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Abstract

We present here the results of stochastic simulations which show that the quan-
tization of the λφ4 model on a periodical Euclidean lattice in the presence of
localized external sources produces a discrete curved metrical geometry on a sim-
plicial complex defined over the lattice. The intrinsic physical scale defined by the
correlation length produced by the quantization process plays a central role in the
definition of this geometry. The renormalized mass associated to this correlation
length is measured on single links and plaquette diagonals of the lattice by means
of local observables related to the two-point function.
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1 Review of the Model

Consider the SO(2)-invariant λφ4 model as defined in the usual way, on a 4-dimensional
cubical Euclidean lattice with periodical boundary conditions and N sites in each di-
rection, labeled by integer coordinates nµ = 1, . . . , N , µ = 1, . . . , 4,

SN [ϕ] =
N∑

n1=1

. . .
N∑

n4=1


1

2

4∑

µ=1

∆µ~ϕ · ∆µ~ϕ +
α

2
~ϕ · ~ϕ +

λ

4
(~ϕ · ~ϕ )2 − ~ · ~ϕ


 , (1)

where ϕi(n1, . . . , n4), i = 1, 2 are the dimensionless field variables, α is the dimensionless
mass parameter, λ the dimensionless coupling constant, ∆µ is the forward difference,
the dot denotes scalar product in the internal space of the fields ~ϕ = (ϕ1, ϕ2), and
~ = (j1, j2) is an external source. The summation convention will not be used here,
sums over µ will be written explicitly.

One can take a classical continuum limit of this model. The classical solution on a
finite lattice is the configuration of the field ~ϕ that minimizes the function SN [ϕ], which
has a lower bound if λ > 0 or if λ = 0 with α ≥ 0. In order to take the continuum limit,
it is necessary that we introduce a dimensional parameter in the system, so that it will
be possible to define the concept of distance between points on the lattice. Classically
we assume that, in some system of units external to the model, our cubic lattice has
sides of length L. We define then the lattice spacing as a = L/N , the squared mass

as m2 = αa−2, the dimensional field as ~φ = ~ϕa−1 and the dimensional external source
as ~J = ~a−3. Taking now the limit N → ∞ with fixed L and a → 0, we have that
SN [ϕ] → S[φ] where

S[φ] =
∫

V
d4x


1

2

4∑

µ=1

∂µ
~φ · ∂µ

~φ +
m2

2
~φ · ~φ +

λ

4

(
~φ · ~φ

)2
− ~J · ~φ


 . (2)

Hence we recover the classical field theory in its usual continuum form, defined inside
a cubical periodical box of volume V = L4.

We may use the lattice to define the quantum theory starting from (1) in the way
described in [1]. Unlike the classical theory, the quantum theory has an intrinsic phys-
ical scale given by the correlation length associated to its renormalized mass. In the
continuum limit of the quantum theory it is this intrinsic scale which defines all dimen-
sional quantities, and hence there is no need to introduce an external physical scale.
For example, in this case we may measure the size of the box in terms of the intrinsic
scale by saying that we can fit L correlation lengths end-to-end along a side of the box.
In a complete field theory, containing all the particles and interactions which do in fact
exist in nature, this is the only way in which we may define the physical length scale,
since there is nothing external to such a complete theory. Here we have only a simple
incomplete model, but we would like to treat it as a laboratory for these ideas.

We define a version of the quantum theory on each finite lattice and afterwards
consider the limit of the sequence of these finite quantum theories as we increase N
indefinitely. In each finite lattice we define the quantum theory as a statistical model
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with a finite number of degrees of freedom. The observables are defined in the usual
way as

〈O〉 =

∫
[dϕ]O[ϕ]e−SN [ϕ]

∫
[dϕ]e−SN [ϕ]

,

where [dϕ] =
∏N

n1=1 . . .
∏N

n4=1

∏2
i=1 dϕi(n1, . . . , n4).

2 Local Observables

We will be paying particular attention to certain observables related to the finite dif-
ferences along links and plaquette diagonals of the lattice, namely

〈(∆µϕ
′

i)
2〉 = 〈[ϕ′

i(nµ + 1) − ϕ′

i(nµ)]2〉,

〈(∆µ1,µ2
ϕ′

i)
2〉 = 〈[ϕ′

i(nµ1
+ 1, nµ2

+ 1) − ϕ′

i(nµ1
, nµ2

)]2〉,

where we define the shifted field variables by ϕ′

i = ϕi − 〈ϕi〉. We may write these
observables in terms of the momentum-space propagators by means of finite Fourier
transformation, obtaining

〈(∆µϕ
′

i)
2〉 =

kM∑

k1=km

. . .
kM∑

k4=km

4 sin2

(
π

kµ

N

)
〈|ϕ̃′

i(k)|2〉,

〈(∆µ1,µ2
ϕ′

i)
2〉 =

kM∑

k1=km

. . .
kM∑

k4=km

4 sin2

(
π

kµ1
+ kµ2

N

)
〈|ϕ̃′

i(k)|2〉, (3)

where the sum over the integer variables kµ runs over the Fourier modes of the lattice,
with kM = 1 − km = N/2 for lattices with even N , while kM = −km = (N − 1)/2 for
lattices with odd N . The finite Fourier transforms, with the normalization we use here,
are given by

ϕ̃i(k) =
1

N4

kM∑

k1=km

. . .
kM∑

k4=km

exp


ı

2π

N

4∑

µ=1

kµnµ


ϕi(n),

and their inverses by

ϕi(n) =
N∑

n1=1

. . .
N∑

n4=1

exp


−ı

2π

N

4∑

µ=1

kµnµ


 ϕ̃i(k).

This gives us relations between local observables defined over individual links and pla-
quette diagonals of the lattice and the renormalized mass parameter αR which is con-
tained in the two-point function. As it happens, in the λφ4 model the momentum-space
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Figure 1: Test of the local observables for field component ϕ1 with N = 6 and r = 0.1.
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Figure 2: Test of the local observables for field component ϕ2 with N = 6 and r = 0.1.
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Figure 3: Test of the local observables for field component ϕ1 with N = 6 and r = 1.0.
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Figure 4: Test of the local observables for field component ϕ2 with N = 6 and r = 1.0.
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propagators for each field component can be fitted very precisely by functions of the
form

1

N4

1

ρ2(k) + αR

,

for all allowed values of α and λ, in both the symmetric and broken-symmetric phases,
where the quantities

ρ2(k) = 4

[
sin2

(
πk1

N

)
+ . . . + sin2

(
πk4

N

)]

are the eigenvalues of the discrete Laplacian. The fact that the propagator of this model
does not differ appreciably from the propagator of the free theory has been known for
some time. For example, the surprising result reported in Fig. 1 of [2] is equivalent to
this. One-loop perturbation theory also gives the same result, which matches very well
the non-perturbative predictions of Monte Carlo simulations, as one can see in [1]. If
we use this fact, we may write the relations in (3) as

〈(∆µϕ
′

i)
2〉 =

1

N4

kM∑

k1=km

. . .
kM∑

k4=km

4 sin2
(
π kµ

N

)

ρ2(k) + αR,i

,

〈(∆µ1,µ2
ϕ′

i)
2〉 =

1

N4

kM∑

k1=km

. . .
kM∑

k4=km

4 sin2
(
π

kµ1
+kµ2

N

)

ρ2(k) + αR,i

. (4)

By measuring the left-hand sides and inverting these formulas numerically one is able
to obtain the values of the renormalized mass parameters αR,i associated to each field
component ϕi. We verified directly, in various situations where the model has discrete
translation invariance, that these formulas reproduce very precisely the values of αR,i as
obtained directly from their definition as the positions of the poles of the corresponding
propagators. These verifications confirm that the propagators of our model can indeed
be very well fitted by the form of the propagator of the free theory with appropriate
values for its mass parameter. Examples of such verifications can be found in Figs. 1
to 8. The parameters r and θ that appear in these graphs relate to α and λ by

α = −r cos(θ),

λ = r sin(θ). (5)

In the graphs the results from the fit to the propagator are labeled as props and the
two types of results from (4) as links and diags.

3 Lattice Geometry

We see, therefore, that the observables in (4) can be used as a means of measuring αR,i.
Furthermore, since they are local objects on the lattice, involving only two neighboring
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Figure 5: Test of the local observables for field component ϕ1 with N = 8 and r = 0.1.
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Figure 6: Test of the local observables for field component ϕ2 with N = 8 and r = 0.1.
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Figure 7: Test of the local observables for field component ϕ1 with N = 8 and r = 1.0.
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Figure 8: Test of the local observables for field component ϕ2 with N = 8 and r = 1.0.
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sites, they allow us to measure αR,i in a local way, associating the resulting value to
a single link or plaquette diagonal and therefore allowing us to detect dependencies of
αR,i on position and direction.

Of course, one does not expect any such dependencies in situations where the discrete
translation and rotation invariances of the model are fully realized on the lattice, a fact
which is easily verified numerically. However, the introduction of localized external

sources breaks some of these invariances. External sources are routinely considered in
the formalism of the effective action but, in that setting, they are treated as infinitesimal
objects and eventually made to vanish. In this paper we consider the effects of non-
infinitesimal external sources. These are to be interpreted in the usual way as classical
objects interacting with our model, that is, the effects of large agglomerations of energy
in bound states such as, for example, classical apparata involved in the production and
detection of particles.

With sufficiently strong external sources one observes that, using (4) to measure
αR,i for each individual link and plaquette diagonal of the lattice, they indeed depend
on position and direction with respect to the location of the source. Using one of the
resulting αR,i, say for the field component i = 2, to define the intrinsic scale of lengths
throughout the lattice, and considering that the inclusion of a sufficient number of
diagonals of its hyper-cubical cells will turn the lattice into a simplicial complex, one
obtains on it a discrete simplicial geometry. Note that here we treat the model as
an entity by itself, and insist on using the intrinsic physical scale defined within it to
define what is meant by the unit of length. The geometry comes about when we use this
intrinsic physical scale to measure the lengths of all links and diagonals of the lattice,
and hence of all paths formed by sequences of such elementary geometrical objects.

One can understand the use of relations (4) in a setting where one does not have
the usual discrete translation and rotation invariances in the following way. If one has
discrete translational invariance, it is clear that the use of finite Fourier transformation
is a correct way to extract from the theory the behavior of the two-point function at
large distances and hence to determine the renormalized mass. Within this context
the equations in (4) establish the relation between the long-range definition of the
renormalized mass and the short-range correlations along single links and plaquette
diagonals. If one introduces external sources which break discrete translation invariance,
then it is no longer so clear how one can extract the renormalized mass from the
momentum-space propagator. For example, it is well known that in systems with fixed
boundary conditions one must use another set of mode functions for this purpose, which
are the eigenfunctions of the Laplacian in those systems [3].

However, the dynamics of the model still implies certain short-range correlations
along links and diagonals, although these may no longer be the same for all links or
diagonals along the lattice. One may imagine that a link or diagonal of the lattice is
also part of a tangent lattice, which has the same size and dimension of our lattice but
in which there are no external sources and over which the short-range correlations are
homogeneous, that is, the same for all the links or diagonals along this tangent lattice.
One may think of equations (4) as relating the long-range and short-range correlations
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in this tangent lattice. In the continuum limit, the tangent lattice bears to the flat
tangent space at each point the same relation that the lattice bears to the (possibly
curved) space-time. For sufficiently large lattices any given site will be many links away
from the position of the external source and then a small patch of the lattice around
the given site can be well approximated by a corresponding portion of the flat tangent
lattice.

We imagine that in this tangent lattice there is a set of fields ϕi(t) similar in type
and number to the fields of the actual lattice, with a dynamics given by a similar action.
Although on a finite lattice the values of 〈ϕi〉 and 〈ϕ2

i 〉 will be slightly different for the
fields ϕi(+) and ϕi(−) at each of the two sites on the two ends of any given link or
diagonal, the differences disappear in the continuum limit, where the lattice spacing
goes to zero and the two sites become infinitely close to one another. Therefore, we
may define the tangent lattice as having a homogeneous dynamics producing the average
values of 〈ϕi〉 and 〈ϕ2

i 〉 on both sites. Since in this tangent lattice there is a dynamical
system similar to the one in the actual lattice, with two parameters α(t) and λ(t), we may
adjust these two parameters so that the one-point functions 〈ϕi(t)(+)〉 and 〈ϕi(t)(−)〉 are
both equal to the average of 〈ϕi(+)〉 and 〈ϕi(−)〉 and so that the two-point function in
the tangent lattice 〈ϕi(t)(+)ϕi(t)(−)〉 has the same values as 〈ϕi(+)ϕi(−)〉 in the actual
lattice.

In this fashion we define in a complete way a dynamical system in the tangent
lattices at each point of the actual lattice which reproduce locally the observables of
the original dynamical system in the actual lattice. This defines the relation between
the renormalized mass parameter αR as defined in the actual lattice and in the tangent
lattice, where the dynamics is homogeneous and invariant by discrete translations and
rotations and hence where relations (4) hold. The introduction of this tangent structure
makes it clear how we may examine the geometry induced by the presence of a non-
homogeneous external source even on the rather small lattices which we are able to
run with the limited computer resources available. Of course, the simulations will be
performed only on the actual lattice, not on the tangent lattices.

4 Results from the Simulations

In order to examine the character of the generated geometry we performed simulations
of the model with a constant source located on a single line of sites along the direction
µ = 1, which we chose arbitrarily as the temporal direction, representing the world-line
of a point source at the origin. In order to obtain the renormalized masses at each
link and plaquette diagonal we measured over them the observables defined in (4), for
i = 2. We used the largest value of the external source along that component that we
were able to run, j1 = 0 and j2 = 10. For simplicity of the computational effort we
chose to examine the resulting geometry looking at the two-dimensional spatial sections
containing the origin, where the source lies. In this way we can examine the geometry
through the construction of embeddings of these two-dimensional sections in a fictitious
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Figure 9: Embedding in the symmetric phase, for N = 8, r = 1, θ = 120o.

-4 -3 -2 -1 0 1 2 3 4
-4

-3
-2

-1
0

1
2

3
4

0
0.5

1
1.5

2
2.5

3
3.5

4

Figure 10: Embedding in the broken-symmetric phase, for N = 8, r = 1, θ = 30o.
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three-dimensional Euclidean space. These sections respect all the translational and
rotational symmetries which are left in the system after the introduction of the sources.
Due to this, their embeddings should be flat if the four-dimensional intrinsic geometry
is flat.
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Figure 11: Embedding in the critical region, for N = 8, r = 1, θ = 60o.

The character of the resulting geometry depends markedly on the location in the
(α, λ) parameter plane where the simulations are performed. In the region which be-
comes the symmetric phase in the continuum limit one obtains a very localized curva-
ture, with a short range around the location of the source, as can be seen in Fig. 9. In
the region which becomes the broken-symmetric phase one obtains, quite differently, a
geometry with little local curvature but with long range effects and a conical singular-
ity at the position of the source, as can be seen in Fig. 10. In this case a fold in the
embedding appears, along the border of the lattice, probably caused by the periodical
boundary conditions. The results are particularly interesting in the region close to the
continuum-limit critical curve, as can be seen in Fig. 11. In this case one can recognize
a clearly curved geometry, particularly so in the vicinity of the source, but extending
to the whole lattice.

The scales in these graphs were chosen to give a fair rendition of the embeddings
and the overall scale of each graph is not significant, corresponding to a mere change
of units of length. The parameters r and θ mentioned in them are those defined in (5).
The ranges θ ≤ 0o and θ > 180o are not allowed, corresponding to the unstable region
where λ is negative, and θ = 180o corresponds to the free theory, in which the geometry
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Figure 12: Embedding for the free theory, for N = 8, r = 1, θ = 180o.

should be flat even in the presence of the non-homogeneous external source, as can be
easily verified by direct calculation. This case was used to test the programs and it
does give a flat geometry, as can be seen in Fig. 12.

For the construction of the embeddings it is necessary to solve an embedding prob-
lem which consists of finding a surface in a three-dimensional Euclidean space having
the same intrinsic two-dimensional geometry of our section. This problem was solved
numerically by a stochastic relaxation process. Note that the embedding problem does
not necessarily have a unique solution. There is a drift within the set of possible so-
lutions which happens along with the relaxation process. In order to minimize this
drift we perform the relaxation using all the symmetry constraints which we can im-
pose. However, this is not always enough to stabilize completely the embedding, which
remains subject to foldings like the one which appears in Fig. 10.

The process of stochastic relaxation was executed in each case until the embedding
errors fell below a certain level, chosen to be compatible with our statistical errors.
Figs. 13 to 16 contain graphs of the residual embedding errors. The values presented
in these graphs correspond to the additional embedding displacements, relative to the
average length of the links and diagonals which connect to each site, which it would
be necessary to do at each site in order that the errors become zero. Typically the
embedding errors are no more than a few percent in the worst cases, in general at the
center of the lattice, where the singular source is located, decreasing to negligible levels
away from that point. Observe that in general there is no guarantee that there will be
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Figure 13: Fractional embedding errors in the symmetric phase, as a function of the
integer site coordinates nµ, for N = 8, r = 1, θ = 120o.
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Figure 14: Fractional embedding errors in the broken-symmetric phase, as a function
of the integer site coordinates nµ, for N = 8, r = 1, θ = 30o.
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Figure 15: Fractional embedding errors in the critical region, as a function of the integer
site coordinates nµ, for N = 8, r = 1, θ = 60o.
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Figure 16: Fractional embedding errors for the free theory, as a function of the integer
site coordinates nµ, for N = 8, r = 1, θ = 180o.
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a solution to the problem of the global embedding of a two-dimensional surface in a
three-dimensional Euclidean space. The mere fact that we do find such an embedding
with good numerical precision is in itself remarkable, indicating the special character
of the generated geometry.

5 Conclusions

We believe that the simulations performed leave little doubt about the fact that the in-
troduction of strong localized external sources in the λφ4 model generates on the lattice
metrical geometries with non-zero intrinsic curvature. We believe that this phenomenon
has not been recognized before and that it should be taken into account whenever one
considers the definition of quantum-field theoretical models by means of the Euclidean
lattice.
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