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Abstract

We derive the equation of the critical curve and calculate the renormalized masses of
the SO(N)-symmetric λφ4 model in the presence of a homogeneous external source. We
do this using the Gaussian-Perturbative approximation on finite lattices and explicitly
taking the continuum limit. No disabling divergences are found in the final results, and
no renormalization is necessary. We show that the results give a complete description
of the critical behavior of the model and of the phenomenon of spontaneous symmetry
breaking, at the quantum-field-theoretical level.

We show that the renormalized masses depend on the external source, and point
out the consequences of that fact for the design of computer simulations of the model.
We point out a simple but interesting consequence of the results, regarding the role
of the λφ4 model in the Standard Model of high-energy particle physics. Using the
experimentally known values of the mass and of the expectation value of the Higgs
field, we determine uniquely the values of the bare dimensionless parameters α and λ
of the model, which turn out to be small numbers, significantly less that one.

1 Introduction

Years ago we introduced a calculational technique that was quite successful in describing
the critical behavior of the SO(N)-symmetric Euclidean λφ4 model in d ≥ 3 spacetime
dimensions [1]. Some quantities were calculated in d = 4 and compared to the results
of computer simulations, yielding surprisingly good results, and describing reliably the
most important qualitative aspects of the model. The observables calculated where the
expectation value of the field, which is the order parameter of the critical transition of
the model and describes the phenomenon of spontaneous symmetry breaking, and the two-
point function, from which one can get the renormalized masses and hence the correlation
lengths, in both phases of the model.

Although inspired by and superficially similar to perturbation theory, the technique can
handle a phenomenon such as spontaneous symmetry breaking, which is usually considered
to be out of reach for plain perturbation theory. The innovative and essential aspect of
the technique is the use of certain self-consistency conditions within a framework similar
to that of perturbation theory. The technique would be better described as a Gaussian
approximation rather than a perturbative expansion. As such, it is able to produce good
predictions for the one-point and two-point observables, since these are the moments present
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in the Gaussian distribution, but should not be expected to go much further than that. For
lack of a better name, we shall refer to it as the Gaussian-Perturbative approximation.

The important role that the four-component λφ4 model plays in the Standard Model
of high-energy particle physics makes it certainly interesting to learn more about it. In
this paper we extend the Gaussian-Perturbative technique introduced in [1] to the same
model in the presence of external sources. These external sources are not thought of merely
as analytical devices used to extract the Green’s functions from the functional generators
of the model, and to be put to zero afterwards. Instead, they are thought of as actual
physical sources of particles in the model. One important objective is to determine how the
introduction of the external sources affects the values of the renormalized masses in either
phase of the model.

These are analytical calculations performed on the Euclidean lattice, which therefore
allow us to discuss, and to explicitly take, specific continuum limits in the quantum theory.
As we will see, there is no need for perturbative renormalization, or for any regulation
mechanism other than the lattice where the model is defined. All calculations on finite
lattices are ordinary straightforward manipulations. Although there are some quantities
that do diverge in the continuum limit, they all cancel off from the observables before the
limit is taken.

2 The Model

Let us start by giving the definition of the model, in the classical and quantum domains,
and then quickly reviewing the Gaussian-Perturbative approximation. Consider then the
Euclidean quantum field theories of an SO(N)-symmetric set of scalar fields ~φ(xµ) defined
within a periodical cubic box of side L in d dimensions by the classical action

S
[
~φ
]

=

∮

Ld

ddx

{
1

2

d∑

ν

[
∂ν~φ(xµ) · ∂ν~φ(xµ)

]
+

m2

2

[
~φ(xµ) · ~φ(xµ)

]
+

+
Λ

4

[
~φ(xµ) · ~φ(xµ)

]2
− J0φN(xµ)

}
,

where d ≥ 3. This is the usual form of the SO(N)-symmetric λφ4 model in the classical
continuum, with an external source J0, which by assumption is a constant. The vector
notation ~φ(xµ) is shorthand for

~φ(xµ) = (φ1(xµ), φ2(xµ), . . . , φN(xµ)) ,

and the dot-product notation represents the scalar product of vectors in the internal SO(N)
space, that is a sum over i = 1, 2, . . . ,N,

~φ(xµ) · ~φ(xµ) =
N∑

i

[φi(xµ)]
2 .

In this action the quantity J0 is a homogeneous external source associated with the φN(xµ)
field component. Its introduction breaks the SO(N) symmetry, of course, and causes the
generation of a non-zero expectation value for the φN(xµ) field component.

In order to use the definition of the quantum theory on a cubical lattice of size L with
N sites along each direction, with lattice spacing a = L/N , we consider the corresponding
lattice action
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SN [~ϕ] =
Nd∑

nµ

{
1

2

d∑

ν

[∆ν ~ϕ(nµ) ·∆ν ~ϕ(nµ)] +
α

2
[~ϕ(nµ) · ~ϕ(nµ)] +

+
λ

4
[~ϕ(nµ) · ~ϕ(nµ)]

2 − j0ϕN(nµ)

}
,

where all quantities are now dimensionless, defined by the appropriate scalings,

ϕi(nµ) = a(d−2)/2φi(xµ),

nµ = a−1xµ,

α = a2m2, (1)

λ = a4−dΛ,

j0 = a(d+2)/2J0.

In order for the model to be stable we must have λ ≥ 0 and, in addition to this, if λ = 0
then we must also have α ≥ 0. Up to this point there are no further constraints on the real
parameters α and λ.

When possible, the summations are notated, in the subscript, by the variable which
is being summed over, and, in the superscript, by the number of terms in the sum. The
integer coordinates nµ are taken to vary as symmetrically as possible around the origin
nµ = 0µ, that is we have nµ = nmin, . . . , 0, . . . , nmax with certain values of nmin and nmax

that depend on the parity of N ,

nµ = − N − 1

2
, . . . , 0, . . . ,

N − 1

2
,

for odd N , and

nµ = − N

2
+ 1, . . . , 0, . . . ,

N

2
,

for even N , in either case for all values of µ = 1, . . . , d.
In this paper we will perform the calculations of the critical line and of the renormalized

masses in a situation in which we have, in terms of the dimensionfull field ~φ(xµ), for
i = 1, . . . ,N− 1,

〈φi(xµ)〉 = 0,

and, for i = N,

〈φN(xµ)〉 = V0,

where V0 is a constant with the physical dimensions of the field φN(xµ). In terms of the
dimensionless field ~ϕ(nµ) we have for the only non-trivial condition

〈ϕN(nµ)〉 = v0,

where the dimensionless constant is given by v0 = a(d−2)/2V0.
We will consider continuum limits in which we have both N → ∞ and L → ∞. In

order to do this we will choose to make L increase as
√
N and a decrease as

√
N , so that

we still have a = L/N . The calculations on finite lattices will be performed with periodical
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boundary conditions, with the understanding that at the end of the day such a limit is to
be taken.

Observe that we are specifying the value of the expectation value v0 of ϕN(nµ) rather
than the value of the corresponding external source j0. What we are doing here is to assume
that there is some external source present such that we have the expectation value specified.
It follows that one of the expected results of our calculations is the determination, at least
implicitly, of the form of the external source in terms of v0.

Our first calculational task in preparation for the Gaussian-Perturbative calculations is
to rewrite the action in terms of a shifted field, which has a null expectation value. We
thus define a new field variable ~ϕ′(nµ) such that

~ϕ(nµ) = ~ϕ′(nµ) + (0, 0, . . . , v0),

so that we have 〈~ϕ′(nµ)〉 = 0 for all nµ, with µ = 1, . . . , d. We must now determine the
form of the action in terms of ~ϕ′(nµ). If we write each term of the action in terms of the
shifted field we get

SN [~ϕ′] =
Nd∑

nµ

{
1

2

d∑

ν

[
∆ν ~ϕ

′(nµ) ·∆ν ~ϕ
′(nµ)

]
+

+
α

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+ αv0ϕ

′

N(nµ) +
α

2
v20+

+
λ

4

[
~ϕ′(nµ) · ~ϕ′(nµ)

]2
+ λv0

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
ϕ′

N(nµ)+

+
λ

2
v20
[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+ λv20ϕ

′2
N(nµ)+

+ λv30ϕ
′

N(nµ) +
λ

4
v40+

− j0ϕ
′

N(nµ)− j0v0

}
.

We will now eliminate all field-independent terms, since they correspond to constant factors
that cancel off in the ratios of functional integrals which give the expectation values of the
observables. Doing this we get the equivalent action

SN [~ϕ′] =
Nd∑

nµ

{
1

2

d∑

ν

[
∆ν ~ϕ

′(nµ) ·∆ν ~ϕ
′(nµ)

]
+

+ αv0ϕ
′

N(nµ) + λv30ϕ
′

N(nµ)− j0ϕ
′

N(nµ)+

+
α+ λv20

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+ λv20ϕ

′2
N(nµ)+

+ λv0
[
~ϕ′(nµ) · ~ϕ′(nµ)

]
ϕ′

N(nµ) +
λ

4

[
~ϕ′(nµ) · ~ϕ′(nµ)

]2
}
,

where except for the kinetic part the terms have been ordered by increasing powers of the
field.

The last task we have to perform, in preparation for the Gaussian-Perturbative cal-
culations, is the separation of the action in two parts. Since the symmetry is broken by
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the introduction of the external sources, besides the fact that depending on the values of
the parameters α and λ it might be spontaneously broken as well, this separation involves
two new mass parameters, α0 for ϕ′

1(nµ), . . . , ϕ
′

N−1(nµ), and αN for ϕ′

N
(nµ). Note that

an SO(N− 1) symmetry subgroup is left over after the SO(N) symmetry breakdown. We
therefore adopt for the Gaussian part of the action

S0[~ϕ
′] =

Nd∑

nµ

{
1

2

d∑

ν

[
∆ν ~ϕ

′(nµ) ·∆ν ~ϕ
′(nµ)

]
+

+
α0

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+

αN − α0

2
ϕ′2
N(nµ)

}
, (2)

where there are no constraints on the parameters introduced other than α0 ≥ 0 and αN ≥ 0.
Note that, despite the way in which this is written, we do in fact have here just an α0 mass
term for each field component ϕ′

i(nµ), for i = 1, . . . ,N − 1, and an αN mass term for the
field component ϕ′

N
(nµ). It follows that the non-Gaussian part of the action is

SV [~ϕ
′] =

Nd∑

nµ

{
v0
[
α+ λv20

]
ϕ′

N(nµ)− j0ϕ
′

N(nµ)+

+
α− α0 + λv20

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+

α0 − αN + 2λv20
2

ϕ′2
N(nµ)+

+ λv0
[
~ϕ′(nµ) · ~ϕ′(nµ)

]
ϕ′

N(nµ) +
λ

4

[
~ϕ′(nµ) · ~ϕ′(nµ)

]2
}
, (3)

which has its terms now written strictly in the order of increasing powers of the field.
Let us end this section by recalling the calculational techniques that will be involved.

Given an arbitrary observable O[~ϕ′] its expectation value is defined by

〈
O[~ϕ′]

〉
=

∫
[dϕ]O[~ϕ′] e−S0[~ϕ′]−ξSV [~ϕ′]

∫
[dϕ] e−S0[~ϕ′]−ξSV [~ϕ′]

,

which is a function of ξ, where [dϕ] denotes the flat measure and hence integrals from −∞
to +∞ over all the field components at all sites. The expectation values of the model are
obtained for ξ = 1, and the corresponding expectation values in the Gaussian measure of
S0[~ϕ

′] are those obtained for ξ = 0. The Gaussian-Perturbative approximation consists
of the expansion of the right-hand side in powers of ξ to some finite order, around the
point ξ = 0, and the application of the resulting expression at ξ = 1. The first-order
Gaussian-Perturbative approximation of the expectation value of the observable O[~ϕ′] is
given by

〈
O[~ϕ′]

〉
=

〈
O[~ϕ′]

〉
0
−
{〈

O[~ϕ′]SV [~ϕ
′]
〉
0
−
〈
O[~ϕ′]

〉
0

〈
SV [~ϕ

′]
〉
0

}
,

where the subscript 0 indicates the expectation values in the measure of S0[~ϕ
′]. These

expectation values are most easily calculated in momentum space, where they involve only
uncoupled Gaussian integrals. Therefore, let us also recall here the transformations to and
from the momentum space representation of the model. We have for the field and its Fourier
transform ϕ̃′

i(kµ)
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ϕ̃′

i(kµ) =
1

Nd

Nd∑

nµ

eı(2π/N)
∑d

µ kµnµ ϕ′

i(nµ),

ϕ′

i(nµ) =
Nd∑

kµ

e−ı(2π/N)
∑d

µ kµnµ ϕ̃′

i(kµ),

where the sums over kµ are taken in as symmetric a way as possible around kµ = 0µ, just
as we did for nµ. In other words, we have kµ = kmin, . . . , 0, . . . , kmax with the same values
of kmin and kmax, depending on the parity of N , that were used for nmin and nmax,

kµ = − N − 1

2
, . . . , 0, . . . ,

N − 1

2
,

for odd N , and

kµ = − N

2
+ 1, . . . , 0, . . . ,

N

2
,

for even N , in either case for all values of µ = 1, . . . , d. The orthogonality and completeness
relations of the Fourier base are given by

Nd∑

nµ

e±ı(2π/N)
∑d

µ nµ(kµ−k′µ) = Ndδd(kµ, k
′

µ),

Nd∑

kµ

e±ı(2π/N)
∑d

µ kµ(nµ−n′

µ) = Ndδd(nµ, n
′

µ).

A typical Gaussian expectation value in momentum space, and possibly the most funda-
mental one, is given for a generic field component by

〈
ϕ̃′

i(kµ)ϕ̃
′∗

i (kµ)
〉
0
=

1

Nd

1

ρ2(kµ) + αi
,

where αi is either α0 or αN, depending on the field component involved, and where ρ2(kµ)
are the eigenvalues of the discrete Laplacian on the lattice, which are given by

ρ2(kµ) = 4

[
sin2

(
πk1
N

)
+ . . .+ sin2

(
πkd
N

)]
.

This and several other expectation values, Gaussian integration formulas and lattice sums
can be found in Appendix B.

3 Calculations

We are now ready for the Gaussian-Perturbative calculations. We start with the calculations
involving the critical behavior of the model, so that we may determine and characterize
its two phases. It is important to observe that the phase structure of the model must be
established right at the beginning, because everything else has to be discussed in terms of
it.
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3.1 The Critical Line

We will now calculate the Gaussian-Perturbative approximation for the particular observ-
able O[~ϕ′] = ϕN(n

′
µ), at some arbitrary point n′

µ. If we write the observable in terms of
the shifted field we get

O[~ϕ′] = ϕN(n
′

µ)

= ϕ′

N(n
′

µ) + v0.

In order to get the equation of the critical line we impose, in a self-consistent way, that we
in fact have

〈
ϕN(n

′

µ)
〉
= v0,

which is the same as stating that
〈
ϕ′

N(n
′

µ)
〉
= 0.

In the first-order Gaussian-Perturbative approximation this becomes
〈
ϕ′

N(n
′

µ)
〉

=
〈
ϕ′

N(n
′

µ)
〉
0
−
{〈

ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
−
〈
ϕ′

N(n
′

µ)
〉
0

〈
SV [~ϕ

′]
〉
0

}

= 0.

Since we have
〈
ϕ′

N
(n′

µ)
〉
0
= 0, because this observable is field-odd and the Gaussian action

S0[~ϕ
′] is field-even, we get for the critical line the simple equation, known as the tadpole

equation,
〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
= 0.

The expectation value shown here is calculated in Appendix A, given in Equation (A.4),
and the result is

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
=

v0
[
α+ v20λ+ (N− 1)λσ2

0 + 3λσ2
N

]
− j0

αN

.

The parameter αN cancels off from our equation, and thus we are left with the result

j0 = v0
{
λv20 + α+ λ

[
(N− 1)σ2

0 + 3σ2
N

]}
, (4)

in which we now isolated on the left-hand side the term with the external source. This
gives the general relation between j0 and v0 at each point (α, λ) of the parameter space of
the model. As we shall see later, from this result we can determine the critical behavior of
the model and derive the equation of the critical line.

The quantity σ0 is the width or variance of the local distribution of values of the field
components ϕ′

i(nµ), with i = 1, . . . ,N− 1, in the measure of S0[~ϕ
′],

σ2
0 =

〈
ϕ′2
i (nµ)

〉
0
,

=
1

Nd

Nd∑

kµ

1

ρ2(kµ) + α0
,

as one can see in Appendix B, Equation (B.6), and has the following interesting properties,
so long as d ≥ 3. First, it is independent of the position nµ, as translation invariance would
require. Second, for d ≥ 3 it has a finite and non-zero N → ∞ limit, so long as α0 = a2m2

0

with a finite value of m0 in the limit. Finally, the value of σ0 in the limit does not depend
on the value of m0 in that same limit. Analogously, the quantity σN is associated to the
remaining field component ϕ′

N
(nµ) and to the mass parameter αN, and has these same

properties. In fact, σ0 and σN have exactly the same value in the N → ∞ limit.
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3.2 The Transversal Propagator

We will now calculate the expectation value of the observable

O[~ϕ′] = ϕ′

i(n
′

µ)ϕ
′

i(n
′′

µ),

which has the same form for all components of the field except i = N. We call this the
transversal propagator because it belongs to the field components which are orthogonal to
the direction of the external source in the internal SO(N) space. In this section we will
assume that i 6= N, in fact we will make i = 1. The observable will be taken at two arbitrary
points n′

µ and n′′
µ. The first-order Gaussian-Perturbative approximation for this observable

gives

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉

=
〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0
+

−
{〈

ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0
−
〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0

〈
SV [~ϕ

′]
〉
0

}

= g0(n
′

µ − n′′

µ) +

−
{〈

ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0
− g0(n

′

µ − n′′

µ)
〈
SV [~ϕ

′]
〉
0

}
,

where g0(n
′
µ − n′′

µ) is the two-point function with mass parameter α0. We must calculate
the two expectation values which appear in this formula. The calculation of the first one is
done in Appendix A, given in Equation (A.5), and results in

〈
SV [~ϕ

′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
.

The second expectation value is also calculated in Appendix A, given in Equation (A.6),
and the result is

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
g0(n

′

µ − n′′

µ)

+
[
α− α0 + λv20 + λ(N+ 1)σ2

0 + λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + α0]2
.

The factor in front of g0(n
′
µ − n′′

µ) can now be verified to be exactly equal to 〈SV [~ϕ
′]〉0,

and therefore this whole part cancels off from our observable. We may now write for the
difference of expectation values that appears in it,

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0
−
〈
SV [~ϕ

′]
〉
0
g0(n

′

µ − n′′

µ)

=
[
λv20 + α− α0 + λ(N+ 1)σ2

0 + λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + α0]2
.

Finally, we can write the complete result,
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〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉

=
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

ρ2(kµ) + α0
+

−
[
λv20 + α− α0 + λ(N+ 1)σ2

0 + λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + α0]2

=
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

ρ2(kµ) + α0

[
1− λv20 + α− α0 + λ(N+ 1)σ2

0 + λσ2
N

ρ2(kµ) + α0

]
,

where we wrote g0(n
′
µ − n′′

µ) in terms of its Fourier transform.
In principle we could have used any positive value of α0 for this calculation, but now

a particular choice comes to our attention. We see from the structure of this propagator
that we can make α0 equal to the transversal renormalized mass parameter by choosing it
so that the numerator of the second fraction vanishes. In this way we get a very simple
propagator, with a simple pole in the complex ρ2 plane, in which the parameter α0 appears
now in the role of the renormalized mass parameter,

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
=

1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

ρ2(kµ) + α0
.

Observe that to this order the propagator is, in fact, the propagator of the free theory. This
is a self-consistent way to choose the parameter α0, and is equivalent to the determination
of the transversal renormalized mass. This choice is equivalent to requiring that the mass
parameter of the Gaussian measure being used for the approximation of the expectation
values be the same as the renormalized mass parameter of the original quantum model. It
gives the result

α0 = λv20 + α+ λ
[
(N+ 1)σ2

0 + σ2
N

]
. (5)

This result for α0 = a2m2
0 is valid for a constant but possibly non-zero external source, in

both phases of the model, where m0 is the mass associated to the N− 1 field components
ϕ′
i(nµ), for i 6= N.

3.3 The Longitudinal Propagator

We will now complete our calculations with the expectation value of the observable

O[~ϕ′] = ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ).

We call this the longitudinal propagator because it belongs to the field component which is in
the direction of the external source in the internal SO(N) space. Once more the observable
will be taken at two arbitrary points n′

µ and n′′
µ. The first-order Gaussian-Perturbative

approximation for this observable gives
〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉

=
〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0
+

−
{〈

ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0
−
〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0

〈
SV [~ϕ

′]
〉
0

}

= gN(n
′

µ − n′′

µ) +

−
{〈

ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0
− gN(n

′

µ − n′′

µ)
〈
SV [~ϕ

′]
〉
0

}
,
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where gN(n
′
µ − n′′

µ) is the two-point function with mass parameter αN. We must now
calculate the two expectation values which appear in this formula. The first expectation
value is the same we had before for the transversal propagator, and from Equation (A.5)
we have,

〈
SV [~ϕ

′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
.

The second expectation value is calculated in Appendix A, given in Equation (A.7),and the
result is

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
gN(n

′

µ − n′′

µ)

+
[
α− αN + 3λv20 + λ(N− 1)σ2

0 + 3λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + αN]2
.

The factor in front of gN(n
′
µ−n′′

µ) can now be verified to be exactly equal to 〈SV [~ϕ
′]〉0, and

therefore once again this whole part cancels off from our observable. We may now write for
the difference of expectation values that appears in it,

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0
−
〈
SV [~ϕ

′]
〉
0
gN(n

′

µ − n′′

µ)

=
[
3λv20 + α− αN + λ(N− 1)σ2

0 + 3λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + αN]2
.

Finally, we can write the complete result,
〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉

=
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

ρ2(kµ) + αN

+

−
[
3λv20 + α− αN + λ(N− 1)σ2

0 + 3λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + αN]2

=
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

ρ2(kµ) + αN

[
1− 3λv20 + α− αN + λ(N− 1)σ2

0 + 3λσ2
N

ρ2(kµ) + αN

]
,

where we once more wrote gN(n
′
µ−n′′

µ) in terms of its Fourier transform. Exactly as in the
previous case, we see from the structure of this propagator that we can make αN equal to
the longitudinal renormalized mass parameter by choosing it so that the numerator of the
second fraction vanishes. This gives the result

αN = 3λv20 + α+ λ
[
(N− 1)σ2

0 + 3σ2
N

]
. (6)

This result for αN = a2m2
N
is valid for a constant but possibly non-zero external source, in

both phases of the model, where mN is the mass associated to the field component ϕ′

N
(nµ).
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4 Discussion

In this section we analyze and discuss the physical significance of the results obtained with
the Gaussian-Perturbative approximation, starting with the determination of the critical
behavior of the model. As was pointed out before, it is important that the phase structure of
the model be established right at the beginning, because everything else has to be discussed
in terms of it.

4.1 Critical Behavior

Critical Line: Here we discuss the physical significance of our result for j0 as a function
of v0. As we shall see, this bears on the critical behavior of the model. First of all, let us
discuss the case j0 = 0, that is without external sources at all, which from Equation (4)
results in the equation

v0
{
λv20 + α+ λ

[
(N− 1)σ2

0 + 3σ2
N

]}
= 0.

Observe that we do not assume that v0 is automatically zero. Since we must have λ ≥ 0, in
the part of the parameter space of the model in which the quantity shown below is positive,

α+ λ
[
(N− 1)σ2

0 + 3σ2
N

]
> 0,

the only possible solution to the equation is in fact v0 = 0. This is the symmetric phase of
the model. On the other hand, in the complementary region of the parameter space of the
model, in which that same quantity is negative,

α+ λ
[
(N− 1)σ2

0 + 3σ2
N

]
< 0,

and once again because we must have λ ≥ 0, there are two other solutions besides the
v0 = 0 solution, given by

λv20 = −
{
α+ λ

[
(N− 1)σ2

0 + 3σ2
N

]}
. (7)

Let us observe that since λ > 0 we must have α < 0 here. This is the broken-symmetric

phase of the model, where these solutions corresponds to the local minima of the potential,
while v0 = 0 corresponds to the local maximum. If we look for the locus in the (α, λ)
parameter plane of the model in which the v0 = 0 solution becomes the only possible
solution, we arrive at the equation

α+ λ
[
(N− 1)σ2

0 + 3σ2
N

]
= 0.

This is an equation giving λ in terms of α, which thus determines a certain curve in the
parameter plane of the model, in this case a straight line. This is the critical line, which
separates the two phases of the model. An example of the parameter space of the model,
showing the critical line, can be seen in Figure 1, on page 22. To the right of this line the
model is symmetric and we have 〈~ϕ(nµ)〉 = 0. To the left, the symmetry is broken and we
have 〈ϕN(nµ)〉 6= 0.

It might seem odd that we find here what looks like a complete phase transition even
on finite lattices. In fact, it is a known fact that there are no real phase transitions on
finite lattices with periodical boundary conditions, a situation in which all one can hope
to get are approximations of this behavior. However, it is in fact possible to get complete
phase transitions on finite lattices if one uses other boundary conditions or changes other
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aspects of the system, such as the imposition of self-consistency conditions [2], just as we
do in the Gaussian-Perturbative technique. Strictly speaking, however, the position of the
critical line that we find here is not completely well-defined on finite lattices, because there
is a slight dependence on α0 and αN through σ0 and σN. This small dependence vanishes
in the continuum limit, of course.

Since σ0 and σN are strictly positive, and (N− 1) ≥ 0, we can see that this critical line
starts at the Gaussian point (α, λ) = (0, 0), and extends to the quadrant where α < 0 and
λ > 0. Besides, since in the continuum limit σ0 and σN become identical, we may write the
following equivalent equation for purposes of that limit,

α+ (N+ 2)λσ2
0 = 0. (8)

This is the known result for the critical line, obtained previously without the introduction
of any external sources at all [1].

Going back to the general case, when the external source j0 is not zero, then the equation
of the critical line determines it in terms of v0, in either phase of the model, for as we saw
before in Equation (4) we have

j0 = v0
{
λv20 + α+ λ

[
(N− 1)σ2

0 + 3σ2
N

]}
.

Given a point (α, λ) in the parameter space of the model, this clearly and directly determines
j0 in terms of v0. Conversely, given j0 one may determine the corresponding v0 by solving
this simple algebraic cubic equation. Using the result for αN in Equation (6), we may write
this cubic equation in a simpler and more explicit form, in terms of the renormalized mass,

v30 −
(αN

2λ

)
v0 +

(
j0
2λ

)
= 0. (9)

In the simple case in which we make λ = 0, returning to the free-field theory, we at once
have that αN = α0 = α, and the result reduces to

j0 = α v0,

which is the familiar result for the free theory.

Transversal Mass: We are now in a position to discuss the physical situation of the
transversal renormalized mass in the general case, in which j0 and v0 are not necessarily
zero. This has to be done separately in each phase of the model, and taking explicitly in
consideration whether or not there is a non-zero external source.

Symmetric Phase: In this case, if there is no external source, then we have v0 = 0
and therefore from Equation (5) the renormalized mass parameter is given by

α0 = α+ λ
[
(N+ 1)σ2

0 + σ2
N

]
, (10)

which is a positive quantity in this phase. On the other hand, if there is an external
source j0, then there is also some value of v0 associated to it, and therefore according to
Equation (5) the renormalized mass parameter changes to

α0 = λv20 + α+ λ
[
(N+ 1)σ2

0 + σ2
N

]
.

This means that, given a point (α, λ) in the parameter space of the model, the renormalized
mass increases with v0 and thus with the external source. Note however that α0 does not
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depend directly on the external source, but on v0 instead. This indicates that, in the case of
localized external sources, the renormalized mass should depend both on the external source
and on the relative position between the external source and the point of measurement of
the mass.

Broken-Symmetric Phase: In this case, if there is no external source, then instead
of zero we have for v0 the non-trivial solution that we will denote here by v0,SSB, which
according to Equation (7) is given by

λv20,SSB = −α− λ
[
(N− 1)σ2

0 + 3σ2
N

]
,

which is a positive quantity in this phase. Substituting this for the term λv20 in Equation (5)
we get for the transversal renormalized mass parameter

α0 = 2λ
(
σ2
0 − σ2

N

)
. (11)

Since σ2
0 and σ2

N
become identical in the continuum limit, this seems to indicate that α0

tends to zero in the limit and thus corresponds to zero mass m0 in that limit. However, α0

always goes to zero in the continuum limit, and the fact that it does so is not enough to
guarantee that m0 is zero in the limit. Therefore, further analysis of the limit in necessary,
which we will do later.

Going back to the case in which there is an external source j0, we see that v0 will be
somewhat larger that the solution v0,SSB. In this case we may add and subtract λv20,SSB in
Equation (5) and therefore write α0 as

α0 = λ
(
v20 − v20,SSB

)
+ 2λ

(
σ2
0 − σ2

N

)
, (12)

showing once more that the mass increases with the variation of v0 beyond its spontaneous
symmetry-breaking value v0,SSB, and hence that it increases with the introduction of the
external source. This represents the variation of α0 as a consequence of a variation of v0
beyond its spontaneous symmetry breaking value. In terms of the mass m0 this variation
is not linear, but quadratic in nature.

Longitudinal Mass: Finally, we may now discuss the physical situation of the longitu-
dinal renormalized mass in the case in which v0 is not necessarily zero. This discussion
proceeds in the same lines as the previous one. Once more this has to be done separately
in each phase of the model, and taking in consideration whether or not there is a non-zero
external source.

Symmetric Phase: In this case, if there is no external source, then we have v0 = 0
and therefore from Equation (6) the renormalized mass parameter is given by

αN = α+ λ
[
(N− 1)σ2

0 + 3σ2
N

]
,

which is a positive quantity in this phase. It is interesting to observe that, since in the
continuum limit σ0 and σN become identical, for the purposes of that limit this equation
is identical to the corresponding result for α0, shown in Equation (10), thus exhibiting the
symmetry of the model in this phase. On the other hand, if there is an external source,
then there is also some value of v0 associated to it, and therefore according to Equation (6)
the renormalized mass parameter changes to
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αN = 3λv20 + α+ λ
[
(N− 1)σ2

0 + 3σ2
N

]
.

This means that, given a point (α, λ) in the parameter space of the model, the renormalized
mass increases with v0 and thus with the external source. This is now different from α0,
since it increases three times as fast with v20. Note that once again αN does not depend
directly on the external source, but on v0 instead.

Broken-Symmetric Phase: In this case, if there is no external source, then instead
of zero we have for v0 the non-trivial solution v0,SSB, which according to Equation (7) is
given by

λv20,SSB = −α− λ
[
(N− 1)σ2

0 + 3σ2
N

]
,

which is a positive quantity in this phase. Substituting this for the term λv20 in Equation (6)
we get for the longitudinal renormalized mass parameter

αN = −2
{
α+ λ

[
(N− 1)σ2

0 + 3σ2
N

]}
. (13)

This is a positive quantity in this phase, and in general corresponds to a non-zero mass mN.
If, however, there is an external source, then v0 will be somewhat larger that the solution
v0,SSB. In this case we may add and subtract 3λv20,SSB to Equation (6) and therefore write
αN as

αN = 3λ
(
v20 − v20,SSB

)
− 2

{
α+ λ

[
(N− 1)σ2

0 + 3σ2
N

]}
,

showing once more that the mass increases with the variation of v0 beyond its spontaneous
symmetry-breaking value, and hence that it increases with the introduction of the external
source. If we denote the value of αN without the presence of the source by αN,SSB, we may
write for the variation of αN due to the external source

αN − αN,SSB = 3λ
(
v20 − v20,SSB

)
. (14)

Observe that once again this variation is three times larger than the corresponding variation
of α0.

4.2 Continuum Limits

First of all, it is necessary to say that, regardless of the spacetime dimension and of the
symmetry group which are chosen, the dimensionless parameters α and λ are the true free
parameters of the model. Besides the requirements of stability, there is no reason to limit
their range a priori. Limitations may arise, however, from the discussion of physically
meaningful observables, expressed as expectation values, specially in the continuum limit.
We start therefore with no more than the stability conditions that λ ≥ 0, and that α ≥ 0
if λ = 0, as the limitations for α and λ.

In the continuum limit, when we makeN → ∞ and a → 0, most dimensionless renormal-
ized quantities we calculated here go to zero. In order to recover the physically meaningful
results in the limit, before we take the limit we must rewrite these dimensionless quan-
tities in terms of the corresponding dimensionfull quantities, using the scalings listed in
Section 2, Equation (1). Since in the continuum limit σ0 and σN become identical, in all
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cases where this is possible we will write the formulas in terms of σ0 only, producing in this
way equations which are equivalent to the original ones for the purposes of that limit.

Starting with the expectation value of the field, in the case in which there is no external
source j0, in which case the limit must be taken within the broken-symmetric phase of the
model if we are to have the possibility of a non-zero result, from Equation (7) we have

〈φN(xµ)〉 = V0

=
v0

a(d−2)/2

=

√
−
[
α+ λ(N+ 2)σ2

0

]
√
λ a(d−2)/2

.

Since for d ≥ 3 the denominator goes to zero in the continuum limit, if the field φN(xµ) is
to have a finite expectation value, then it is necessary that v0 approach zero in the limit,
which forcefully takes us to points over the critical line, which is characterized by v0 = 0
and by the equation that states that the quantity within the square root above is zero.

Since the critical line starts at the Gaussian point and extends to the quadrant where
λ > 0 and α ≤ 0, it follows that all possible continuum limits originating from the broken-
symmetric phase must go to points in the parameter plane where α ≤ 0, the case α = 0
being the Gaussian point and corresponding to the Gaussian sector of the model. In d = 4,
in particular, all possible non-trivial continuum limits necessarily correspond to strictly
negative values of α. A particular sequence of values of (α, λ) approaching the critical line
defines both a path in the parameter space of the model and a rate of progress along that
path, leading to that particular continuum limit, and is called a continuum limit flow. A
continuum limit is completely characterized by its flow, and is not characterized completely
just by a point (α, λ) in the parameter plane.

Going back to the case in which we have an external source present, we may now rewrite
Equation (9) in terms of the renormalized dimensionfull quantities, thus obtaining

ad−4V 3
0 −

(
m2

N

2λ

)
V0 +

(
J0
2λ

)
= 0.

In the case d = 3 we see that, if λ is not zero, then the first term dominates over the
others, and therefore we conclude simply that V 3

0 = 0. It follows that in this case there
is no spontaneous symmetry breaking and no effect of the external source over V0 in the
continuum limit. If we wish to have any interesting structure in the model in this case, we
are forced to make λ = 0 in the limit. If we do that at the appropriate rate, there may be
interesting continuum limits sitting right over the Gaussian point. In the case d ≥ 5, on
the other hand, we see that the first term vanishes, and we are left with J0 = m2

N
V0, which

is characteristic of a free, or trivial theory. In the case d = 4 we get the equation

V 3
0 −

(
m2

N

2λ

)
V0 +

(
J0
2λ

)
= 0.

It is interesting to calculate the discriminant ∆ of this cubic equation, which turns out to
be

∆ =
33

22λ2

(√
2

33λ
m3

N + J0

)(√
2

33λ
m3

N − J0

)
.

We can see now that the number of roots of the equation depends on the value of J0 in a
simple way. If we have
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J0 <

√
2

33λ
m3

N,

then ∆ > 0 and therefore there are three distinct simple real roots. If we have

J0 =

√
2

33λ
m3

N,

then ∆ = 0 and the three roots merge into one triple real root. Finally, if

J0 >

√
2

33λ
m3

N,

then ∆ < 0 and there is a single real root, the other two having non-zero imaginary parts.
This supports the idea that as J0 increases along positive values, the left well of the potential
becomes shallower and eventually there is no possibility for the local distribution of the field
ϕN to fit within it, even to form a meta-stable state. One of the roots relates to the third
extremum of the potential, the local maximum between the two minima. It is clear that,
when there is more than one solution to the equation, only the largest solution corresponds
to a stable state and is therefore relevant in the context of the symmetry breaking driven
by a positive J0.

The same analysis regarding critical behavior and the critical line is valid for the renor-
malized masses. Considering first the limits from the symmetric phase, with no external
source j0, we have α0 = αN with m2

0 = α0/a
2, and therefore using Equation (10) we have

α0 = α+ λ(N+ 2)σ2
0 ⇒

m0 =

√
α+ λ(N+ 2)σ2

0

a
.

We can see that, regardless of how we take the limit, we will necessarily have m0 = mN

in this case. Observe that the numerator on the right-hand side is the quantity which,
according to the equation of the critical line, is zero over that line, and hence approaches
zero when (α, λ) tends to a point on the critical line. Once more we see that, if we are
to have a finite value for m0, we must approach the critical line on the continuum limit,
in such a way that the quantity α + λ(N + 2)σ2

0 approaches zero as a2 or faster. If the
approach is such that the quantity in the numerator behaves exactly as a2, then we have
a finite and non-zero value of m0. If the approach is faster than that, then we will have
m0 = 0. On the other hand, if it is too slow, then we may end up with an infinite m0 in
the limit.

The same type of mechanism works for limits from the broken-symmetric phase, except
that in that case we will always have m0 = 0 in the limit, as we will now demonstrate. As
we saw before in Equation (11), we have for α0

α0 = 2λ
(
σ2
0 − σ2

N

)
,

which indeed goes to zero in the limit. However, the analysis of the limit is not so simple,
due to the fact that on finite lattices α0 appears in the right-hand side of the equation as
well. If we write it explicitly, using Equations (B.6) and (B.7) of Appendix B, we get an
equation involving α0 and αN,
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α0 = 2λ
1

Nd

Nd∑

kµ

[
1

ρ2(kµ) + α0
− 1

ρ2(kµ) + αN

]

= 2λ (αN − α0)
1

Nd

Nd∑

kµ

1

[ρ2(kµ) + α0] [ρ2(kµ) + αN]
.

Now, if αN = α0, which implies that mN = m0, then the right-hand side is zero, and
therefore so is α0. This in turn implies that m0 = 0, as expected. This is in fact one
possibility, we may indeed have both m0 and mN zero in the limit. If, on the other hand,
we have αN 6= α0, then we may write the equation as

m2
0

m2
N
−m2

0

= 2λ
1

Nd

Nd∑

kµ

1

[ρ2(kµ) + α0] [ρ2(kµ) + αN]
,

where we wrote the left-hand side in terms of dimensionfull quantities. Obviously, because
both λ and the sum are necessarily positive quantities, it is impossible to have mN < m0.
Here we see that, if we have both m0 and mN > m0 different from zero in the limit, then
the left-hand side has a non-zero limit and therefore the normalized sum on the right-hand
side must be non-zero in the limit.

However, one can check numerically that, for d ≥ 4 and in the type of continuum limit
that we consider here, the normalized sum does indeed go to zero in the limit. This implies
that in these dimensions, which include d = 4, we cannot have both m0 and mN different
from zero in the limit. Since mN > m0, this implies that we must always have m0 = 0
in the limit. What we have here, as one should expect, are the Goldstone bosons brought
about by the process of spontaneous symmetry breaking.

For the longitudinal mass parameter mN we have, using Equation (13),

αN = −2
[
α+ λ(N+ 2)σ2

0

]
⇒

mN =

√
−2
[
α+ λ(N+ 2)σ2

0

]

a
,

so that exactly the same argument that was used for α0 in the symmetric phase applies.
We see therefore that the need to approach the critical line when one takes continuum
limits in this model is a rather general characteristic of the model. This makes the critical
line the locus of all physically possible continuum limits of the model. This means that
making α < 0 is not a choice that we have, since it is forced upon us by the need to obtain
physically meaningful continuum limits.

Let us now discuss the continuum limits of the transversal renormalized mass in the
presence of an external source. We have the result in Equation (5), valid in either phase,

α0(j0) = λv20 +
[
α+ λ(N+ 2)σ2

0

]
.

Observe that this equation implies that it is still necessary to approach the critical line in
the continuum limit, and in the same ways as before. In the symmetric phase, if α0(0) is
the corresponding result in the absence of external sources, which corresponds to v0 = 0,
we may write

α0(j0) = α0(0) + λv20.

Rewriting all quantities in terms of the corresponding dimensionfull ones we have
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m2
0(J0) = m2

0(0) + λad−4V 2
0 .

We see that for d = 3 we are forced to make λ → 0 in the limit. In the case d = 4 no
additional constraints on λ arise, and we get the relation

m0(J0) =
√
m2

0(0) + λV 2
0 ,

describing indirectly how m0(J0) increases with J0 through the variation of V0. In the case
d = 5 the term containing λ vanishes in the limit, and we get simply that m0(J0) = m0(0),
meaning that in this case m0(J0) does not really depend on J0 in the continuum limit.

In the broken-symmetric phase we may start with Equation (12) for the transversal
mass parameter. If we recall that we have already shown that in this phase we must have
m0(0) = 0 in the limit, we may make σN = σ0 in this formula and thus obtain

α0 = λ
(
v20 − v20,SSB

)
.

In terms of dimensionfull quantities we have therefore

m2
0(J0) = λad−4

(
V 2
0 − V 2

0,SSB

)
,

which gives us back m0(0) = 0 in the absence of external sources. Not much changes in the
discussion of the various possible dimensions. We may restrict our comments to the case
d = 4, in which we get a fairly simple relation giving m0(J0) in the presence of the external
source,

m0(J0) =
√
λ
√
V 2
0 − V 2

0,SSB.

The same analysis can be made for the longitudinal mass in the presence of an external
source. In this case we have the result in Equation (6), valid in either phase,

αN(j0) = 3λv20 +
[
α+ λ(N+ 2)σ2

0

]
.

The necessity to approach the critical line remains in force here. In the symmetric phase,
if αN(0) is the corresponding result in the absence of external sources, which corresponds
to v0 = 0, we may write

αN(j0) = αN(0) + 3λv20.

Rewriting all quantities in terms of the corresponding dimensionfull ones we have

m2
N(J0) = m2

N(0) + 3λad−4V 2
0 .

Once more we see that for d = 3 we are forced to make λ → 0 in the limit. In the case
d = 4 we get simply the relation

mN(J0) =
√
m2

N
(0) + 3λV 2

0 ,

describing indirectly how mN(J0) increases with J0 through the variation of V0. In the case
d = 5 the term containing λ vanishes in the limit, and we get simply that mN(J0) = mN(0),
meaning that in this case mN(J0) also does not depend on J0 in the continuum limit.
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In the broken-symmetric phase we may start with Equation (14) for the longitudinal
mass parameter

αN − αN,SSB = 3λ
(
v20 − v20,SSB

)
.

where αN,SSB is the value of the parameter in the absence of external sources. In terms of
dimensionfull quantities we have therefore

m2
N(J0)−m2

N(0) = 3λad−4
(
V 2
0 − V 2

0,SSB

)
,

Once again not much changes in the discussion of the various possible dimensions. In the
case d = 4 we get

mN(J0) =

√
m2

N
(0) + 3λ

(
V 2
0 − V 2

0,SSB

)
.

It is interesting to note that, both for the transversal and longitudinal masses, the depen-
dence of the renormalized masses on the external source J0 seems to be a peculiar feature
of the case d = 4, which is absent for d ≥ 5.

5 Some Consequences

The calculations performed in this paper have a few rather interesting consequences, and
some relevant conclusions can be drawn from them. In this section we discuss some of these
consequences.

5.1 Triviality Tests

The fact that the renormalized masses depend on the external sources, as we saw above,
has important consequences for the design of computer simulations targeted at probing the
triviality issue. One way to do this is to perform simulations on finite lattices in which
one tries to measure the relation between the external sources and the expectation value of
the field. The argument is based on the fact that on symmetry grounds it is reasonable to
expect that the model has an effective action with the general form

ΓN [~ϕc] =
Nd∑

nµ

{
1

2

d∑

ν

[∆ν ~ϕc(nµ) ·∆ν ~ϕc(nµ)] +

+
α0

2
[~ϕc(nµ) · ~ϕc(nµ)] +

αN − α0

2
ϕ2
N,c(nµ)+

+
λR

4
[~ϕc(nµ) · ~ϕc(nµ)]

2 − j0ϕN,c(nµ)

}
,

where ~ϕc(nµ) is the classical field, which is just another name for the expectation value
of the field, given an arbitrary external source j0. In this expression α0 and αN are the
renormalized masses, and λR is the renormalized coupling constant. It is possible that
additional terms may appear in ΓN [~ϕc], but terms containing derivatives are not relevant
for the argument that follows, and terms with higher powers can be easily included in the
analysis if need be.

If one considers only homogeneous external sources j0, then it is clear that the classical
field must also be a constant, ϕN,c(nµ) = v0, and hence all terms containing derivatives
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vanish. We are left with only the part of the effective action that contains the effective
potential. In addition to this, since the external source is in the direction of ϕN,c(nµ)
in the internal SO(N) space, it is clear that the expectation values of all the other field
components are zero, so that we are left with

ΓN [~ϕc] =

Nd∑

nµ

[
αN

2
v20 +

λR

4
v40 − j0v0

]
,

where we now wrote v0 for the expectation value of the field. Since the behavior of ϕN,c(nµ)
is ruled by the minimum of this action in the classical or long-wavelength limit, which is
consistent with the use of a homogeneous external source, we may now differentiate with
respect to the classical field v0, and equate the result to zero, thus obtaining

j0 = αN v0 + λR v30.

By measuring v0 as a function of j0 one may then determine from this equation the coef-
ficients αN and λR, and thus probe into the triviality of the model. For d ≥ 4 triviality
would result if it can be shown that

lim
N→∞

λR = 0.

In other words, a linear result for the relation between j0 and v0, with the renormalized mass
parameter as the coefficient, indicates triviality. Any deviations from linearity imply the
existence of interactions, either on finite lattices or in the continuum limit. This technique
avoids the necessity for the direct measurement of the four-point function, which is gen-
erally much more difficult to do numerically than to measure the one-point and two-point
functions.

However, we have shown here that αN itself depends on j0. Therefore, even if λR

is in fact zero on finite lattices this relation will not result linear if the simulations are
performed by varying j0 at fixed values of parameters α and λ. It is therefore necessary to
adjust these parameters, as one varies j0, in order to keep αN constant. For this purpose
the value of αN can be obtained independently via the measurement of the propagator of
the field component ϕN(nµ), of course. At the end of the day, its value can be confirmed by
the value resulting for the linear coefficient from a polynomial fit to the relation between
j0 and v0.

Given a certain chosen value for αN, for each value of j0 one must search the parameter
plane of the model looking for a point where αN has that value, and only then measure
v0. This can become a computationally expensive search. This can be done by keeping
λ constant and varying α, thus traversing horizontal lines on the parameter plane, or by
keeping α constant and varying λ, thus traversing vertical lines. Given the structure of
the phase transition and of the critical line, one attractive alternative is to keep α2 + λ2

constant and vary the angle θ around the position of the critical line, where

λ

−α
= tan(θ),

not forgeting that in general α will be negative. In any case, the formula giving αN in terms
of α, λ, v0 and j0 that we derived here, shown in Equation (6), may serve to provide at
least a good initial guess for this costly search in the parameter plane.
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5.2 Standard Model

The four-component SO(4) model has an important application in the Standard Model of
high-energy elementary particles. The field component ϕN(nµ) corresponds in this case to
the Higgs field. In this application the continuum limit must be taken from the broken-
symmetric phase, for it is essential that we have, in the limit, a non-zero V0 due to sponta-
neous symmetry breaking.

It is certainly possible to take limits from the broken-symmetric phase to the critical line
in such a way that either V0 or mN has a finite and non-zero limit. It is not so obvious, but
true in d = 4, that one can take limits in which both are simultaneously finite and non-zero.
In fact, the calculations imply that in this case there is a definite relation between V0 and
mN.

If we recall our results for v0 and αN in the broken-symmetric phase (Equations (7)
and (13)), without external sources, we have

λv20 = −
[
α+ λ(N+ 2)σ2

0

]
,

αN = −2
[
α+ λ(N+ 2)σ2

0

]
.

It immediately follows that we have the following result relating v0 and αN,

2λv20 = αN.

Writing this in terms of dimensionfull quantities we get

2λad−4V 2
0 = m2

N.

Of course the important dimension here is d = 4, but let us comment on the other cases
anyway. In d = 3 we are forced once again to make λ → 0, which takes us to the Gaussian
point, and if we do this at the appropriate pace, we then simply get 2ΛV 2

0 = m2
N
. In d = 5

we conclude that, so long as λ and V0 are finite, we must have mN = 0. If we insist on a
finite and non-zero mN, then V0 must diverge to infinity. So in this case we cannot take a
limit in such a way that both V0 and mN remain finite and non-zero.

However, in d = 4, and only in d = 4, we get a definite relation between V0 and mN,
involving only the dimensionless parameters of the model, and valid for all allowed values
of these parameters within the broken-symmetric phase, given by

V0

mN

=
1√
2λ

.

Since the values of V0 and mN are known experimentally, namely V0 ≈ 246 Gev and
mN ≈ 126 Gev, we immediately get a result for λ,

λ ≈ 0.131.

Given this result, we can find α as well. All we have to do is to use the equation of the
critical line, given in Equation (8),

α+ λ(N+ 2)σ2
0 = 0,

with N = 4 and our best numerical evaluation of σ2
0 for d = 4, which is σ2

0 ≈ 0.15493, and
we get

α ≈ −0.122.
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Conceptually, this is a rather remarkable result. Please observe that we are not using the
experimental data to make statements about expectation values, but instead to determine
the values of bare dimensionless parameters within the mathematical structure of the model.
We are able, using the experimental data, to pinpoint the location in the parameter space
of the model, along the critical line, where it must be located if it is applicable to the real
world,

(α, λ) ≈ (−0.122, 0.131).

This is a point at a distance of approximately 0.179 from the Gaussian point, along the
critical line, which makes an angle of approximately 47.0 degrees with the negative α semi-
axis. The situation in the parameter-plane of the model is depicted in Figure 1, which is
drawn approximately to scale.

α

λ

0

0.1

0.2

0.3

−0.1−0.2−0.3

Flow

Criti
al

Line

Figure 1: Critical diagram of the model in d = 4, for N = 4, with the Standard Model
continuum limit point (α, λ) ≈ (−0.122, 0.131) singled out, showing the path of a possible
continuum limit flow.

One may wonder how accurate this result may be. In the Standard Model there are
electroweak charges associated to ~ϕ(nµ), which are being ignored here. It is of course possi-
ble that these other interactions might change the expectation value and the renormalized
mass of the Higgs field. However, after the symmetry is broken and the three Goldstone
bosons ϕi(nµ), i = 1, 2, 3 are absorbed by the three massive vector bosons, the single re-
maining scalar field which is the Higgs has no electromagnetic charge, and undergoes only
weak interactions, if any. Therefore it is reasonable to think that whatever corrections there
may be to the result above are probably quite small. By comparison to possible weak per-
turbative corrections, the results presented here have a rather brutal character, since they
handle correctly the non-perturbative phenomenon of spontaneous symmetry breaking, at
the quantum level, flipping the sign of α to negative values in that process.
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5.3 Hints on Triviality

Since we have results for both v0 and mN as functions of j0, it is conceivable that these
results can give us some hints as to the question of triviality. As we shall see, trying to do
this does in fact provide some rather crude hints, but most of all it puts in evidence the
limitations of the calculational technique.

Our Gaussian-Perturbative result for the relation between j0 and v0 in either phase of
the model, as shown in Equation (4), may be written for the purposes of the continuum
limit as

j0 = v0
{
λv20 +

[
α+ λ(N+ 2)σ2

0

]}
.

On the other hand, our result for the renormalized mass parameter αN, also valid in either
phase of the model, in the presence of the external source, as shown in Equation (6), may
be written for the purposes of the continuum limit as

αN = 3λv20 +
[
α+ λ(N+ 2)σ2

0

]
.

It follows that we may combine these two results, and write a relation involving the renor-
malized quantities v0 and αN,

j0 = v0
(
αN − 2λv20

)
.

This relation is valid for all d ≥ 3, for all N ≥ 1, and all explicit references to α are gone.
In the continuum limit both sides of this equation approach zero. In order to analyze the
limit, it is necessary to rewrite everything in terms of the corresponding finite and possibly
non-zero dimensionfull quantities. Doing this with the use of the scalings given in Section 2,
Equation (1), we get

J0 = V0

(
m2

N − 2λ ad−4V 2
0

)
.

This behaves differently in each dimension d. We will analyze separately the cases d = 3,
d = 4 and d ≥ 5.

Case d = 3: The result becomes inconsistent unless we make λ → 0 in the continuum
limit, which takes us to the Gaussian point. If we do that sufficiently fast then we get
J0 = m2

N
V0, a result consistent with a linear theory. Otherwise, if we take λ to zero at the

appropriate rate, we get

J0 = V0

(
m2

N − 2ΛV 2
0

)
.

Since the sign of the second term is reversed, this result does not seem to make much
sense, even if we consider that the Λ that appears there is a bare parameter, a parameter
characterizing a continuum-limit flow, in fact, and not the renormalized coupling constant.

Observe however that this is not necessarily a free theory, even at the Gaussian point,
where one would expect that λR = 0. This is so because in d = 3 we have ΛR = λR/a, and
therefore we may have ΛR 6= 0 even if λR → 0 as we take the limit and make a → 0. In
other words, in d = 3 we may have interacting limits of this type sitting right on top of the
Gaussian point.

The complete failure of the approximation away from the Gaussian point suggests that
in that case the distribution of the d = 3 model may not be sufficiently close to a Gaussian
distribution to allow a Gaussian approximation to work, and hence its expectations values
cannot be well represented by the Gaussian measure of S0[~ϕ

′].
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Case d = 4: The result is perfectly regular, and is simply given by

J0 = V0

(
m2

N − 2λV 2
0

)
.

Not much can be concluded in this case, though. Of course we must not forget that both V0

and mN are functions of λ and J0, in such a way that the right-hand side of this equation
remains positive for positive J0.

Although this equation has the general form expected for an interacting theory, it is
crucial to note that the sign of the second term is reversed. Since we must have λ > 0,
this term is necessarily negative. This is not really all that surprising, for one must not
forget that it is not to be expected that this calculational technique can produce predictions
about λR, which is a parameter related to the fourth moment of the distribution, that is
of course absent from a Gaussian approximation. The reversed sign, that seems to indicate
that increasing λ works in the way opposite to what one would expect, appears there as
a warning about this limitation. Of course, interpreting this term as a prediction for λR

would be absurd, since it would imply that the renormalized coupling constant is negative,
and thus would correspond to an unstable renormalized model.

Case d ≥ 5: The result is not only perfectly regular, but the second term in the right-
hand side vanishes in the limit, so long as λ is kept finite, and one is left with the simple
result J0 = m2

N
V0, which is consistent with a trivial theory. In this case this result is valid

for any finite value of λ. This is consistent with the triviality of the model for d ≥ 5, which
seems to be a fairly well-established fact.

It is interesting to observe that it is possible to define a version of this model in which
the limit λ → ∞ is taken. It is possible to show, with all mathematical rigor, and for any d
and any N, that the limit of the SO(N) polynomial model we have here, in which one makes
λ → ∞ and α → −∞ in such a way that β = −α/λ is kept finite, is in fact the SO(N)
non-linear Sigma Model with coupling constant β. It is therefore possible that the SO(N)
non-linear Sigma Models in d = 5 or more may still have some interesting continuum limits.

6 Conclusions

It was already known, for some time, that the approximation scheme that we name here
the Gaussian-Perturbative approximation gives good results for the SO(N)-symmetric λφ4

model in d = 4, regarding its critical behavior [1]. It is interesting to speculate that the
triviality of the model in d = 4, which is fairly well established numerically but still lacks
rigorous proof, is somehow behind the fact that this approximation works as well as it
does in that case. This is so because a trivial model would have a Gaussian effective
action, which would allow for a good approximation of its expectation values by a Gaussian
measure, which is what we do in the Gaussian-Perturbative approximation.

In this work we extended that technique to the same model in the presence of an external
source. This resulted in specific predictions for the values of the expectation value of the
field and for the renormalized masses as functions of the external source. Such predictions
could motivate future numerical studies with the objective of evaluating their worth by
comparing them to the results of appropriate stochastic simulations. In particular, the fact
that the renormalized masses do depend on the external sources through the expectation
value of the field is important for the very design of some such numerical simulations.

The simulations done in the past to test this technique used what we named back-
rotation simulations, which introduce some additional uncertainties into the whole analysis.
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This was done because neither in the analytical calculations nor in the numerical simulations
we were capable at that time to deal appropriately with the external sources. It is now
possible to perform simulations in the presence external sources, without the use of the
back-rotation idea. With such simulations and the results presented in this paper, it should
be possible to do much better comparison of the numerical and analytical results.

We also pointed out a simple and interesting consequence of the results regarding the
application of the λφ4 model in the Standard Model of particle physics. The results allow
us to determine the critical point (α, λ) in the parameter plane of the model that should
correspond to the continuum-limit flows leading to the Standard Model. This is a rather
unique situation, in which actual experimental data is used to determine the values of bare,
dimensionless parameters within the mathematical structure of the λφ4 model.

Although this result in itself may be no more than a curiosity, it would be interesting to
determine whether or not this technique and its results could not find a more widespread
application for the computation of physical predictions from the Standard Model. This,
combined with the use of the very probable fact that the renormalized coupling constant
λR is in fact exactly zero in the continuum limits of this model, could very well result in
the extraction of new and interesting insights from the Standard Model.

As an example, we may point out that the attribution of a negative value to the bare
parameter α is not really a matter of choice, as is implied in the usual treatment of the
Standard Model. It is in fact a very strict requirement for the existence of physically
meaningful continuum limits of the model, as we have shown in this paper. There are in
fact no continuum limits, in which the fundamental action is not Gaussian and the model
has finite renormalized masses, such that α > 0 in the limit.

Is in important to point out that the results presented here for critical behavior and
symmetry breaking within the λφ4 model are quite independent of the renormalized cou-
pling constant λR. In particular, they are quite independent of whether or not λR is zero
in the continuum limit. In other words, the probable triviality of the model in the contin-
uum limit does not disturb the mechanism of phase transition and symmetry breaking, and
hence would not void the Higgs mechanism.
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A Calculation of Expectation Values

In this section we calculate in detail the expectation values which are needed for the eval-
uation of the observables discussed in this paper. These are all expectation values in the
measure of the Gaussian action given in Equation (2),

S0[~ϕ
′] =

Nd∑

nµ

{
1

2

d∑

ν

[
∆ν ~ϕ

′(nµ) ·∆ν ~ϕ
′(nµ)

]
+

+
α0

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+

αN − α0

2
ϕ′2
N(nµ)

}
,
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which is even on the fields. They will all involve the non-Gaussian or “interacting” part of
the action, which is given in Equation (3),

SV [~ϕ
′] =

Nd∑

nµ

{
v0
[
α+ λv20

]
ϕ′

N(nµ)− j0ϕ
′

N(nµ)+

+
α− α0 + λv20

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+

α0 − αN + 2λv20
2

ϕ′2
N(nµ)+

+ λv0
[
~ϕ′(nµ) · ~ϕ′(nµ)

]
ϕ′

N(nµ) +
λ

4

[
~ϕ′(nµ) · ~ϕ′(nµ)

]2
}
.

There are field-odd and field-even terms in this action. Since the expectation values will
single out one of these parities, it is convenient to write explicitly the field-odd and field-even
parts of the non-Gaussian part of the action,

SV,odd[~ϕ
′] =

Nd∑

nµ

{
v0
[
α+ λv20

]
ϕ′

N(nµ)− j0ϕ
′

N(nµ)+

+ λv0
[
~ϕ′(nµ) · ~ϕ′(nµ)

]
ϕ′

N(nµ)

}
,

SV,even[~ϕ
′] =

Nd∑

nµ

{
α− α0 + λv20

2

[
~ϕ′(nµ) · ~ϕ′(nµ)

]
+

+
α0 − αN + 2λv20

2
ϕ′2
N(nµ)+

+
λ

4

[
~ϕ′(nµ) · ~ϕ′(nµ)

]2
}
.

It is also convenient, for use in the calculations, to write versions of these expressions in
which the terms containing the ϕ′

N
(nµ) field component are written explicitly, and one

version in which the terms containing the ϕ′
1(nµ) field component are written explicitly as

well, rather than as part of the scalar products,

SV,odd[~ϕ
′] =

Nd∑

nµ

{
v0
[
α+ λv20

]
ϕ′

N(nµ)− j0ϕ
′

N(nµ)+

+ λv0

[
N−1∑

i=1

ϕ′2
i (nµ)

]
ϕ′

N(nµ) + λv0ϕ
′3
N(nµ)

}
, (A.1)

SV,even[~ϕ
′] =

Nd∑

nµ




α− α0 + λv20

2

N−1∑

i=1

ϕ′2
i (nµ)+

+
α− αN + 3λv20

2
ϕ′2
N(nµ)+ (A.2)

+
λ

4

[
N−1∑

i=1

ϕ′2
i (nµ)

]2
+

λ

2

[
N−1∑

i=1

ϕ′2
i (nµ)

]
ϕ′2
N(nµ) +

λ

4
ϕ′4
N(nµ)



 ,

SV,even[~ϕ
′] =

Nd∑

nµ




α− α0 + λv20

2
ϕ′2
1 (nµ)+
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+
α− α0 + λv20

2

N−1∑

i=2

ϕ′2
i (nµ)+

+
α− αN + 3λv20

2
ϕ′2
N(nµ)+ (A.3)

+
λ

4
ϕ′4
1 (nµ) +

λ

2
ϕ′2
1 (nµ)

[
N−1∑

i=2

ϕ′2
i (nµ)

]
+

λ

4

[
N−1∑

i=2

ϕ′2
i (nµ)

]2
+

+
λ

2
ϕ′2
1 (nµ)ϕ

′2
N(nµ) +

λ

2

[
N−1∑

i=2

ϕ′2
i (nµ)

]
ϕ′2
N(nµ) +

λ

4
ϕ′4
N(nµ)



 .

A.1 The Expectation Value of ϕ′

N
(n′

µ
)SV [~ϕ

′]

Let us now calculate the expectation value

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
.

Since S0[~ϕ
′] is field-even, all expectation values of field-odd observables are zero when

calculated in its measure. Therefore it is necessary that the observables be field-even if
their expectation values are to be non-zero. Since in this case we have an explicit factor of
ϕ′

N
(n′

µ), it follows that only the field-odd part of SV [~ϕ
′] will contribute to this expectation

value,

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
=
〈
ϕ′

N(n
′

µ)SV,odd[~ϕ
′]
〉
0
.

If we write the expectation value out, using the form of the action SV,odd[~ϕ
′] given in

Equation (A.1), we get

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0

=
Nd∑

nµ

{
v0
[
α+ λv20

] 〈
ϕ′

N(nµ)ϕ
′

N(n
′

µ)
〉
0
+

−j0
〈
ϕ′

N(nµ)ϕ
′

N(n
′

µ)
〉
0
+

+ λv0

N−1∑

i=1

〈
ϕ′2
i (nµ)

〉
0

〈
ϕ′

N(nµ)ϕ
′

N(n
′

µ)
〉
0
+

+ λv0
〈
ϕ′3
N(nµ)ϕ

′

N(n
′

µ)
〉
0

}
.

The expectation values in the first three terms turn out to be just the position-space
propagator for the ϕ′

N
(nµ) field component. From Appendix B, Equation (B.2), we get

gN(nµ − n′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(nµ−n′

µ)

ρ2(kµ) + αN

,

which is just the statement that gN(nµ − n′
µ) is the inverse Fourier transform of the

momentum-space propagator. We also have the corresponding result for the other field
N− 1 components, with i 6= N,
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g0(nµ − n′

µ) =
〈
ϕ′

i(nµ)ϕ
′

i(n
′

µ)
〉
0

=
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(nµ−n′

µ)

ρ2(kµ) + α0
.

The second expectation value that we must calculate, with i 6= N, is simply

g0(0) =
〈
ϕ′2
i (nµ)

〉
0

= σ2
0

=
1

Nd

Nd∑

kµ

1

ρ2(kµ) + α0
.

The third expectation value that we must calculate can be found in Appendix B, Equa-
tion (B.9), and can be shown to be given in terms of the first one by

〈
ϕ′3
N(nµ)ϕ

′

N(n
′

µ)
〉
0
= 3σ2

N gN(nµ − n′

µ).

We are thus left with a simpler form for the expectation value,

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0

=
Nd∑

nµ

{
v0α gN(nµ − n′

µ)+

+v30λ gN(nµ − n′

µ)+

+ v0(N− 1)λσ2
0 gN(nµ − n′

µ)+

+ v03λσ
2
N gN(nµ − n′

µ)+

− j0gN(nµ − n′

µ)

}
.

In all terms the only quantity still depending on nµ is gN(nµ − n′
µ), so that we can write

this equation as

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
=
{
v0
[
α+ v20λ+ (N− 1)λσ2

0 + 3λσ2
N

]
− j0

} Nd∑

nµ

gN(nµ − n′

µ).

Using Equation (B.3), which gives this final sum, we may finally write

〈
ϕ′

N(n
′

µ)SV [~ϕ
′]
〉
0
=

v0
[
α+ v20λ+ (N− 1)λσ2

0 + 3λσ2
N

]
− j0

αN

. (A.4)

A.2 The Expectation Value of SV [~ϕ
′]

We now calculate the expectation value

〈
SV [~ϕ

′]
〉
0
.

Only the field-even part of the action will yield a non-zero result, so that we have

〈
SV [~ϕ

′]
〉
0
=
〈
SV,even[~ϕ

′]
〉
0
.
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Using the form of SV,even[~ϕ
′] shown in Equation (A.2) we get for this expectation value

〈
SV [~ϕ

′]
〉
0

=
Nd∑

nµ




α− α0 + λv20

2

N−1∑

i=1

〈
ϕ′2
i (nµ)

〉
0
+

+
α− αN + 3λv20

2

〈
ϕ′2
N(nµ)

〉
0
+

+
λ

4

〈[
N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

+
λ

2

[
N−1∑

i=1

〈
ϕ′2
i (nµ)

〉
0

]
〈
ϕ′2
N(nµ)

〉
0
+

λ

4

〈
ϕ′4
N(nµ)

〉
0



 .

Most of the remaining expectation values can be written in terms of σ0 and σN, if we recall
that it can be shown that for i 6= N we have

〈
ϕ′4
i (nµ)

〉
0
= 3σ2

0,

while for i = N we have, in a similar way,

〈
ϕ′4
N(nµ)

〉
0
= 3σ2

N,

as one can find in Appendix B, Equation (B.8). Given all this, we may write for our
expectation value

〈
SV [~ϕ

′]
〉
0

=
Nd∑

nµ




α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4

〈[
N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

+
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N



 .

The remaining expectation value of the sum shown can be found in Appendix B, Equa-
tion (B.15),

〈[
N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

= (N+ 1)(N− 1)σ4
0.

Using this result we get for our expectation value

〈
SV [~ϕ

′]
〉
0

=
Nd∑

nµ


α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N


 .

Note that all the sums can now be done, so that we can write our result in the simpler form

〈
SV [~ϕ

′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
. (A.5)
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A.3 The Expectation Value of ϕ′

1
(n′

µ
)ϕ′

1
(n′′

µ
)SV [~ϕ

′]

We now calculate the expectation value

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0
.

Once more only the field-even part of the action will yield a non-zero result, so that we
have

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0
=
〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV,even[~ϕ
′]
〉
0
.

Using the form of SV,even[~ϕ
′] shown in Equation (A.3), and if we already replace the

expectation values of squared fields by σ0 or σN whenever possible, as well as replace〈
ϕ′
1(n

′
µ)ϕ

′
1(n

′′
µ)
〉
0
by g0(n

′
µ − n′′

µ), we get

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0

=

Nd∑

nµ




α− α0 + λv20

2

〈
ϕ′2
1 (nµ)ϕ

′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0
+

+
α− α0 + λv20

2
(N− 2)σ2

0 g0(n
′

µ − n′′

µ)+

+
α− αN + 3λv20

2
σ2
N g0(n

′

µ − n′′

µ)+

+
λ

4

〈
ϕ′4
1 (nµ)ϕ

′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0
+

+
λ

2
(N− 2)σ2

0

〈
ϕ′2
1 (nµ)ϕ

′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0
+

+
λ

2
σ2
N

〈
ϕ′2
1 (nµ)ϕ

′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0
+

+
λ

2
(N− 2)σ2

0σ
2
N g0(n

′

µ − n′′

µ)+

+
λ

4

〈[
N−1∑

i=2

ϕ′2
i (nµ)

]2〉

0

g0(n
′

µ − n′′

µ)+

+
λ

4

〈
ϕ′4
N(nµ)

〉
0
g0(n

′

µ − n′′

µ)



 .

We may now use the known value of the expectation value of the squared sum. From
Appendix B, Equation (B.14), we get

〈[
N−1∑

i=2

ϕ′2
i (nµ)

]2〉

0

= N(N− 2)σ4
0.

We may also use the fact that it can be shown that

〈
ϕ′4
N(nµ)

〉
0

= 3σ4
N,〈

ϕ′2
1 (nµ)ϕ

′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0

= σ2
0 g0(n

′

µ − n′′

µ) + 2 g0(nµ − n′

µ) g0(nµ − n′′

µ),〈
ϕ′4
1 (nµ)ϕ

′

1(n
′

µ)ϕ
′

1(n
′′

µ)
〉
0

= 3σ4
0 g0(n

′

µ − n′′

µ) + 12σ2
0 g0(nµ − n′

µ) g0(nµ − n′′

µ),
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also found in Appendix B, Equations (B.8), (B.10) and (B.12), in order to write for our
expectation value

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0

=
Nd∑

nµ




α− α0 + λv20

2
σ2
0 g0(n

′

µ − n′′

µ)+

+
[
α− α0 + λv20

]
g0(nµ − n′

µ) g0(nµ − n′′

µ)+

+
α− α0 + λv20

2
(N− 2)σ2

0 g0(n
′

µ − n′′

µ)+

+
α− αN + 3λv20

2
σ2
N g0(n

′

µ − n′′

µ)+

+
3λ

4
σ4
0 g0(n

′

µ − n′′

µ)+

+ 3λσ2
0 g0(nµ − n′

µ) g0(nµ − n′′

µ)+

+
λ

2
(N− 2)σ4

0 g0(n
′

µ − n′′

µ)+

+ λ(N− 2)σ2
0 g0(nµ − n′

µ) g0(nµ − n′′

µ)+

+
λ

2
σ2
Nσ

2
0 g0(n

′

µ − n′′

µ)+

+ λσ2
N g0(nµ − n′

µ) g0(nµ − n′′

µ)+

+
λ

2
(N− 2)σ2

0σ
2
N g0(n

′

µ − n′′

µ)+

+
λ

4
N(N− 2)σ4

0 g0(n
′

µ − n′′

µ)+

+
3λ

4
σ4
N g0(n

′

µ − n′′

µ)



 .

Next we group all terms containing g0(n
′
µ − n′′

µ) and simplify to get

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0

=
Nd∑

nµ

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
g0(n

′

µ − n′′

µ)

+
Nd∑

nµ

{[
α− α0 + λv20

]
+ λ(N+ 1)σ2

0 + λσ2
N

}
g0(nµ − n′

µ) g0(nµ − n′′

µ).

The sum over nµ can now be done in all terms in the first group, yielding
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〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
g0(n

′

µ − n′′

µ)

+
[
α− α0 + λv20 + λ(N+ 1)σ2

0 + λσ2
N

] Nd∑

nµ

g0(nµ − n′

µ) g0(nµ − n′′

µ).

We must now perform the sum indicated. This is easily done using Fourier transforms.
From Appendix B, Equation (B.4), we get

Nd∑

nµ

g0(nµ − n′

µ) g0(nµ − n′′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + α0]2
,

which is expressed as a Fourier transform, with the general structure of a two-point function.
We have therefore the final result,

〈
ϕ′

1(n
′

µ)ϕ
′

1(n
′′

µ)SV [~ϕ
′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
g0(n

′

µ − n′′

µ) (A.6)

+
[
α− α0 + λv20 + λ(N+ 1)σ2

0 + λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + α0]2
.

A.4 The Expectation Value of ϕ′

N
(n′

µ
)ϕ′

N
(n′′

µ
)SV [~ϕ

′]

We now calculate the expectation value

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0
.

Once again only the field-even part of the action will yield a non-zero result, so that we
have

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0
=
〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV,even[~ϕ
′]
〉
0
.

Using the form of SV,even[~ϕ
′] shown in Equation (A.2), and if we already replace the

expectation values of squared fields by σ0 or σN whenever possible, as well as replace〈
ϕ′

N
(n′

µ)ϕ
′

N
(n′′

µ)
〉
0
by gN(n

′
µ − n′′

µ), we get

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0

=

Nd∑

nµ




α− α0 + λv20

2
(N− 1)σ2

0 gN(n
′

µ − n′′

µ)+

+
α− αN + 3λv20

2

〈
ϕ′2
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0
+

+
λ

4

〈[
N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

gN(n
′

µ − n′′

µ)+
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+
λ

2
(N− 1)σ2

0

〈
ϕ′2
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0
+

+
λ

4

〈
ϕ′4
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0



 .

We may now use the known value of the expectation value of the squared sum, found in
Appendix B, Equation (B.15),

〈[
N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

= (N+ 1)(N− 1)σ4
0,

as well as the fact that it can be shown that

〈
ϕ′2
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0

= σ2
N gN(n

′

µ − n′′

µ) + 2 gN(nµ − n′

µ) gN(nµ − n′′

µ),〈
ϕ′4
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0

= 3σ4
N gN(n

′

µ − n′′

µ) + 12σ2
N gN(nµ − n′

µ) gN(nµ − n′′

µ),

as one can also see in Appendix B, Equations (B.11) and (B.13), in order to write for our
expectation value

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0

=
Nd∑

nµ




α− α0 + λv20

2
(N− 1)σ2

0 gN(n
′

µ − n′′

µ)+

+
α− αN + 3λv20

2
σ2
N gN(n

′

µ − n′′

µ)+

+
[
α− αN + 3λv20

]
gN(nµ − n′

µ) gN(nµ − n′′

µ)+

+
λ

4
(N2 − 1)σ4

0 gN(n
′

µ − n′′

µ)+

+
λ

2
(N− 1)σ2

0σ
2
N gN(n

′

µ − n′′

µ)+

+ λ(N− 1)σ2
0 gN(nµ − n′

µ) gN(nµ − n′′

µ)+

+
3λ

4
σ4
N gN(n

′

µ − n′′

µ)+

+ 3λσ2
N gN(nµ − n′

µ) gN(nµ − n′′

µ)



 .

Next we group all terms containing gN(n
′
µ − n′′

µ) and simplify to get

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0

=
Nd∑

nµ

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
gN(n

′

µ − n′′

µ)
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+
Nd∑

nµ

{[
α− αN + 3λv20

]
+ λ(N− 1)σ2

0 + 3λσ2
N

}
gN(nµ − n′

µ) gN(nµ − n′′

µ).

The sum over nµ can now be done in all terms of the first group, yielding

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
gN(n

′

µ − n′′

µ)

+
[
α− αN + 3λv20 + λ(N− 1)σ2

0 + 3λσ2
N

] Nd∑

nµ

gN(nµ − n′

µ) gN(nµ − n′′

µ).

We must now perform the sum indicated. We get from Appendix B, Equation (B.5),

Nd∑

nµ

gN(nµ − n′

µ) gN(nµ − n′′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + αN]2
.

We have therefore the final result

〈
ϕ′

N(n
′

µ)ϕ
′

N(n
′′

µ)SV [~ϕ
′]
〉
0

= Nd

[
α− α0 + λv20

2
(N− 1)σ2

0 +
α− αN + 3λv20

2
σ2
N+

+
λ

4
(N2 − 1)σ4

0 +
λ

2
(N− 1)σ2

0σ
2
N +

3λ

4
σ4
N

]
gN(n

′

µ − n′′

µ) (A.7)

+
[
α− αN + 3λv20 + λ(N− 1)σ2

0 + 3λσ2
N

] 1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + αN]2
.

B Table of Integrals and Lattice Sums

We give here a series of formulas and derivations involving Gaussian integrals, Gaussian
expectation values and lattice sums, in the context the model discussed in this paper, which
are used for the calculations presented. All these can be derived from the basic result in
momentum space

〈
ϕ̃′

i(kµ)ϕ̃
′∗

i (kµ)
〉
0
=

1

Nd

1

ρ2(kµ) + αi
, (B.1)

where αi is either α0 or αN, depending on the field component involved, and where ρ2(kµ)
are the eigenvalues of the discrete Laplacian on the lattice, which are given by

ρ2(kµ) = 4

[
sin2

(
πk1
N

)
+ . . .+ sin2

(
πkd
N

)]
.

Since in the measure of S0[~ϕ
′] the modes are decoupled in momentum space, the same

expectation value with two different momenta kµ and k′µ is zero by simple parity arguments.
We use the notation for the two-point functions in position space,
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g0(nµ − n′

µ) =
〈
ϕ′

i(nµ)ϕ
′

i(n
′

µ)
〉
0
,

gN(nµ − n′

µ) =
〈
ϕ′

N(nµ)ϕ
′

N(n
′

µ)
〉
0
,

for i = 1, . . . ,N−1. These are, of course, the inverse Fourier transforms of the corresponding
two-point functions in momentum space,

g0(nµ − n′

µ) =
Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(nµ−n′

µ)
〈
ϕ̃′

i(kµ)ϕ̃
′∗

i (kµ)
〉
0
,

gN(nµ − n′

µ) =
Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(nµ−n′

µ)
〈
ϕ̃′

N(kµ)ϕ̃
′∗

N(kµ)
〉
0
.

In order to write this explicitly we may use the Fourier transforms of the fields, for example
in the case of the ϕ′

N
(nµ) field component,

gN(nµ − n′

µ) =
〈
ϕ′

N(nµ)ϕ
′

N(n
′

µ)
〉
0

=
Nd∑

kµ

Nd∑

k′µ

e−ı(2π/N)
∑d

µ(kµnµ+k′µn
′

µ)
〈
ϕ̃′

N(kµ)ϕ̃
′

N(k
′

µ)
〉
0
.

The expectation value in momentum space in non-zero only if we have k′µ = −kµ, in which
case we have the result, which can be obtained from Equation (B.1) above,

〈
ϕ̃′

N(kµ)ϕ̃
′

N(−kµ)
〉
0

=
〈
ϕ̃′

N(kµ)ϕ̃
′∗

N(kµ)
〉
0

=
1

Nd

1

ρ2(kµ) + αN

.

This eliminates one of the momentum-space sums, and thus we get

gN(nµ − n′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(nµ−n′

µ)

ρ2(kµ) + αN

, (B.2)

which is just the statement that gN(nµ − n′
µ) is the inverse Fourier transform of the

momentum-space propagator. Note that this is necessarily real, and that therefore the
imaginary part of the right-hand side vanishes. In a completely similar way, we have the
corresponding result for the other field N− 1 components, with i 6= N,

g0(nµ − n′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(nµ−n′

µ)

ρ2(kµ) + α0
.

The following sum involving g0(nµ −n′
µ) can also be easily calculated, using once more the

Fourier transforms,

Nd∑

nµ

gN(nµ − n′

µ) =
1

Nd

Nd∑

nµ

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

ρ2(kµ) + αN

.

The orthogonality relation can be used to simplify this expression, and thus we get
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Nd∑

nµ

gN(nµ − n′

µ) =
Nd∑

kµ

δd(kµ, 0µ)
eı(2π/N)

∑d
µ kµn′

µ

ρ2(kµ) + αN

=
e0

ρ2(0) + αN

=
1

αN

.

This is simply the zero-mode of the propagator. The same can be done for the other
components of the field, so we conclude that

Nd∑

nµ

g0(nµ − n′

µ) =
1

α0
,

Nd∑

nµ

gN(nµ − n′

µ) =
1

αN

. (B.3)

A similar sum with two chained factors of gN(nµ − n′
µ) can be calculated in a similar way.

Using the Fourier expressions of g0(nµ − n′
µ) and g0(nµ − n′′

µ) we get

Nd∑

nµ

g0(nµ − n′

µ) g0(nµ − n′′

µ)

=
Nd∑

nµ

1

N2d

Nd∑

k′µ

Nd∑

k′′µ

e−ı(2π/N)
∑d

µ[k
′

µ(nµ−n′

µ)+k′′µ(nµ−n′′

µ]

[ρ2(k′µ) + α0][ρ2(k′′µ) + α0]

=
1

N2d

Nd∑

k′µ

Nd∑

k′′µ

eı(2π/N)
∑d

µ(k
′

µn
′

µ+k′′µn
′′

µ)

[ρ2(k′µ) + α0][ρ2(k′′µ) + α0]

Nd∑

nµ

e−ı(2π/N)
∑d

µ(k
′

µ+k′′µ)nµ

=
1

Nd

Nd∑

k′µ

Nd∑

k′′µ

δd(k′µ,−k′′µ)
eı(2π/N)

∑d
µ(k

′

µn
′

µ+k′′µn
′′

µ)

[ρ2(k′µ) + α0][ρ2(k′′µ) + α0]

=
1

Nd

Nd∑

k′′µ

e−ı(2π/N)
∑d

µ(k
′′

µn
′

µ−k′′µn
′′

µ)

[ρ2(k′′µ) + α0]2
.

We see therefore that we get the sum expressed as a Fourier transform, with the general
structure of a two-point function,

Nd∑

nµ

g0(nµ − n′

µ) g0(nµ − n′′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + α0]2
. (B.4)

A similar result is true, of course, for the remaining field component

Nd∑

nµ

gN(nµ − n′

µ) gN(nµ − n′′

µ) =
1

Nd

Nd∑

kµ

e−ı(2π/N)
∑d

µ kµ(n′

µ−n′′

µ)

[ρ2(kµ) + αN]2
. (B.5)

The squared dispersions, also referred to as widths or variances of the fields at a given site,
are denoted as
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σ2
0 =

〈
ϕ′2
i (nµ)

〉
0
,

σ2
N =

〈
ϕ′2
N(nµ)

〉
0
,

for i = 1, . . . ,N − 1. Using the expression of the two-point function in terms of Fourier
components we may write these explicitly as

σ2
0 =

1

Nd

Nd∑

kµ

1

ρ2(kµ) + α0
, (B.6)

σ2
N =

1

Nd

Nd∑

kµ

1

ρ2(kµ) + αN

. (B.7)

In terms of these quantities the following decompositions of higher-point functions can be
established, always for i = 1, . . . ,N− 1,

〈
ϕ′4
i (nµ)

〉
0

= 3σ4
0,〈

ϕ′4
N(nµ)

〉
0

= 3σ4
N, (B.8)

〈
ϕ′3
i (nµ)ϕ

′

i(n
′

µ)
〉
0

= 3σ2
0 g0(nµ − n′

µ),〈
ϕ′3
N(nµ)ϕ

′

N(n
′

µ)
〉
0

= 3σ2
N gN(nµ − n′

µ), (B.9)
〈
ϕ′2
i (nµ)ϕ

′

i(n
′

µ)ϕ
′

i(n
′′

µ)
〉
0

= σ2
0 g0(n

′

µ − n′′

µ) +

+2 g0(nµ − n′

µ) g0(nµ − n′′

µ), (B.10)
〈
ϕ′2
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0

= σ2
N gN(n

′

µ − n′′

µ) +

+2 gN(nµ − n′

µ) gN(nµ − n′′

µ), (B.11)
〈
ϕ′4
i (nµ)ϕ

′

i(n
′

µ)ϕ
′

i(n
′′

µ)
〉
0

= 3σ4
0 g0(n

′

µ − n′′

µ) +

+12σ2
0 g0(nµ − n′

µ) g0(nµ − n′′

µ), (B.12)
〈
ϕ′4
N(nµ)ϕ

′

N(n
′

µ)ϕ
′

N(n
′′

µ)
〉
0

= 3σ4
N gN(n

′

µ − n′′

µ) +

+12σ2
N gN(nµ − n′

µ) gN(nµ − n′′

µ). (B.13)

It is also not difficult to expand and calculate the following sums,

〈[
N−1∑

i=2

ϕ′2
i (nµ)

]2〉

0

= (N− 2)
〈
ϕ′4
1 (nµ)

〉
0
+ (N− 2)(N− 3)

〈
ϕ′2
1 (nµ)

〉2
0

= 3(N− 2)σ4
0 + (N− 2)(N− 3)σ4

0

= (N)(N− 2)σ4
0,〈[

N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

= (N− 1)
〈
ϕ′4
1 (nµ)

〉
0
+ (N− 1)(N− 2)

〈
ϕ′2
1 (nµ)

〉2
0

= 3(N− 1)σ4
0 + (N− 1)(N− 2)σ4

0

= (N+ 1)(N− 1)σ4
0,

so that we get the results

〈[
N−1∑

i=2

ϕ′2
i (nµ)

]2〉

0

= N(N− 2)σ4
0, (B.14)
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〈[
N−1∑

i=1

ϕ′2
i (nµ)

]2〉

0

= (N+ 1)(N− 1)σ4
0. (B.15)
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