)2
zk+1



 ,

where k = 2j + 1. In order to take the real and imaginary parts of Sz on the unit circle,
we observe now that since z = ρ exp(ıθ) we have on the unit circle

z

z2 − 1
= − ı

2 sin(θ)
,
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and therefore we have for Sz on the unit circle

Sz = − 4

π2

ı

sin(θ)







1−
∞
∑

j=0

4(k + 1)

k2(k + 2)2
cos[(k + 1)θ]− ı

∞
∑

j=0

4(k + 1)

k2(k + 2)2
sin[(k + 1)θ]







=
4

π2 sin(θ)







−
∞
∑

j=0

4(k + 1)

k2(k + 2)2
sin[(k + 1)θ] − ı+ ı

∞
∑

j=0

4(k + 1)

k2(k + 2)2
cos[(k + 1)θ]







,

where k = 2j + 1, and where we collected the real and imaginary terms. The original DP
function is given by the real part,

fc(θ) = − 4

π2 sin(θ)







∞
∑

j=0

4(k + 1)

k2(k + 2)2
sin[(k + 1)θ]







,

where k = 2j + 1 and the corresponding FC function is given by the imaginary part,

fs(θ) =
4

π2 sin(θ)







−1 +

∞
∑

j=0

4(k + 1)

k2(k + 2)2
cos[(k + 1)θ]







,

where k = 2j + 1.

A.5 The Shifted Square Wave

Consider the shifted unit-amplitude square wave, given by the cosine series

Sc =
4

π

∞
∑

j=0

(−1)j

k
cos(kθ),

where k = 2j + 1. The corresponding FC series is then

Ss =
4

π

∞
∑

j=0

(−1)j

k
sin(kθ),

where k = 2j + 1, and the complex power series Sz is given by

Sz =
4

π

∞
∑

j=0

(−1)j

k
zk,

where k = 2j + 1, of which the two DP Fourier series above are the real and imaginary
parts on the unit circle.

A.5.1 First-Order Center Series

There are two dominant singularities, located at z = ı and at z = −ı, so that we must use
factors of (z − ı)(z + ı) = z2 + 1 in the construction of the first-order center series,

Sz =
1

z2 + 1
Cz,

where
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Cz =
4

π

(

z2 + 1
)

∞
∑

j=0

(−1)j

k
zk

=
4

π
z



1 +
∞
∑

j=0

2(−1)j

k(k + 2)
zk+1



 ,

where k = 2j + 1, and where we distributed the factor on the series and manipulated the
indices of the resulting sums. Unlike the original series, with coefficients that behave as
1/k, this series has coefficients that go to zero as 1/k2 when k → ∞, and therefore our
evaluation of the set of dominant singularities of w(z) was in fact correct. We have therefore
for Sz the representation

Sz =
4

π

z

z2 + 1



1 +
∞
∑

j=0

2(−1)j

k(k + 2)
zk+1



 ,

where k = 2j + 1. In order to take the real and imaginary parts of Sz on the unit circle,
we observe now that since z = ρ exp(ıθ) we have on the unit circle

z

z2 + 1
=

1

2 cos(θ)
,

and therefore we have for Sz on the unit circle

Sz =
2

π cos(θ)







1 +
∞
∑

j=0

2(−1)j

k(k + 2)
cos[(k + 1)θ] + ı

∞
∑

j=0

2(−1)j

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j + 1, and where we collected the real and imaginary terms. The original DP
function is given by the real part,

fc(θ) =
2

π cos(θ)







1 +
∞
∑

j=0

2(−1)j

k(k + 2)
cos[(k + 1)θ]







,

where k = 2j + 1, and the corresponding FC function is given by the imaginary part,

fs(θ) =
2

π cos(θ)







∞
∑

j=0

2(−1)j

k(k + 2)
sin[(k + 1)θ]







,

where k = 2j + 1.

A.5.2 Second-Order Center Series

There are two dominant singularities, located at z = ı and at z = −ı, so that we must use
factors of (z − ı)2(z + ı)2 =

(

z2 + 1
)2

in the construction of the second-order center series,

Sz =
1

(z2 + 1)2
Cz,

where
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Cz =
4

π

(

z2 + 1
)2

∞
∑

j=0

(−1)j

k
zk

=
4

3π
z



3 + 5z2 +
∞
∑

j=0

24(−1)j

k(k + 2)(k + 4)
zk+3



 ,

where k = 2j + 1, and where we distributed the factor on the series and manipulated the
indices of the resulting sums. Unlike the original series, with coefficients that behave as
1/k, this series has coefficients that go to zero as 1/k3 when k → ∞, and therefore our
evaluation of the set of dominant singularities of w(z) was in fact correct. We have therefore
for Sz the representation

Sz =
4

3π

z

(z2 + 1)2



3 + 5z2 +
∞
∑

j=0

24(−1)j

k(k + 2)(k + 4)
zk+3



 ,

where k = 2j + 1. In order to take the real and imaginary parts of Sz on the unit circle,
we observe now that since z = ρ exp(ıθ) we have on the unit circle

z

(z2 + 1)
=

z∗

4 cos2(θ)
,

where z∗z = 1. We also have that

z∗
(

3 + 5z2
)

= 3z∗ + 5z

= [8 cos(θ)] + ı[2 sin(θ)],

and therefore we have for Sz on the unit circle

Sz =
2

3π cos2(θ)







4 cos(θ) +
∞
∑

j=0

12(−1)j

k(k + 2)(k + 4)
cos[(k + 2)θ]+

+ı sin(θ) + ı

∞
∑

j=0

12(−1)j

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j + 1, and where we collected the real and imaginary terms. The original DP
function is given by the real part,

fc(θ) =
2

3π cos2(θ)







4 cos(θ) +
∞
∑

j=0

12(−1)j

k(k + 2)(k + 4)
cos[(k + 2)θ]







,

where k = 2j + 1, and the corresponding FC function is given by the imaginary part,

fs(θ) =
2

3π cos2(θ)







sin(θ) +
∞
∑

j=0

12(−1)j

k(k + 2)(k + 4)
sin[(k + 2)θ]







,

where k = 2j + 1.
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A.6 The Parabolic Wave

Consider a continuous and differentiable periodic function built with segments of quadratic
functions, given by the sine series

Ss =
32

π3

∞
∑

j=0

1

k3
sin(kθ),

where k = 2j + 1. The corresponding FC series is then

Sc =
32

π3

∞
∑

j=0

1

k3
cos(kθ),

where k = 2j + 1. Note that due to the factors of 1/k3 these series are already absolutely
and uniformly convergent. The complex power series Sz is given by

Sz =
32

π3

∞
∑

j=0

1

k3
zk,

where k = 2j + 1, of which the two DP Fourier series above are the real and imaginary
parts on the unit circle.

A.6.1 First-Order Center Series

There are two dominant singularities, located at z = 1 and at z = −1, so that we must use
factors of (z − 1)(z + 1) = z2 − 1 in the construction of the first-order center series,

Sz =
1

z2 − 1
Cz,

where

Cz =
32

π3

(

z2 − 1
)

∞
∑

j=0

1

k3
zk

=
32

π3
z



−1 +
∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
zk+1



 ,

where k = 2j + 1, and where we distributed the factor on the series and manipulated the
indices of the resulting sums. Unlike the original series, with coefficients that behave as
1/k3, this series has coefficients that go to zero as 1/k4 when k → ∞, and therefore our
evaluation of the set of dominant singularities of w(z) was in fact correct. We have therefore
for Sz the representation

Sz =
32

π3

z

z2 − 1



−1 +
∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
zk+1



 ,

where k = 2j + 1. In order to take the real and imaginary parts of Sz on the unit circle,
we observe now that since z = ρ exp(ıθ) we have on the unit circle

z

z2 − 1
= − ı

2 sin(θ)
,
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and therefore we have for Sz on the unit circle

Sz = − 16

π3

ı

sin(θ)
×

×







−1 +
∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
cos[(k + 1)θ] + ı

∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
sin[(k + 1)θ]







=
16

π3 sin(θ)







∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
sin[(k + 1)θ] +

+ ı− ı

∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
cos[(k + 1)θ]







,

where k = 2j + 1, and where we collected the real and imaginary terms. The original DP
function is given by the imaginary part,

fs(θ) =
16

π3 sin(θ)







1−
∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
cos[(k + 1)θ]







,

where k = 2j + 1, and the corresponding FC function is given by the real part,

fc(θ) =
16

π3 sin(θ)







∞
∑

j=0

6k(k + 2) + 8

k3(k + 2)3
sin[(k + 1)θ]







,

where k = 2j + 1.

A.7 The First Slow-Converging Case

Consider the odd function defined by the very slowly convergent sine series

Ss =
2

π

∞
∑

k=1

1√
k
sin(kθ).

The corresponding FC series is then

Sc =
2

π

∞
∑

k=1

1√
k
cos(kθ),

and the complex power series Sz is given by

Sz =
2

π

∞
∑

k=1

1√
k
zk,

of which the two DP Fourier series above are the real and imaginary parts on the unit
circle.
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A.7.1 First-Order Center Series

There is a single dominant singularity at z = 1, so that we must use a single factor of (z−1)
in the construction of the first-order center series,

Sz =
1

z − 1
Cz,

where

Cz =
2

π
(z − 1)

∞
∑

k=1

1√
k
zk

=
2

π
z

[

−1 +
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

zk

]

,

where we distributed the factor on the series and manipulated the indices of the resulting
sums. Unlike the original series, with coefficients that behave as 1/k(1/2), this series has
coefficients that go to zero as 1/k(3/2) when k → ∞, and therefore our evaluation of the
set of dominant singularities of w(z) was in fact correct. We have therefore for Sz the
representation

Sz =
2

π

z

z − 1

[

−1 +
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

zk

]

.

In order to take the real and imaginary parts of Sz on the unit circle, we observe now that
since z = ρ exp(ıθ) we have on the unit circle

z

z − 1
=

1

2
− ı

2

sin(θ)

1− cos(θ)
.

If we write this in terms of θ/2 we get

z

z − 1
=

1

2
− ı

2

cos(θ/2)

sin(θ/2)
,

and therefore we have for Sz on the unit circle

Sz =
1

π

[

1− ı

cos(θ/2)

sin(θ/2)

]

[

−1 +
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

cos(kθ)+

+ı

∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

sin(kθ)

]

=
1

π sin(θ/2)

{

− sin(θ/2) +
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

sin[(k + 1/2)θ] +

+ ı cos(θ/2)− ı

∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

cos[(k + 1/2)θ]

}

,

where we collected the real and imaginary terms. The original DP function is given by the
imaginary part,

fs(θ) =
1

π sin(θ/2)

{

cos(θ/2)−
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

cos[(k + 1/2)θ]

}

,

32



and the corresponding FC function is given by the real part,

fc(θ) =
1

π sin(θ/2)

{

− sin(θ/2) +
∞
∑

k=1

1√
k(k + 1) + k

√
k + 1

sin[(k + 1/2)θ]

}

.

A.7.2 Second-Order Center Series

There is a single dominant singularity at z = 1, so that we must use factors of (z − 1)2 in
the construction of the second-order center series,

Sz =
1

(z − 1)2
Cz,

where

Cz =
2

π
(z − 1)2

∞
∑

k=1

1√
k
zk

=
1

π
z

[

2−
(

4−
√
2
)

z+

+
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

zk+1

]

,

where we distributed the factor on the series and manipulated the indices of the resulting
sums. Unlike the original series, with coefficients that behave as 1/k(1/2), this series has
coefficients that go to zero as 1/k(5/2) when k → ∞ (although this is not immediately
obvious), and therefore our evaluation of the set of dominant singularities of w(z) was in
fact correct. We have therefore for Sz the representation

Sz =
1

π

z

(z − 1)2
×

×
[

2−
(

4−
√
2
)

z +
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

zk+1

]

.

In order to take the real and imaginary parts of Sz on the unit circle, we observe now that
since z = ρ exp(ıθ) we have on the unit circle

z

(z − 1)2
=

1

2[cos(θ)− 1]
.

If we write this in terms of θ/2 we get

z

(z − 1)2
= − 1

4 sin2(θ/2)
.

We also have that

2−
(

4−
√
2
)

z =
[

2−
(

4−
√
2
)

cos(θ)
]

+ ı

[

−
(

4−
√
2
)

sin(θ)
]

=
[

−
(

2−
√
2
)

+
(

8− 2
√
2
)

sin2(θ/2)
]

+

+ı

[

−
(

8− 2
√
2
)

sin(θ/2) cos(θ/2)
]

,

33



and therefore we have for Sz on the unit circle

Sz =
1

4π sin2(θ/2)
×

×
{

(

2−
√
2
)

−
(

8− 2
√
2
)

sin2(θ/2)+

−
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

cos[(k + 1)θ]+

+ı

(

8− 2
√
2
)

sin(θ/2) cos(θ/2)+

−ı

∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

sin[(k + 1)θ]

}

,

where we collected the real and imaginary terms. The original DP function is given by the
imaginary part,

fs(θ) =
1

4π sin2(θ/2)
×

×
{

(

8− 2
√
2
)

sin(θ/2) cos(θ/2)+

−
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

sin[(k + 1)θ]

}

,

and the corresponding FC function is given by the real part,

fc(θ) =
1

4π sin2(θ/2)
×

×
{

(

2−
√
2
)

−
(

8− 2
√
2
)

sin2(θ/2)+

−
∞
∑

k=1

2

√
k + 1

√
k + 2− 2

√
k
√
k + 2 +

√
k
√
k + 1√

k
√
k + 1

√
k + 2

cos[(k + 1)θ]

}

.

A.8 The Second Slow-Converging Case

Consider the odd function defined by the very slowly convergent sine series

Ss =
2

π

∞
∑

k=1

(−1)k√
k

sin(kθ).

The corresponding FC series is then

Sc =
2

π

∞
∑

k=1

(−1)k√
k

cos(kθ),

and the complex power series Sz is given by

Sz =
2

π

∞
∑

k=1

(−1)k√
k

zk,

of which the two DP Fourier series above are the real and imaginary parts on the unit
circle.
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A.8.1 First-Order Center Series

There is a single dominant singularity at z = −1, so that we must use a single factor of
(z + 1) in the construction of the first-order center series,

Sz =
1

z + 1
Cz,

where

Cz =
2

π
(z + 1)

∞
∑

k=1

(−1)k√
k

zk

=
2

π
z

[

−1 +
∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

zk

]

,

where we distributed the factor on the series and manipulated the indices of the resulting
sums. Unlike the original series, with coefficients that behave as 1/k(1/2), this series has
coefficients that go to zero as 1/k(3/2) when k → ∞, and therefore our evaluation of the
set of dominant singularities of w(z) was in fact correct. We have therefore for Sz the
representation

Sz =
2

π

z

z + 1

[

−1 +

∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

zk

]

.

In order to take the real and imaginary parts of Sz on the unit circle, we observe now that
since z = ρ exp(ıθ) we have on the unit circle

z

z + 1
=

1

2
+

ı

2

sin(θ)

1 + cos(θ)
.

If we write this in terms of θ/2 we get

z

z − 1
=

1

2
+

ı

2

sin(θ/2)

cos(θ/2)
,

and therefore we have for Sz on the unit circle

Sz =
1

π

[

1 + ı

sin(θ/2)

cos(θ/2)

]

[

−1 +
∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

cos(kθ) +

+ı

∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

sin(kθ)

]

=
1

π cos(θ/2)

{

− cos(θ/2) +
∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

cos[(k + 1/2)θ] +

− ı sin(θ/2) + ı

∞
∑

k=1

(−1)k√
k(k + 1) + k

√
k + 1

sin[(k + 1/2)θ]

}

,

where we collected the real and imaginary terms. The original DP function is given by the
imaginary part,
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and the corresponding FC function is given by the real part,

fc(θ) =
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.

A.8.2 Second-Order Center Series

There is a single dominant singularity at z = −1, so that we must use factors of (z+1)2 in
the construction of the second-order center series,

Sz =
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where
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,

where we distributed the factor on the series and manipulated the indices of the resulting
sums. Unlike the original series, with coefficients that behave as 1/k(1/2), this series has
coefficients that go to zero as 1/k(5/2) when k → ∞ (although this is not immediately
obvious), and therefore our evaluation of the set of dominant singularities of w(z) was in
fact correct. We have therefore for Sz the representation
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.

In order to take the real and imaginary parts of Sz on the unit circle, we observe now that
since z = ρ exp(ıθ) we have on the unit circle

z

(z + 1)2
=

1

2[1 + cos(θ)]
.

If we write this in terms of θ/2 we get
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and therefore we have for Sz on the unit circle
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where we collected the real and imaginary terms. The original DP function is given by the
imaginary part,

fs(θ) =
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and the corresponding FC function is given by the real part,
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B Numerical Results

As preliminary information, Table 2 gives the processing times of the runs used to generate
the high-precision representation of the functions for which we do not have piece-wise
expressions in closed form. This was done with either the first-order or the second-order
center series, depending on the case. The table makes it clear that for all the functions
tested a sufficiently high-order center series can be added up to high levels of precision in
short times.

Function Order Run Time

Conjugate of the One-Cycle Sawtooth Wave 2nd 35.35

Conjugate of the Standard Square Wave 2nd 16.78

Conjugate of the Two-Cycle Sawtooth Wave 2nd 16.89

Conjugate of the Triangular Wave 1st 12.03

Conjugate of the Shifted Square Wave 2nd 35.12

Conjugate of the Parabolic Wave 1st 0.58

The First Slow-Converging Wave 2nd 214.45

The Conjugate of the Function Above 2nd 207.91

The Second Slow-Converging Wave 2nd 412.91

The Conjugate of the Function Above 2nd 404.63

Table 2: The processing time of each run used to produce the high-precision numerical
representations of the functions, in seconds. The targeted precision level was 10−16. The
order of the center series used in each case is recorded.

The remaining tables can be found in the subsections that follow. They give, for each
function tested, the number of added terms in each one of the two types of series, as a
function of the required precision level, as well as the corresponding processing times. This
is done for the average and the maximum numbers of added terms. The ratios shown
represent the efficiency of the first-order center series as compared to the Fourier series. All
processing times reported are for the calculation of the functions to the required precision
at the complete set of valid points of the lattice within the interval [−π, π].

The entries marked with crosses refer to the results from those runs that, as it turned out,
it was not possible to execute within the limits of the available computational infrastructure.
These are all runs using the Fourier series to compute the unlimited discontinuous functions.
Derived numerical results that it was not possible to calculate are marked with N/A. In
order to give some idea of the difficulties involved in the summation of the Fourier series,
even for the relatively low precision levels involved, we may mention that the failed runs
were interrupted while still incomplete after more than three months of processing time.
According to the estimates that we are now able to work out, some of them would have
gone up to thousands of years of processing time.
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B.1 The One-Cycle Sawtooth Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 752.54 3252 35.60 1031 21.14 3.15

10−4 7425.65 31432 115.41 2512 64.34 12.51

10−5 73823.11 317182 367.13 7001 201.08 45.31

10−6 737217.91 3174557 1161.60 21996 634.66 144.32

10−7 7370774.30 31747807 3661.90 69494 2012.83 456.84

10−8 73707293.40 317464682 11567.78 219994 6371.78 1443.06

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.10 0.01 10.00

10−4 0.96 0.02 48.00

10−5 9.92 0.05 198.40

10−6 101.43 0.15 676.20

10−7 1034.91 0.47 2201.94

10−8 66297.97 1.48 44795.93

B.2 The Conjugate Function of the One-Cycle Sawtooth Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 752.56 3501 35.69 795 21.09 4.40

10−4 7411.30 29995 114.99 2265 64.45 13.24

10−5 73667.17 291994 366.73 7250 200.88 40.28

10−6 735567.52 2870494 1160.84 21746 633.65 132.00

10−7 7354439.12 28649994 3660.41 69244 2009.18 413.75

10−8 73545041.88 286472994 11559.16 220244 6362.49 1300.71

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.09 0.00 N/A

10−4 0.93 0.01 93.00

10−5 9.60 0.04 240.00

10−6 98.01 0.14 700.07

10−7 1007.29 0.47 2143.17

10−8 42957.88 1.45 29626.12
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B.3 The Standard Square Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 752.71 3371 34.66 515 21.72 6.55

10−4 7435.69 31270 113.36 1750 65.59 17.87

10−5 74124.57 316870 360.47 5246 205.63 60.40

10−6 740808.79 3179870 1134.01 15495 653.26 205.22

10−7 7407676.63 31809120 3570.08 49244 2074.93 645.95

10−8 74080415.47 318071620 11250.56 152494 6584.60 2085.80

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.05 0.00 N/A

10−4 0.48 0.01 48.00

10−5 4.78 0.04 119.5

10−6 46.90 0.11 426.36

10−7 720.70 0.32 2252.18

10−8 19304.40 0.90 21449.33

B.4 The Conjugate Function of the Standard Square Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 752.57 3246 35.40 634 21.26 5.12

10−4 7439.19 31495 113.26 1626 65.68 19.37

10−5 74149.12 317245 360.66 5121 205.59 61.95

10−6 741072.71 3179995 1134.23 15620 653.37 203.58

10−7 7410279.77 31805495 3580.69 49119 2069.51 647.52

10−8 74098529.06 317815995 11285.56 152369 6565.78 2085.83

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.06 0.00 N/A

10−4 0.58 0.01 58.00

10−5 5.75 0.03 191.67

10−6 57.95 0.09 643.89

10−7 924.20 0.30 3080.67

10−8 23562.93 0.92 25611.88
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B.5 The Two-Cycle Sawtooth Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 749.46 3121 34.02 515 22.03 6.06

10−4 7419.26 31432 112.46 1750 65.97 17.96

10−5 73816.53 317182 359.29 4996 205.45 63.49

10−6 737570.08 3174557 1136.15 15744 649.18 201.64

10−7 7375060.56 31747932 3582.81 48994 2058.46 648.00

10−8 73753829.71 317472432 11324.11 157994 6512.99 2009.40

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.06 0.00 N/A

10−4 0.53 0.01 53.00

10−5 5.24 0.03 174.67

10−6 51.51 0.09 572.33

10−7 1504.69 0.28 5373.89

10−8 57342.28 0.87 65910.67

B.6 The Conjugate Function of the Two-Cycle Sawtooth Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 748.73 3244 34.98 633 21.40 5.12

10−4 7386.17 29994 112.46 1626 65.68 18.45

10−5 73500.65 287744 357.86 4871 205.39 59.07

10−6 734299.04 2864744 1135.19 15619 646.85 183.41

10−7 7342346.76 28633244 3581.59 49119 2050.02 582.94

10−8 73425099.64 286568244 11312.91 157869 6490.38 1815.23

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.06 0.00 N/A

10−4 0.61 0.01 61.00

10−5 5.92 0.02 296.00

10−6 59.03 0.09 655.89

10−7 988.73 0.28 3531.18

10−8 26253.42 0.86 30527.23
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B.7 The Triangular Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 12.69 52 6.67 102 1.90 0.51

10−4 44.20 248 16.42 164 2.69 1.51

10−5 142.62 508 37.51 390 3.80 1.30

10−6 449.72 1006 82.16 641 5.47 1.57

10−7 1417.96 3248 178.53 1135 7.94 2.86

10−8 4469.11 9996 387.20 2626 11.54 3.81

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.00 0.00 N/A

10−4 0.01 0.00 N/A

10−5 0.01 0.01 1.00

10−6 0.04 0.01 4.00

10−7 0.12 0.02 6.00

10−8 0.36 0.03 12.00

B.8 The Conjugate Function of the Triangular Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 13.07 91 6.58 63 1.99 1.44

10−4 44.28 182 16.81 236 2.63 0.77

10−5 141.83 393 37.31 286 3.80 1.37

10−6 450.71 1129 82.31 525 5.48 2.15

10−7 1420.28 3373 179.07 1257 7.93 2.68

10−8 4477.51 9970 387.23 2749 11.56 3.63

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.00 0.00 N/A

10−4 0.01 0.00 N/A

10−5 0.02 0.00 N/A

10−6 0.04 0.01 4.00

10−7 0.11 0.02 5.50

10−8 0.35 0.03 11.67
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B.9 The Shifted Square Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 752.28 3371 34.64 515 21.72 6.55

10−4 7431.44 31270 113.29 1750 65.60 17.87

10−5 74082.23 316870 360.24 5246 205.65 60.40

10−6 740385.81 3179870 1133.28 15495 653.31 205.22

10−7 7403443.52 31809120 3567.77 49244 2075.09 645.95

10−8 74034893.21 318100120 11243.29 152494 6584.81 2085.98

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.10 0.00 N/A

10−4 0.94 0.02 47.00

10−5 9.72 0.04 243.00

10−6 98.73 0.14 705.21

10−7 1016.27 0.45 2258.38

10−8 36212.27 1.45 24973.98

B.10 The Conjugate Function of the Shifted Square Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 751.81 3246 35.36 634 21.26 5.12

10−4 7431.74 31495 113.15 1626 65.68 9.37

10−5 74074.90 317245 360.30 5121 205.59 61.95

10−6 740331.15 3179995 1133.10 15620 653.37 203.58

10−7 7402853.82 31804995 3577.10 49119 2069.51 647.51

10−8 74022964.40 317512995 11274.26 152369 6565.66 2083.84

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.10 0.00 N/A

10−4 0.97 0.02 48.5

10−5 9.83 0.04 245.75

10−6 100.74 0.15 671.6

10−7 1029.30 0.48 2144.38

10−8 44713.05 1.56 28662.21
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B.11 The Parabolic Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 3.47 7 2.79 20 1.24 0.35

10−4 9.12 22 6.31 40 1.45 0.55

10−5 21.63 70 12.85 68 1.68 1.03

10−6 48.51 145 24.33 126 1.99 1.15

10−7 105.89 215 45.51 278 2.33 1.15

10−8 229.68 455 82.33 511 2.79 0.89

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.00 0.00 N/A

10−4 0.00 0.00 N/A

10−5 0.00 0.00 N/A

10−6 0.00 0.00 N/A

10−7 0.00 0.00 N/A

10−8 0.02 0.01 2.00

B.12 The Conjugate Function of the Parabolic Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 3.39 7 2.80 13 1.21 0.54

10−4 9.05 22 6.43 39 1.41 0.56

10−5 21.58 59 12.91 94 1.67 0.63

10−6 48.36 126 24.56 157 1.97 0.80

10−7 106.62 275 45.11 199 2.36 1.38

10−8 229.69 518 82.02 409 2.80 1.27

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 0.00 0.00 N/A

10−4 0.00 0.00 N/A

10−5 0.00 0.00 N/A

10−6 0.00 0.00 N/A

10−7 0.01 0.00 N/A

10−8 0.02 0.01 2.00
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B.13 The First Slow-Converging Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 1043658.86 10079182 99.74 4003 10463.79 2517.91

10−4 104350817.73 1007942557 470.47 18496 221801.22 54495.16

10−5
×.× ×× 2173.32 80994 N/A N/A

10−6
×.× ×× 10114.89 395494 N/A N/A

10−7
×.× ×× 46909.65 1852994 N/A N/A

10−8
×.× ×× 217611.91 8614994 N/A N/A

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 84.17 0.01 8417.00

10−4 20168.14 0.03 672271.33

10−5
×.× 0.15 N/A

10−6
×.× 0.68 N/A

10−7
×.× 3.19 N/A

10−8
×.× 14.78 N/A

B.14 The Conjugate Function of the First Slow-Converging Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 1031902.95 8210494 100.73 4252 10244.25 1930.97

10−4 103176107.38 820489994 472.20 18745 218500.86 43771.14

10−5 10317645989.24 82058831494 2169.91 80744 4754872.78 1016283.95

10−6
×.× ×× 10097.77 395744 N/A N/A

10−7
×.× ×× 46822.72 1845744 N/A N/A

10−8
×.× ×× 216628.40 8294744 N/A N/A

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 80.61 0.00 N/A

10−4 14798.04 0.03 493268.00

10−5 5679302.35 0.16 35495639.69

10−6
×.× 0.79 N/A

10−7
×.× 3.65 N/A

10−8
×.× 16.81 N/A
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B.15 The Second Slow-Converging Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 1044703.57 10079182 99.84 4003 10463.78 2517.91

10−4 104455362.73 1007940557 470.94 18496 221801.85 54495.06

10−5 10447231331.32 100761741932 2175.50 80994 4802220.79 1244064.28

10−6
×.× ×× 10125.02 395494 N/A N/A

10−7
×.× ×× 46956.60 1852994 N/A N/A

10−8
×.× ×× 217829.99 8614994 N/A N/A

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 146.56 0.01 14656.00

10−4 154870.85 0.06 2581180.83

10−5 5394586.00 0.28 19266378.57

10−6
×.× 1.34 N/A

10−7
×.× 6.43 N/A

10−8
×.× 29.95 N/A

B.16 The Conjugate Function of the Second Slow-Converging Wave

The Number of Series Terms Added in Each Run

Prec. Fourier Series Center Series Ratios FS/CS
Req. Average Maximum Average Maximum Average Maximum

10−3 1032834.30 8210494 100.82 4252 10244.34 1930.97

10−4 103269333.48 820494994 472.59 18745 218517.81 43771.41

10−5 10327775337.91 82168115994 2171.68 80744 4755661.67 1017637.42

10−6
×.× ×× 10106.03 395744 N/A N/A

10−7
×.× ×× 46860.99 1845744 N/A N/A

10−8
×.× ×× 216805.35 8294744 N/A N/A

The Time of Each Run in Seconds

Precision Required Fourier Series Time Center Series Time Ratios FS/CS

10−3 139.61 0.01 13961.00

10−4 63223.87 0.06 1053731.17

10−5 4041689.70 0.29 13936861.03

10−6
×.× 1.34 N/A

10−7
×.× 6.33 N/A

10−8
×.× 29.82 N/A
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