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One of the important quantities one can calculate using the N = 1 mean-field
method for the polynomial models is the position of the critical curve within the
parameter plane of each model. This is done in section 3 of chapter 2 of the book [1],
for the case of the O(1) model. The result can be extended to the SO(N) models,
and in this general case the N = 1 mean-field result for the critical curve λ(α) of
the λϕ4 polynomial model is:

N

2d
=

∫ ∞

0

dϕ ϕN+1 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ ϕN−1 e−[(d+α/2)ϕ2+(λ/4)ϕ4]
, (1)

which determines λ(α) implicitly. Since it is not possible to solve this equation
analytically in order to obtain λ(α) in explicit form, we will be concerned here
with the numerical solution of this equation, so that we may plot the graph of this
function. The integrals can be written in terms of the parabolic cylinder functions
Dν [3],

√
2λ

2d
=

D−(N

2
+1)

(

2d+α√
2λ

)

D−(N

2 )

(

2d+α√
2λ

) .

However, this does not help us to solve the equation numerically because these
functions are not readily available in a computer implementation. Note that for
even N = 2p the integrals can be written as integrals on a variable χ = ϕ2,

N

2d
=

∫ ∞

0

dχ χp e−[(d+α/2)χ+(λ/4)χ2]

∫ ∞

0

dχ χp−1 e−[(d+α/2)χ+(λ/4)χ2]
.
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Hence it is not surprising that for even N they can be written in terms of the error
function, which can in fact be done through the D−n functions, with integer n. The
D−n functions can be written in terms of the error function Φ(x), which is given
by [4]

Φ(x) =
2√
π

∫ x

0

dt e−t2 .

For the first few functions D−n we have [5]

D0(x) = e−x2/4

D−1(x) =

√

π

2
ex2/4

[

1 − Φ

(

x√
2

)]

D−2(x) =

√

π

2
ex2/4

{

√

2

π
e−x2/2 − x

[

1 − Φ

(

x√
2

)]

}

D−3(x) =
1

2

√

π

2
ex2/4

{

−
√

2

π
x e−x2/2 + (1 + x2)

[

1 − Φ

(

x√
2

)]

}

From the first two one can get all the functions in this sequence by repeated use of
the recurrence relation [6]

Dp+1(x) − xDp(x) + pDp−1(x) = 0,

which can also be written in the form

D−(n+2)(x) =
D−(n)(x) − xD−(n+1)(x)

n + 1
.

Using all this one can solve the equation numerically for the case of even N, one
case at a time, using the error functions erf or derf, which are readily available for
use with the g77 Fortran compiler. For example, for N = 2, which is the simplest
case, the equation is

√

2

π
e−

(2d+α)2

4λ =

(√
2λ

2d
+

2d + α√
2λ

)

[

1 − Φ

(

2d + α

2
√

λ

)]

.

Given a value of α, one can solve this equation numerically for λ, and vice-versa.
However, this solves only the even-N cases, not the odd-N cases, including N = 1.

For all values of N one can make a change of variables in order to simplify the
original integrals in a way that is convenient for numerical purposes. Since the
solution for λ = 0 is obviously α = 0, we can assume that λ > 0 and consider the
variable χ given by

χ =

(

λ

4

)1/4

ϕ, ϕ =

(

4

λ

)1/4

χ, dϕ =

(

4

λ

)1/4

dχ,
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in terms of which the equation becomes

N

2d
=

2√
λ

∫ ∞

0

dχ χN+1 e
−
[

2d+α
√

λ
χ2+χ4

]

∫ ∞

0

dχ χN−1 e
−
[

2d+α
√

λ
χ2+χ4

] .

Defining now a new parameter ξ given by

ξ = −2d + α

2
√

λ
=⇒ α = −2

(

ξ
√

λ + d
)

,

we may write the equation in the form

√
λ =

4d

N

∫ ∞

0

dχ χN+1 e2ξχ2−χ4

∫ ∞

0

dχ χN−1 e2ξχ2−χ4
,

or, multiplying above and below by exp(−ξ2),

√
λ =

4d

N

∫ ∞

0

dχ χN+1 e−(χ2−ξ)2

∫ ∞

0

dχ χN−1 e−(χ2−ξ)2
.

Given a value of ξ, this allows one to calculate
√

λ using a single pair of numerical
integrations, and afterward to calculate the corresponding α from ξ, d and

√
λ.

The parameter ξ is a new parameter for the critical curve. In order to determine
its range of variation as we travel along the curve from end to end, consider first
the asymptotic line of the critical curve, for large values of −α and λ, which can
be obtained through the representation of the equation in terms of the parabolic
cylinder functions [7], and is given by

λ = −2d + α

βc

, βc =
N

2d
,

where βc is the critical point of the sigma model over the arc at infinity. In this case
we have for ξ the expression

ξ = −2d + α

2
√

λ
=

βcλ

2
√

λ
=

1

2
βc

√
λ.

Therefore ξ → ∞ corresponds to λ → ∞ and hence to the sigma-model critical
point over the arc at infinity, and when

λ → ∞ we have ξ → ∞ as
√

λ.
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If we now consider the tangent to the critical curve at the Gaussian point, which
can be obtained by differentiating equation (1) implicitly with respect to α and λ,
then expressing the resulting integrals in terms of the Γ function [8], and which is
given by

λ = − α

βc
, βc =

N

2d
,

we see that in this case we get for ξ the expression

ξ = −2d + α

2
√

λ
= − d√

λ
− α

2
√

λ
= − d√

λ
+

βcλ

2
√

λ
= − d√

λ
+

1

2
βc

√
λ.

Therefore ξ → −∞ corresponds to λ → 0 and hence to the Gaussian point, and
when

λ → 0 we have ξ → −∞ as
1√
λ

.

In short, we have the following limiting behaviors:

−α and λ → ∞ =⇒ ξ ≈ N

4d

√
λ → ∞,

−α and λ → 0 =⇒ ξ ≈ − d√
λ

→ −∞.

We have therefore the following general algorithm for the numerical solution of the
equation:

1. Choose a value for ξ in (−∞,∞).

2. Calculate
√

λ by numerical integration,

√
λ =

4d

N

∫ ∞

0

dχ χN+1 e−(χ2−ξ)2

∫ ∞

0

dχ χN−1 e−(χ2−ξ)2
.

3. Calculate the corresponding α by the formula

α = −2
(

ξ
√

λ + d
)

.

The resulting pair (α, λ) is a point of the critical curve of the SO(N) model, in d
dimensions. Probably the best way to choose values of ξ so that the resulting points
(α, λ) are distributed fairly homogeneously along the critical curve is to use the
equation of the tangent line at the Gaussian point, choosing some ε, integer values
of n = 1, 2, 3, . . ., and using
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ξn =
N

4d

√
nε − d√

nε
.

Since the functions being integrated are centered around a single maximum that
moves to large values of the variable when ξ is large, in order to integrate them
efficiently we must know the location of the points of maximum of the functions.
The basic idea for the integration of one of these functions is to start at the point of
maximum of the function, and then to integrate to both sides, down towards zero
and up towards infinity. Let us consider then the functions

χp e−(χ2−ξ)2,

where p ≥ 0 is an integer. Except for the case p = 0 this is zero for χ = 0, and in
all cases for χ → ∞. Taking the derivative we get

χp−1[p + 4ξχ2 − 4χ4] e−(χ2−ξ)2 .

Besides vanishing at 0 (for p > 1) and at ∞, which are clearly points of minimum,
this can be zero for

p + 4ξχ2 − 4χ4 = 0 =⇒ χ2 =
ξ ±

√

ξ2 + p

2
,

and since χ2 ≥ 0 only the + sign can be kept, and we get

χmax =

√

ξ +
√

ξ2 + p

2
.

This is correct in all cases including p = 0. For p = 0 we have that, if ξ > 0, then
χmax =

√
ξ, and if ξ ≤ 0, then χmax = 0. Note that the only case in which the

maximum is at zero is p = 0 with ξ ≤ 0, in all other cases the maximum is at a
positive and non-vanishing value of χ.

The functions examined above have the form of a pulse around their points of
maximum, but this pulse has a variable width, which decreases as the parameter ξ
increases to positive values. This makes is harder to find an appropriate numerical
integration interval for them. For the cases p > 0 we can perform one more transfor-
mation of the integrals, in order to improve this situation. We make a transformation
of integration variables to the variable γ = χ2 and hence write

∫ ∞

0

dχ χp e−(χ2−ξ)2 =
1

2

∫ ∞

0

dγ γ
p−1
2 e−(γ−ξ)2 ,

where the integrand has now a fairly constant width around its maximum. In this
case the location of the point of maximum is a bit different, that is, γmax is not
exactly χ2

max. The integrand is now
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γ
p−1
2 e−(γ−ξ)2 ,

and its derivative is given by

[

p − 1

2
γ

p−3
2 − 2(γ − ξ)γ

p−1
2

]

e−(γ−ξ)2 .

Note that, due to the possibly negative powers of γ, the cases p = 1 and p = 2
should be examined separately. For p = 1 we have

−2(γ − ξ)e−(γ−ξ)2 ,

which is zero at the point of minimum at infinity and at γ = ξ, which is therefore the
point of maximum. Since γ ≥ 0 this is valid only for ξ ≥ 0, for ξ < 0 the function
is monotonically decreasing with its maximum at γ = 0. For p = 2 we have

[

1

2
γ− 1

2 − 2(γ − ξ)γ
1
2

]

e−(γ−ξ)2 .

Note that in this case the function has an infinite derivative at the point γ = 0,
which makes it unsuitable for numerical integration. Its point of maximum can be
obtained as one of the roots of a quadratic polynomial and is in fact included in the
general case, which we proceed to analyze. If we multiply it by γ3/2, the derivative
of the general case becomes

γ
p

2

[

p − 1

2
− 2(γ − ξ)γ

]

e−(γ−ξ)2 .

Except for the cases p = 1 and p = 2 this vanishes at the points of minimum at
γ = 0 and at γ → ∞, and for all cases it vanishes at the point of maximum given
by

p − 1

4
+ ξγ − γ2 = 0 =⇒ γ =

ξ ±
√

ξ2 + (p − 1)

2
,

where since γ ≥ 0 only the + sign can be kept, and we get

γmax =
ξ +

√

ξ2 + (p − 1)

2
.

This is in fact correct in all cases including p = 1 and p = 2. For p = 1 we see that
this gives the correct answer: if ξ > 0, then γmax = ξ, and if ξ ≤ 0, then γmax = 0.
Note that the only case in which the maximum is at zero is p = 1 with ξ ≤ 0, in all
other cases the maximum is at a positive and non-vanishing value of γ.
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Complete Algorithm

Let us record here the complete algorithm, with all the details. Recall that the
integrals in the γ variable should not be used in the cases p = 0 and p = 2, in which
cases we should use the integrals in terms of the variable χ. For all other values
of p we should use the integrals in terms of the variable γ for ease of numerical
integration.

1. Choose a value for ξ in (−∞,∞). The method for this is: choose some typically
small ε and integers n = 1, 2, 3, . . ., then use the values

ξn =
N

4d

√
nε − d√

nε
,

where nε is a very rough estimate of the corresponding value of λ. For example,
for N = 1 using ε = 0.1 and n up to 1000 results on λ up to approximately 40,
and using ε = 1.2 and n up to 1000 results on λ up to approximately 1000.

2. Calculate the corresponding value of
√

λ by means of two numerical integra-
tions, in one of the two forms,

√
λ =

4d

N

∫ ∞

0

dχ χN+1 e−(χ2−ξ)2

∫ ∞

0

dχ χN−1 e−(χ2−ξ)2
=

4d

N

∫ ∞

0

dγ γ
N

2 e−(γ−ξ)2

∫ ∞

0

dγ γ
N−2

2 e−(γ−ξ)2
,

where the integrals in χ and in γ are related by

Ip =

∫ ∞

0

dχ χp e−(χ2−ξ)2 =
1

2

∫ ∞

0

dγ γ
p−1
2 e−(γ−ξ)2 .

The form of the integral to be used depends on the value of p:

p = 0:

I0(ξ) =

∫ ∞

0

dχ e−(χ2−ξ)2 , χmax =

√

ξ + |ξ|
2

.

p = 1:

I1(ξ) =
1

2

∫ ∞

0

dγ e−(γ−ξ)2 , γmax =
ξ + |ξ|

2
.

p = 2:

I2(ξ) =

∫ ∞

0

dχ χ2 e−(χ2−ξ)2 , χmax =

√

ξ +
√

ξ2 + 2

2
.
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p ≥ 3:

Ip(ξ) =
1

2

∫ ∞

0

dγ γ
p−1
2 e−(γ−ξ)2 , γmax =

ξ +
√

ξ2 + (p − 1)

2
.

The integration is to be by cubic splines, in which the integration increment
∆I for a function y(x) with derivative y′(x), from a point (x1, y1) to a point
(x2, y2), is given by

∆I =
1

2
(y1 + y2)∆x − 1

12
∆y′(∆x)2,

where ∆x = x2 − x1, ∆y′ = y′
2 − y′

1, and so on. The functions involved and
their derivatives are

fp(χ) = χp e−(χ2−ξ)2 ,

gp(γ) = γ
p−1
2 e−(γ−ξ)2 ,

f ′
p(χ) = χp−1[p + 4ξχ2 − 4χ4] e−(χ2−ξ)2 ,

g′
p(γ) = γ

p−3
2

[

p − 1

2
+ 2ξγ − 2γ2

]

e−(γ−ξ)2 .

3. Calculate the corresponding value of α using the formula

α = −2
(

ξ
√

λ + d
)

.

This completes the algorithm. One should also recall that for even N the relevant
integrals, with odd p, can be written in terms of the error function. In particular,
for N = 2 one can use

I1(ξ) =

√
π

4
[1 + Φ(ξ)],

I3(ξ) =

√
π

4
ξ [1 + Φ(ξ)] +

1

4
e−ξ2

.

This can be used to solve the problem in this case, probably in a more efficient way.
For larger even values of N one has to derive the corresponding relations for each
case in order to do this.

Fortran Routines

Here is a list of the available Fortran routines, with a short description of each one.
All the code is fairly well documented with internal comments. The source code is
freely available at the URL:
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http://latt.if.usp.br/scientific-pages/nsmfccsonpm/

ff 0.f: this routine implements the function f0(χ); it is implemented as a double-
precision function.

fg 1.f: this routine implements the function g1(γ); it is implemented as a double-
precision function.

ff 2.f: this routine implements the function f2(χ); it is implemented as a double-
precision function.

fg p.f: this routine implements the function gp(γ), for p ≥ 3; it is implemented as
a double-precision function.

df 0.f: this routine implements the derivative f ′
0(χ); it is implemented as a double-

precision function.

dg 1.f: this routine implements the derivative g′
1(γ); it is implemented as a double-

precision function.

df 2.f: this routine implements the derivative f ′
2(χ); it is implemented as a double-

precision function.

dg p.f: this routine implements the derivative g′
p(γ), for p ≥ 3; it is implemented

as a double-precision function.

The integrations in the routines aif *.f and aig *.f are performed in two
passes, the first one uses a guessed integration range, and is used to measure the
actual integration range. The integration starts at the maximum of the function
and proceeds down to either side until a boundary of the range is found, or until the
integral no longer increases. The second pass performs the final integration using
this measured range.

The integration routines use be default 10000 intervals for the final integration.
Considering that the cubic splines algorithm is precise to order (∆x)2, this should
give results which are good within single-precision level. This is certainly enough for
plotting graphs, but if there is any need one can increase the number of integration
intervals in order to get results good to double-precision level.

Note that the integration routines will crash for sufficiently large negative values
of ξ, because the exponentials within the functions they integrate will eventually
underflow and cause a division by zero.

pars.f: parameters common to all the integration routines, namely the value of a
standard number of integration intervals, and the constant 1/12 for the cubic
splines integration formula.

aif 0.f: this routine implements the integral from 0 to ∞, as a function of ξ, of
f0(χ); it is implemented as a double-precision function.

9



aig 1.f: this routine implements the integral from 0 to ∞, as a function of ξ, of
g1(γ); it is implemented as a double-precision function.

aif 2.f: this routine implements the integral from 0 to ∞, as a function of ξ, of
f2(χ); it is implemented as a double-precision function.

aig p.f: this routine implements the integral from 0 to ∞, as a function of ξ, of
gp(γ), for p ≥ 3; it is implemented as a double-precision function.

The programs crit * curve.f are written to read the input data from the stdin
channel, and are to be used as encoded in the makefiles Makefile.O1 through
Makefile.SO4. They read in d, ε and nmax, then they loop over the resulting
values of ξ in order to produce the plotting data.

crit o1 curve.f: this program produces the data to plot the graphs of the critical
curves of the O(1) model in any dimension d. It accepts from stdin the values
of d, ε and nmax, these last two for the calculation of ξn.

crit so2 curve.f: this program produces the data to plot the graphs of the critical
curves of the SO(2) model in any dimension d. It accepts from stdin the values
of d, ε and nmax, these last two for the calculation of ξn.

crit so3 curve.f: this program produces the data to plot the graphs of the critical
curves of the SO(3) model in any dimension d. It accepts from stdin the values
of d, ε and nmax, these last two for the calculation of ξn.

crit so4 curve.f: this program produces the data to plot the graphs of the critical
curves of the SO(4) model in any dimension d. It accepts from stdin the values
of d, ε and nmax, these last two for the calculation of ξn.
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