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Abstract

We work out, mostly but not completely by analytic methods, the solution of the
Einstein gravitational field equation in the presence of a localized fluid-matter energy-
momentum tensor, for a situation in which there is spherical symmetry, independence
of the time, and a definite homogeneous equation of state. In this work we follow
the arguments given, and use the results obtained and the conventions adopted in
Dirac’s marvelous little book on General Relativity [1]. We establish some of the main
properties, and discuss in a general way some other properties, of the two-parameter
class of solutions presented, including the nature of the geometry within the matter
distribution and the possibility of the formation of event horizons.

1 Introduction

The purpose of this paper is to establish the general solution of the Einstein gravitational
field equation, in the presence of localized sources, under a certain set of symmetry condi-
tions. We will assume that we have static fluid matter with a spherically symmetric energy
density and a definite equation of state, given by P = ωρ where P is the pressure, ρ is
the energy density, and ω is a positive real number in the interval (0, 1/3]. All the matter
present will be assumed to be localized, that is, to be essentially all contained within a
certain sphere whose surface is at the radial position rS , for a sufficiently large value of rS ,
satisfying the condition that rS ≥ rM , where rM is the Schwarzschild radius associated to
the total mass M . In this paper we will use the terms “mass” and “energy” interchangeably,
to refer to the total energy content of the fluid matter.

While the Schwarzschild solution is in fact a one-parameter family of solutions para-
metrized by the Schwarzschild radius rM , what we will present here is a two-parameter
family of solutions, parametrized by rM and ω. The solution presented will be given mostly
analytically, with the exception of a single dimensionless real function, which displays a
fairly simple qualitative behavior, but which at least for now can only be obtained in
detail numerically. However, we will see that the main properties of this function can be
ascertained analytically.

∗Email: delyra@latt.if.usp.br

1



2 General Review

Here we will review the main points and equations relating to the Einstein field equations
under the set of symmetry conditions that we are to impose on them. Our initial de-
velopment here will follow closely the one presented in [1]. Under the conditions of time
independence and of spherical symmetry around the origin of a spherical system of coordi-
nates (t, r, θ, φ), the Schwarzschild system of coordinates, the most general possible metric
is given by the invariant interval, written in terms of this spherical system of coordinates,

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2
[

dθ2 + sin2(θ)dφ2
]

, (1)

where ν(r) and λ(r) are two functions of only r. As one can see, in this work we will use
the time-like signature (+,−,−,−), following [1]. Expressing the coefficients of dt2 and dr2

by the exponentials shown ensures that they have the physically required signs.
Let us now comment on the physical interpretation of these coordinates. In this coordi-

nate system r is such that a sphere centered at the origin r = 0 and with its surface located
at the position r has total physical surface area equal to 4πr2. However, r is not the true
physical distance from the surface of the sphere to the origin, and furthermore dr is not

a variation of physical length in the radial direction. Note also that the time variable t is
not the true proper time at each spatial position. These two coordinates only recover their
usual meanings in the r → ∞ asymptotic limit, if that limit is accessible. In general the
element of physical length in the radial direction is given by exp[λ(r)]dr, and the element
of proper time at each position is given by exp[ν(r)]dt. Finally note that, on the other
hand, the quantities rdθ and r sin(θ)dφ are in fact true physical elements of arc length on
the surface of the sphere, that is, on the spherical surface located at the position r.

From this invariant interval we can simply read out the metric tensor gµν , that is, the
metric tensor in its covariant form,

gµν =













e2ν(r) 0 0 0

0 − e2λ(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2(θ)













. (2)

Note that we have for the determinant g = det(gµν) of the matrix gµν the value

√−g = eν(r)+λ(r) r2 sin(θ), (3)

which is not zero for r > 0 except at the two poles θ = 0 and θ = π, which are just
the usual singularities of the spherical system of coordinates, and can therefore be safely
ignored. Recalling that gνµ = δνµ is the identity matrix, we obtain at once the metric tensor
gµν , that is, the metric tensor in its contravariant form, which is the inverse matrix to the
diagonal matrix gµν given above. The matrix gµν in invertible almost everywhere due to
the fact that g 6= 0 almost everywhere, and the inverse is immediately found to be given by

gµν =













e−2ν(r) 0 0 0

0 − e−2λ(r) 0 0
0 0 −r−2 0
0 0 0 −r−2 sin−2(θ)













. (4)

The next step in the geometric development is to calculate from gµν and gµν the Christoffel
symbol of the second kind Γα

µν , which gives us the metric-compatible and torsion-free
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Γ0
µν =













0 ν ′(r) 0 0
ν ′(r) 0 0 0
0 0 0 0
0 0 0 0













,

Γ1
µν =













ν ′(r) e2ν(r)−2λ(r) 0 0 0
0 λ′(r) 0 0

0 0 −r e−2λ(r) 0

0 0 0 −r sin2(θ) e−2λ(r)













,

Γ2
µν =













0 0 0 0
0 0 r−1 0
0 r−1 0 0
0 0 0 − sin(θ) cos(θ)













,

Γ3
µν =













0 0 0 0
0 0 0 r−1

0 0 0 cot(θ)
0 r−1 cot(θ) 0













.

Table 1: The values of the components of the connection Γα
µν .

connection for the pseudo-Riemannian parallel transport in spacetime. It is given in terms
of the metric tensor by

Γα
µν = gασΓσµν

= gασ
1

2

(

∂νgσµ + ∂µgνσ − ∂σgµν

)

. (5)

This is the Christoffel symbol of the second kind, while the same quantity with all indices
downstairs is the Christoffel symbol of the first kind. They are symmetric on the last two
indices, as one can see, and they are non-tensors, because the derivative of a second-rank
tensor is not a tensor. Note that the three terms within parenthesis correspond to cyclic
permutations of the three indices. From now on the derivatives with respect to r of ν(r),
λ(r), and any other quantities that depend only on r, will be denoted by primes.

In this calculation many of the components of Γα
µν turn out to be zero, as reported

in [1], and if one recalls that this quantity is symmetric on the pair of indices (µ, ν), one gets
the results, written in matrix form on the two lower indices, that are shown in Table 1. This
matrix form is very useful as a basis for further calculations, such as that of the curvature
tensor. Using these expressions in the equation defining the Ricci curvature tensor Rµν in
terms of the connection, which is given by

Rµν = ∂νΓ
α
µα − ∂αΓ

α
µν + Γα

µνΓ
β
αβ − Γα

µβΓ
β
να, (6)

one gets a diagonal matrix for this curvature tensor, in its covariant form,
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Rµν =













R00 0 0 0
0 R11 0 0
0 0 R22 0
0 0 0 R33













, (7)

with the four diagonal elements given in [1], which are

R00 =

{

−ν ′′(r) + λ′(r)ν ′(r)−
[

ν ′(r)
]2 − 2ν ′(r)

r

}

e2ν(r)−2λ(r),

R11 =

{

ν ′′(r)− λ′(r)ν ′(r) +
[

ν ′(r)
]2 − 2λ′(r)

r

}

,

R22 =
{

[

1 + rν ′(r)− rλ′(r)
]

e−2λ(r) − 1
}

,

R33 =
{

[

1 + rν ′(r)− rλ′(r)
]

e−2λ(r) − 1
}

sin2(θ). (8)

With the use of gµν the same quantities can be written, in mixed form, as

R0
0 =

{

−ν ′′(r) + λ′(r)ν ′(r)−
[

ν ′(r)
]2 − 2ν ′(r)

r

}

e−2λ(r),

R1
1 =

{

−ν ′′(r) + λ′(r)ν ′(r)−
[

ν ′(r)
]2

+
2λ′(r)

r

}

e−2λ(r),

R2
2 = −

[

1

r2
+

ν ′(r)

r
− λ′(r)

r

]

e−2λ(r) +
1

r2
,

R3
3 = −

[

1

r2
+

ν ′(r)

r
− λ′(r)

r

]

e−2λ(r) +
1

r2
. (9)

We will tend to write all relevant tensor quantities in this mixed form, which is the most
useful for our purposes here. Note that the exponential exp[2ν(r)] has vanished from these
expressions, which therefore contain only the functions λ(r), λ′(r), ν ′(r) and ν ′′(r). Note
also that it turns out that R2

2 = R3
3, as a consequence of the symmetries that we imposed.

The last geometric element that we need to discuss here is the scalar curvature R = Rµ
µ,

which can be written as

R = R0
0 +R1

1 +R2
2 +R3

3. (10)

We therefore can write our result for the scalar curvature as

1

2
R =

{

−ν ′′(r) + λ′(r)ν ′(r)−
[

ν ′(r)
]2 − 2ν ′(r)

r
+

2λ′(r)

r
− 1

r2

}

e−2λ(r) +
1

r2
. (11)

In the theory of General Relativity the equation determining the gravitational field is writ-
ten in terms of the Ricci curvature tensor Rµν . The equation also involves the matter
energy-momentum tensor Tµν , which plays the role of the source of the gravitational field.
The Einstein gravitational field equation is a tensor equation which, written in its mixed
form, using our notation here, with the signature (+,−,−,−), following [1], is given by

Rν
µ − 1

2
Rgνµ = −κT ν

µ , (12)

where κ = 8πG/c4, G is the universal gravitational constant and c is the speed of light.
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Note that the imposition of spherical symmetry and time independence on the solution
of the Einstein field equation reduces the problem of finding that solution to a much simpler
one-dimensional one, on the variable r. While one can take any metric at all, so long as the
functions involved in it, such as ν(r) and λ(r), are differentiable to the second order, and
just calculate Rν

µ and R in order to simply verify whatever results for T ν
µ , with such a deeply

non-linear equation one is not free to choose the matter energy-momentum tensor T ν
µ in an

arbitrary way. Both the general structure of the theory and the symmetry conditions will
impose restrictions on the possible values of this tensor. For example, since we have, due
to the imposition of the symmetries, that R2

2 = R3
3, and since we also have that g22 = g33, it

follows at once that T 2
2 = T 3

3 . Also, since R
ν
µ and gνµ are symmetric tensors, so must be T ν

µ .

At this point we must pause in order to consider what information we have obtained
so far about T ν

µ . First of all, since under the current hypotheses the left-hand side of the
Einstein field equation turns out to be diagonal, and since we have also the additional fact
that the expressions of the last two component equations turn out to be identical, the same
must be true for the matter energy-momentum tensor T ν

µ on the right-hand side of the
equation, which must therefore be diagonal,

T ν
µ =













T 0
0 (r) 0 0 0

0 T 1
1 (r) 0 0

0 0 T 2
2 (r) 0

0 0 0 T 3
3 (r)













, (13)

and which must also satisfy T 2
2 (r) = T 3

3 (r). In addition to this, since there are no de-
pendencies on t, θ or φ, it follows that T ν

µ can depend only on r. Note, however, that
we still do not have any further information about any possible relations between T 0

0 (r),
T 1
1 (r) and T 2

2 (r). From this point on, in order to simplify the notation, we will use the
variable names T0(r), T1(r), T2(r) and T3(r) for the diagonal elements T 0

0 (r), T
1
1 (r), T

2
2 (r)

and T 3
3 (r), respectively, of the energy-momentum tensor T ν

µ in its mixed form.

The main general consistency condition imposed by the structure of the theory is that
the covariant divergence of T ν

µ must vanish, that is, the condition that we must have that

DνT
ν
µ = 0. (14)

This is due to the fact that the combination of tensors that constitutes the left-hand side
of the Einstein field equation satisfies the Bianci identity of the Ricci curvature tensor,

Dν

(

Rµν − 1

2
Rgµν

)

= 0, (15)

which therefore implies the requirement that the covariant divergence of Tµν must vanish,

DνT
µν = 0. (16)

Since gµν and gµν behave as constants under covariant differentiation, we may then write
this condition as the requirement on T ν

µ given in Equation (14). At this point we must
calculate this consistency condition for the specific case of time independence and spherical
symmetry. In other words, we must now write explicitly, under these conditions, the expres-
sion shown in Equation (14). This rather long calculation is done in detail in Section A.1
of Appendix A. As one can see there, three of the four conditions in Equation (14) are
automatically satisfied, since it results from that calculation that
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DνT
ν
0 (r) ≡ 0,

DνT
ν
2 (r) ≡ 0,

DνT
ν
3 (r) ≡ 0. (17)

Therefore, the only non-trivial condition is that given by DνT
ν
1 (r) = 0, which results in

[

rν ′(r)
]

[T0(r)− T1(r)] =
[

rT ′

1(r)
]

+ [2T1(r)− T2(r)− T3(r)], (18)

and which can also be written as

[

rν ′(r)
]

=
[rT ′

1(r)]

T0(r)− T1(r)
+

2T1(r)− T2(r)− T3(r)

T0(r)− T1(r)
. (19)

Note that this consistency condition on T ν
µ (r) ends up involving only the element of the

metric given by the function ν ′(r).
We now have at hand all the elements needed in order to write the Einstein gravitational

field equation under our hypotheses about the geometry, as well as the relevant consistency
condition. Using the elements Rν

µ and R, as well as the fact that gνµ = δνµ, we may now
write the left-hand side of the components of the Einstein field equation, in mixed form, as

R0
0 −

1

2
Rg00 =

[

1

r2
− 2λ′(r)

r

]

e−2λ(r) − 1

r2
,

R1
1 −

1

2
Rg11 =

[

1

r2
+

2ν ′(r)

r

]

e−2λ(r) − 1

r2
,

R2
2 −

1

2
Rg22 = −

{

−ν ′′(r) + λ′(r)ν ′(r)−
[

ν ′(r)
]2 − ν ′(r)

r
+

λ′(r)

r

}

e−2λ(r),

R3
3 −

1

2
Rg33 = −

{

−ν ′′(r) + λ′(r)ν ′(r)−
[

ν ′(r)
]2 − ν ′(r)

r
+

λ′(r)

r

}

e−2λ(r). (20)

It thus results that we get some fairly simple expressions for the left-hand sides of the
four components of the field equation in mixed form. Note once more that the exponential
exp[2ν(r)] is absent from these expressions, and also that the expressions of the last two
component equations are identical, and therefore not independent from each other. We must
now write the right-hand side of these equations, and thus introduce the energy-momentum
tensor T ν

µ (r) that was discussed before.
Let us recall that, for an homogeneous and isotropic cosmological spacetime, containing

equally homogeneous and isotropic fluid matter, in the co-moving system of coordinates,
in which the matter is locally at rest, we would have that T0(r) = ρ(r), where ρ(r) is the
energy density, and that T1(r) = T2(r) = T3(r) = −P (r), where P (r) is the pressure. We
can expect a similar situation in our case here, for the values of the components of the
energy-momentum tensor. Note that the pure radiation condition given by the equation
of state ρ(r) = 3P (r) translates here to the simple invariant condition T (r) = 0 on the
trace of T ν

µ (r). Note also that this condition holds for any type of massless matter field.
It is important to observe that up to this point we have assumed no more about these
quantities than what is implied by the structure of the field equation itself. Since we must
have that T2(r) = T3(r) as a consequence of the symmetries that we imposed, we have only
three independent components of the field equation, to which we now add the consistency
condition as an ancillary condition,

[

1

r2
− 2λ′(r)

r

]

e−2λ(r) − 1

r2
= −κT0(r),
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[

1

r2
+

2ν ′(r)

r

]

e−2λ(r) − 1

r2
= −κT1(r),

{

ν ′′(r)− λ′(r)ν ′(r)+

+
[

ν ′(r)
]2

+
ν ′(r)

r
− λ′(r)

r

}

e−2λ(r) = −κT2(r),

[

rν ′(r)
]

=
[rT ′

1(r)]

T0(r)− T1(r)
+

2T1(r)− T2(r)− T3(r)

T0(r)− T1(r)
, (21)

where we recall that T3(r) = T2(r). We will now impose on the components of T ν
µ (r) the

equation of state for fluid matter. Since the equation of state determines the nature of
the fluid, and assuming that no phase transitions occur within the volume occupied by
the matter, we must have the same equation of state throughout the volume of the fluid
matter. In other words, the equation of state must not dependent on the position r. Both
the energy density ρ(r) and the pressure P (r) may depend on r, but the relations between
them may not. This means that we are assuming, in this simplest case, that there is a
certain homogeneity regarding the state of the matter, which is assumed not to undergo
a phase transition along the possible values of r. This implies that we should have the
relations

T1(r) = −ωT0(r),

T2(r) = −ωT0(r),

T3(r) = −ωT0(r), (22)

which automatically satisfy the condition that T3(r) = T2(r), and where ω is a positive
real number in the interval (0, 1/3]. The value ω = 0 corresponds to pressureless dust and
the value ω = 1/3 corresponds to pure relativistic radiation. The value of ω in this range
determines what fraction of the energy is bound in the form or rest mass and what fraction
is in the form of relativistic radiation. Multiplying the first three component equations in
Equation (21) by r2 and making the replacements indicated above, which result in the fluid
matter being described by the single function T0(r), we get

{

1− 2
[

rλ′(r)
]}

e−2λ(r) = 1− κr2T0(r),
{

1 + 2
[

rν ′(r)
]}

e−2λ(r) = 1 + ωκr2T0(r),
{

r2ν ′′(r)−
[

rλ′(r)
] [

rν ′(r)
]

+

+
[

rν ′(r)
]2

+
[

rν ′(r)
]

−
[

rλ′(r)
]

}

e−2λ(r) = ωκr2T0(r),

[

rν ′(r)
]

= − ω

1 + ω

[rT ′

0(r)]

T0(r)
. (23)

At this point it is convenient to write all the equations in terms of the single function given
by T(r) = κr2T0(r), which also happens to be dimensionless, because due to the dimensions
of the Einstein field equation the quantity κT0(r) has the dimensions of [length]−2,

{

1−
[

2rλ′(r)
]}

e−2λ(r) = 1− T(r), (24)
{

1 +
[

2rν ′(r)
]}

e−2λ(r) = 1 + ωT(r), (25)
{

r2ν ′′(r)−
[

rλ′(r)
] [

rν ′(r)
]

+
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+
[

rν ′(r)
]2

+
[

rν ′(r)
]

−
[

rλ′(r)
]

}

e−2λ(r) = ωT(r), (26)

[

rν ′(r)
]

=
2ω

1 + ω
− ω

1 + ω

[rT′(r)]

T(r)
. (27)

These are the four equations that must be satisfied by the functions ν(r), λ(r) and T(r)
that represent a solution of the Einstein gravitational field equation in the presence of fluid
matter, under the hypotheses of time independence, spherical symmetry and a simple ho-
mogeneous local equation of state for the fluid matter. In the sequence we will first recover
the solution for empty space, that is, we will derive from these equations the Schwarzschild
solution, and then we will establish the solution in the presence of the fluid matter. Ulti-
mately, the Schwarzschild solution will play the role of being the r → ∞ asymptotic limit
of the solution in the presence of localized fluid matter.

3 Solution in Vacuum

The Schwarzschild solution corresponds to the vacuum case, in which there in no matter
present in the region where we are to determine the metric. For us here, this will be the
solution outside the sphere that contains essentially all the matter, a region, it should be
noted, that is continuously connected to radial infinity. In this empty-space case, which
therefore corresponds to T ν

µ = 0, the t and r component equations given in Equations (24)
and (25) reduce to

{

1− 2
[

rλ′(r)
]}

e−2λ(r) = 1,
{

1 + 2
[

rν ′(r)
]}

e−2λ(r) = 1, (28)

so that subtracting the two equations we have that

{

−2
[

rλ′(r)
]

− 2
[

rν ′(r)
]}

e−2λ(r) = 0 ⇒
λ′(r) + ν ′(r) = 0, (29)

assuming that r and the exponential exp[−2λ(r)] are never zero within the region of interest.
This implies that λ(r) + ν(r) must be a constant C, and since in the r → ∞ asymptotic
limit both λ(r) and ν(r) must go to zero in order for spacetime to approach the usual flat
Lorentzian spacetime, it follows that the constant must be C = 0. It therefore follows that
ν(r) = −λ(r), and hence that we are left with the single equation for λ(r) given by

[

1− 2rλ′(r)
]

e−2λ(r) = 1 ⇒
[

r e−2λ(r)
]

′

= 1 ⇒

r e−2λ(r) − r1 e
−2λ(r1) = r − r1, (30)

where we integrated from some arbitrary reference point r1 to r. We have therefore that

e−2λ(r) = 1− r1
r

[

1− e−2λ(r1)
]

. (31)

If we recall that exp[2λ(r)] is the coefficient of dr2 in the invariant interval, we realize that
there will be a singularity in the coordinate system if and when exp[−2λ(r)] = 0, and that
therefore we can take the value of the arbitrary reference point r1 down only to the point
rM at which this condition holds. If we make r1 = rM , we have that
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e−2λ(r1) = e−2λ(rM )

= 0, (32)

and therefore our solution for λ(r), for r > rM , becomes

e−2λ(r) = 1− rM
r

, (33)

where for r → rM we have that λ(r) → ∞. One can see that this expression has indeed the
expected behavior of vanishing at the point r = rM . Furthermore, since ν(r) = −λ(r), we
also have that

e2ν(r) = 1− rM
r

, (34)

where for r → rM we have that ν(r) → −∞. This completes the determination of the
metric, except for the value of rM . Note that when one solves the gravitational field equation
in this fashion one loses quite completely the explicit local connection with the sources. In
a way, one of the main objectives of this paper is to recover that direct connection. In
order to recover this connection in an indirect way, one takes recourse to a comparison with
the Newtonian limit for large values of r, which implies that rM = 2MG/c2, where M is
the total mass of the central source, as shown in [1]. The solution is therefore valid only
outside the sources, and in a region which must be continuously connected to the r → ∞
asymptotic limit. The complete metric is then given by

ds2 =
(

1− rM
r

)

dt2 −
(

1− rM
r

)

−1
dr2 − r2

[

dθ2 + sin2(θ)dφ2
]

, (35)

for r > rM . This is indeed the well-known Schwarzschild metric. We must now verify that
this solution in fact satisfies also the θ component equation and the consistency equation
shown in Equations (26) and (27). That this last one is satisfied is obvious since all the
components Tµ(r) are identically zero and therefore T(r) ≡ 0. In order to see this we may
simply write that equation in the form

T(r)
[

rν ′(r)
]

=
2ω

1 + ω
T(r)− ω

1 + ω
rT′(r), (36)

which makes this fact quite plain. In order to be able to verify Equation (26) we must first
calculate the relevant derivatives of the functions

ν(r) =
1

2
ln

(

r − rM
r

)

,

λ(r) =
1

2
ln

(

r

r − rM

)

, (37)

that characterize the metric. Calculating the first derivatives of these two quantities, as
well as the second derivative of ν(r), we have for the three relevant derivatives

rν ′(r) =
1

2

rM
r − rM

,

rλ′(r) = − 1

2

rM
r − rM

,

r2ν ′′(r) =
1

2

r2M − 2rrM
(r − rM )2

. (38)
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Figure 1: The embedding in a flat three-dimensional space of a two-dimensional spatial
section through the origin of the Schwarzschild solution.

Using the facts that λ′(r) = −ν ′(r) and that T(r) = 0 the θ component equation shown in
Equation (26) can be written as

{

r2ν ′′(r) + 2
[

rν ′(r)
]2

+ 2
[

rν ′(r)
]

}

e−2λ(r) = 0 ⇒

r2ν ′′(r) + 2
[

rν ′(r)
]2

+ 2
[

rν ′(r)
]

= 0, (39)

since we have that exp[−2λ(r)] 6= 0 for r > rM . Substituting the values of the derivatives
in the expression on the left-hand side of this equation we have that

1

2

r2M − 2rrM
(r − rM )2

+
2

4

r2M
(r − rM )2

+
2

2

rM
r − rM

=
1

2

r2M − 2rrM + r2M + 2rrM − 2r2M
(r − rM )2

= 0, (40)

which shows that this equation is in fact satisfied. Therefore, we have now shown that all
the relevant equations are satisfied by this vacuum solution, for r > rM .

While from the point of view of the differential geometry by itself there is no singularity
at r = rM , so that it is quite possible to extend this solution to the region where r < rM , it
is not possible to do so using the Schwarzschild coordinate system. It is necessary to change
to other systems of coordinates, and in doing so one loses the physical interpretations asso-
ciated to the Schwarzschild coordinates. The basic problem is that, as one can immediately
see in the Schwarzschild solution, when one crosses the rM boundary the physical roles of
the radial and temporal coordinates get interchanged, due to the changes in sign of the
factors multiplying dt2 and dr2 in the invariant interval. The interpretational issues arising
from this will not be discussed here, since they are irrelevant for our current purposes. All
that matters to us is the Schwarzschild solution for r > rM , which will be used as a guide in
the construction of the extended solution, valid in the presence of the localized fluid matter,
and which will become the r → ∞ asymptotic limit of that solution.

We may build a visualization of a two-dimensional spatial section of this vacuum solution
through the origin by means of a isometric embedding of the two-dimensional spatial section
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in a three-dimensional flat space, a section of which is shown in Figure 1. In order to do this
we fix t at zero, θ at π/2, and let r and φ vary so as to span a plane. The two-dimensional
spatial interval of the resulting two-dimensional section is given by

dℓ2 =
r

r − rM
dr2 + r2dφ2. (41)

We then introduce an embedding variable h(r) such that in the flat three-dimensional
embedding space spanned by (r, φ, h) we have for the element of length dλ

dλ2 = dr2 + r2dφ2 + dh2, (42)

using the cylindrical system of coordinates (r, φ, h). If we fix φ at some arbitrary value,
making dφ = 0, and impose that the length element dλ is given by the physical length of
the Schwarzschild solution associated to a variation dr,

dλ2 =
r

r − rM
dr2, (43)

then in the (r, h) plane of the embedding space, which is shown in Figure 1, we have that

dr2 + dh2 =
r

r − rM
dr2 ⇒

dh2 =
rM

r − rM
dr2. (44)

This relation between dh and dr can be integrated to yield a function h(r), and therefore a
two-dimensional curved surface within the three-dimensional flat embedding space, which
is described by the variables r and φ. The metric geometry over such a surface is that given
by the Schwarzschild solution for the section through the origin, and therefore this is an
isometric embedding of that two-dimensional geometry. Doing the integration we have

dh =

√
rM√

r − rM
dr ⇒

h(r) = 2
√
rM

√
r − rM , (45)

where we integrated on r, choosing the integration constant in such a way that h(rM ) = 0.
If we invert this relation a parabola results, giving r in terms of h,

r(h) = rM +
h2

4rM
, (46)

for all φ. If we rotate the tilted parabola shown on the right-hand side of Figure 1 around
the vertical h axis, that is, if we now let φ vary from 0 to 2π, this simple embedding
illustrates the two-dimensional form of the mouth of the famous “wormhole”, immediately
outside the event horizon located at r = rM , that is, for r ≥ rM and h ≥ 0.

For future comparison with the solution in the presence of matter we record here the
values of the following quantities in the case of the Schwarzschild solution. This vacuum
solution is characterized by the set of quantities

e2ν(r) =
r − rM

r
, (47)

e2λ(r) =
r

r − rM
, (48)

rν ′(r) =
1

2

rM
r − rM

, (49)
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rλ′(r) = − 1

2

rM
r − rM

, (50)

r
[

rν ′(r)
]

′

(r) = − 1

2

rrM
(r − rM )2

, (51)

where we used, in order to get from Equation (38) to Equation (51), the fact that

r
[

rν ′(r)
]

′

= r2ν ′′(r) + rν ′(r). (52)

These quantities are to be interpreted as the asymptotic values of the corresponding quan-
tities for the solution in the presence of fluid matter. This completes the discussion of the
Schwarzschild solution, and therefore we proceed now to the discussion of the solution in
the presence of localized fluid matter.

4 Solution with Fluid Matter

We will now describe a method for obtaining the solution in the presence of fluid matter.
We start with an informed guess about the form of the function λ(r). The ansatz that
we will present here is suggested by the well-known Jebsen-Birkhoff [2, 3] theorem, which
states that any spherically symmetric solution of the vacuum field equation must be both
static and asymptotically flat, and therefore must be given by the Schwarzschild metric. It
is to be noted, however, that this very statement implies, as a matter of course, that the
solution at issue lies in a region that has continuous access to radial infinity.

It is usually stated that the theorem also implies that the geometry within the vacuous
region between two spherically symmetric concentric shells, which do not need to be thin,
is given by a radial section of the Schwarzschild solution, with the corresponding internal
mass, between the corresponding two radii. However, this is not entirely correct, as one
can see in the discussion presented in [4]. While it is correct for the spatial part of the
geometry, there is a change in the temporal part. This can be seen in simple terms if one
realizes that there must be a red-shift/blue-shift relationship between the internal bounded
vacuous region and the external region at radial infinity. In order to see this it suffices
to consider a monochromatic beam of light propagating from radial infinity towards the
localized matter distribution, and passing through a thin radial hole made across the outer
shell, into the bounded vacuous region. It is quite clear that the blue shift undergone by
this beam of light is not the same that one would get in the absence of the outer shell, since
it includes the blue-shift effect of the mass in the outer shell. Therefore, the coefficient
exp[2ν(r)] of the term dt2 of the invariant interval, which gives this blue shift, must differ
from the one in the Schwarzschild solution for the internal mass.

In short, we may safely assume that the Jebsen-Birkhoff theorem does have the inter-
esting consequence that the geometry within a spherically symmetric empty shell of mass
must be given by a flat Minkowski metric. In other words, spacetime is flat there, and thus
the gravitational field must vanish inside an empty spherically symmetric shell, just as is
the case for Newtonian gravitation. However, there is a difference between this bounded
flat region and the flat space at radial infinity, because the relative rates of the passage of
time differ between the two regions. In other words, while one should expect that, in the
bounded vacuous region between two concentric shells, the metric should be such that the
radial factor given by exp[2λ(r)] would be the one in the Schwarzschild solution, with the
total mass that exists strictly within the external shell, one should not expect the same
to be true for the temporal factor given by exp[2ν(r)], which should display some signif-
icant difference with respect to the corresponding factor of the Schwarzschild solution for
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the internal mass. In fact, it is not difficult to see that the imposition of the condition
ν(r) = −λ(r) on the component equations given in Equations (24) and (25) implies at once
that T(r) ≡ 0, thus leading us back to the vacuum solution.

These facts strongly suggest that, in the case of the problem in the presence of fluid
matter, which we are considering in this paper, the spatial part of the geometry at the posi-
tion r is that due only to the mass within the sphere whose surface is at the position r, and
that at that location the solution should be given by the spatial part of the Schwarzschild
metric with an appropriate value of the mass. If we consider the factor exp[2λ(r)] in the
dr2 term of the invariant interval, and its value in the case of the Schwarzschild solution,
we are immediately led to consider writing this factor in the following way for the case of
the solution in the presence of fluid matter,

e2λ(r) =
r

r − rMβ(r)
, (53)

where rM = 2MG/c2 is the Schwarzschild radius associated to the total mass M of the
distribution of matter, and β(r) is a dimensionless function, presumably with values in the
interval [0, 1], so that rMβ(r) effectively corresponds to a certain fraction of that total
mass. This is the ansatz that we will use here. The case β(r) ≡ 1 corresponds, of course,
to the value of the quantity exp[2λ(r)] for the case of the original Schwarzschild solution.
Therefore, it is to be expected that in the r → ∞ asymptotic limit we will get β(r) → 1.
Of course, the correctness of this ansatz will have to be tested by the successful imposition
of the field equation, which is what we will go on to do right away.

Therefore, let us consider each component equation in turn and thus obtain expressions
for all the relevant quantities in terms of the single function β(r). Starting from this ansatz,
we may now use the t component of the field equation, shown in Equation (24), in order to
get the dimensionless quantity T(r). That equation can be written in the form

[

r e−2λ(r)
]

′

= 1− T(r) ⇒

[r − rMβ(r)]′ = 1− T(r) ⇒
1− rMβ′(r) = 1− T(r) ⇒

T(r) = rMβ′(r), (54)

where we used our ansatz, and which therefore determines T(r) in terms of β(r). Note that,
since T(r) is proportional to r2 times the energy density, and must therefore be positive,
we must have that β′(r) ≥ 0 for all values of r where the matter is located, and in fact
everywhere. From the same t component of the field equation, shown in Equation (24), we
can get directly the quantity rλ′(r), since that equation can be written as

1− 2rλ′(r) = e2λ(r) [1− T(r)]

=
r − rM [rβ′(r)]

r − rMβ(r)
⇒

2rλ′(r) =
r − rMβ(r)− r + rMrβ′(r)

r − rMβ(r)

=
−rMβ(r) + rMrβ′(r)

r − rMβ(r)
⇒

[

rλ′(r)
]

= − rM
2

β(r)− [rβ′(r)]

r − rMβ(r)
, (55)
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where we again used our ansatz, as well as the solution for T(r) given in Equation (54),
and which therefore determines λ′(r) in terms of β(r). Using now, once more, that result
for T(r) and the r component of the field equation, shown in Equation (25), we can get the
quantity rν ′(r), since that equation can be written as

1 + 2rν ′(r) = e2λ(r) [1 + ωT(r)]

=
r + ωrM [rβ′(r)]

r − rMβ(r)
⇒

2rν ′(r) =
r + ωrMrβ′(r)− r + rMβ(r)

r − rMβ(r)

=
ωrMrβ′(r) + rMβ(r)

r − rMβ(r)
⇒

[

rν ′(r)
]

=
rM
2

β(r) + ω [rβ′(r)]

r − rMβ(r)
, (56)

where we once again used our ansatz, and which therefore determines ν ′(r) in terms of
β(r). Note that ν ′(r) is not equal to −λ′(r), as would be the case for the Schwarzschild
solution. However, it is to be expected that ν ′(r) has −λ′(r) as its r → ∞ asymptotic limit.
With this we have two of the three quantities that appear in the left-hand side of the θ
component of the field equation, shown in Equation (26). Since we have that

r
[

rν ′(r)
]

′

= r2ν ′′(r) + rν ′(r), (57)

and using once again the result for T(r) given in Equation (54), the θ component equation
given in Equation (26) can now be written in the form

r
[

rν ′(r)
]

′

+
[

rν ′(r)
]2 −

[

rλ′(r)
] [

rν ′(r)
]

=
[

rλ′(r)
]

+ e2λ(r)ωrMβ′(r). (58)

In order to be able to write out this equation, we must now calculate in terms of β(r) the
quantity r [rν ′(r)]′. We can do this by simply differentiating the quantity [rν ′(r)]. The
detailed calculation can be found in Subsection A.2.1 of Appendix A, and the result is

r
[

rν ′(r)
]

′

= rM

(

ω [r − rMβ(r)]
{

r [rβ′(r)]′
}

+ ωrM [rβ′(r)]2+
+(1− ω)r [rβ′(r)]− rβ(r)

)

2[r − rMβ(r)]2
, (59)

which therefore determines ν ′′(r) in terms of β(r). We now have all the quantities that
appear in the left-hand side of the θ component of the field equation, shown in Equation (26).
In fact, just as in the case of the vacuum solution, the solution in the presence of fluid matter
is characterized by the following set of quantities, this time written in terms of β(r),

T(r) = rMβ′(r), (60)

e2λ(r) =
r

r − rMβ(r)
, (61)

rν ′(r) =
rM
2

β(r) + ω [rβ′(r)]

r − rMβ(r)
, (62)

rλ′(r) = − rM
2

β(r)− [rβ′(r)]

r − rMβ(r)
, (63)
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r
[

rν ′(r)
]

′

(r) =
rM
2





ω [r − rMβ(r)]
{

r [rβ′(r)]′
}

+

+ωrM [rβ′(r)]2+
+(1− ω)r [rβ′(r)]− rβ(r)





[r − rMβ(r)]2
. (64)

Note that the quantity exp[2ν(r)] remains undetermined, which does not really present a
problem, since it does not appear in the components of the field equation. Once β(r) is
determined in each particular case, ν(r) can be obtained from ν ′(r) by straightforward inte-
gration. These expressions are to be used in what follows in order to define the asymptotic
conditions in the r → ∞ asymptotic limit. This is what we will do next. Later on we will
return to the discussion of the single equation yet to be satisfied, the θ component equation
in the form shown in Equation (58).

On the one hand, in Section 3 we calculated from the vacuum solution the values of the
r → ∞ asymptotic limits, for the various corresponding quantities involved in the solution
in the presence of fluid mater, asymptotic values that were given in Equations (47)—(51).
On the other hand, in this section we calculated the solution in the presence of fluid matter,
and listed what is essentially the same set of relevant quantities in Equations (60)—(64).
We are now ready to discuss the corresponding asymptotic conditions. It is to be expected,
of course, that they will result in corresponding asymptotic conditions on β(r) and its
derivatives. We start by discussing the asymptotic condition on λ(r). As we already
discussed before, the expression in Equation (48) can only be the asymptotic limit of the
expression in Equation (61) if we have that

lim
r→∞

β(r) = 1. (65)

Note that we do not have to worry directly about the asymptotic condition on ν(r), because
ν(r) itself does not appear in the component equations, which contain only its derivatives.
Therefore, next we discuss the asymptotic condition on λ′(r). Given that β(r) → 1, the
expression in Equation (50) can only be the asymptotic limit of the expression in Equa-
tion (63) if we have that

lim
r→∞

[

rβ′(r)
]

= 0. (66)

Next we discuss the asymptotic condition on ν ′(r). It is quite clear that the conditions
above on β(r) and β′(r) are sufficient to ensure that the expression in Equation (49) will
be the asymptotic limit of the expression in Equation (62). Let us recall that, once we have
ν ′(r) in terms of a known function β(r), we can obtain ν(r) from ν ′(r) by straightforward
integration. When doing this integration, the integration constant must be chosen so that
ν(r), just like λ(r), goes to zero for r → ∞, of course. In that limit we also expect that
ν(r) = −λ(r). Finally, we discuss the asymptotic condition on ν ′′(r). Given that β(r) → 1
and that [rβ′(r)] → 0, the expression in Equation (51) can only be the asymptotic limit of
the expression in Equation (64) if we have that

lim
r→∞

[

r2β′′(r)
]

= 0. (67)

Therefore, we have the complete set of asymptotic conditions to be satisfied by β(r) and
its derivatives,

lim
r→∞

β(r) = 1,

lim
r→∞

[

rβ′(r)
]

= 0,

lim
r→∞

[

r2β′′(r)
]

= 0. (68)
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We must now discuss what happens near r = 0. At this point we will have conditions
associated to the regularity of the energy density. If we consider that, according to the
definitions in Section 2, the energy density is given by

T0(r) =
T(r)

κr2
, (69)

where we also have that T(r) = rMβ′(r), as shown in Equation (54), it follows that we have

T0(r) =
rM
κ

β′(r)

r2
. (70)

If the energy density T0(r) is to be non-singular at r = 0, and have a limited integral around
that point, then we must have that the limit

lim
r→0

β′(r)

r2
(71)

exists and is finite. This implies that at least for the first derivative of β(r) we must have
that β′(0) = 0. In fact, since we must also have that β′(r)/r → 0 when r → 0, one can
show that the same has to be true for the second derivative as well, that is, we also have
that β′′(0) = 0. This leads us to a picture of a function β(r) that has both zero derivative
and zero second derivative at both ends of the real r semi-axis.

One may also argue that it is necessary that β(0) not be a strictly positive number. The
argument leading to this condition is as follows. According to the motivation leading to the
construction of our solution, the quantity rMβ(r), where rM = 2MG/c2 and β(r) ∈ [0, 1],
is effectively a certain fraction of the total mass M . If β(0) > 0 then this quantity has a
finite and non-zero positive limit when we make r → 0. What this means is that there is a
certain finite and non-zero mass, given by rMβ(0), which is inside a sphere whose surface
is at the radial position r, and that this holds for all r. However, this means that for some
value of r this finite and non-zero mass will be inside the Schwarzschild radius associated to
itself, thus leading to the existence of an event horizon within the matter distribution, which
contradicts our hypotheses here. In order to avoid this, and assuming that β(r) ∈ [0, 1], we
might be tempted to conclude that we must have that

lim
r→0

β(r) = 0, (72)

that is, that we must have β(0) = 0. However, we should not take this heuristic motivation
too seriously, and while it seems inevitably true that we cannot have β(0) > 0, we also
cannot definitely assert that we must have β(0) = 0, because there is really no reason
why β(r) cannot be negative. Instead, once the ansatz given in Equation (53) is assumed,
we must then follow wherever the field equation takes us. In fact, contrary to what the
heuristic intuition may seem to indicate, β(0) is indeed always negative. When β(r) becomes
negative it becomes impossible for the factor exp[2λ(r)] to diverge, as it does at the event
horizon of the Schwarzschild solution, and this makes the solution regular and avoids the
existence of event horizons within the matter distribution. Considering the fact that, due
to the positivity of the energy, we must have β′(r) ≥ 0 for all r, and taking into account the
asymptotic conditions derived here for β(r) and its derivatives, as well as the conditions at
r = 0, we can state that the function β(r) must have a very simple qualitative behavior,
going monotonically from some negative value at r = 0 to the value 1 for r → ∞. We have
therefore the complete set of relevant conditions at the two ends of the real r semi-axis,
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lim
r→0

β′(r) = 0,

lim
r→0

β′′(r) = 0,

lim
r→∞

β(r) = 1,

lim
r→∞

[

rβ′(r)
]

= 0,

lim
r→∞

[

r2β′′(r)
]

= 0. (73)

Note that, since we have here a second-order field equation, which will give origin to a
second-order equation for β(r), we in fact can satisfy only two independent conditions
using the corresponding integration constants. Therefore any additional conditions must
arise as automatic consequences of the first two. As we will see, it is possible to reduce the
equation for β(r) to a form in which one has only two free parameters to deal with, both
physically meaningful, one of which will be given by the total massM present, leading to the
parameter rM , and only one, the parameter ω, which directly affects the integration process
itself. Since we have fewer parameters to adjust than conditions to meet, the problem can
only be solved if there are internal consistency structures within the system that guarantee
that most conditions are automatically met when we adjust the parameters in order to
satisfy what conditions we can. We will see that this is indeed the case.

5 Final Component Equation

Up to this point in our development all the quantities related to our new solution have been
left written in terms of the single function β(r). The only equation still to be satisfied is
the θ component of the field equation, shown in Equation (58), the one that, therefore, will
become the equation that determines β(r). The rather long detailed calculations needed in
order to write that equation explicitly in terms of β(r), as well as its subsequent simplifica-
tion, can be found in Subsection A.2.2 of Appendix A. The result is a rather complicated
non-linear differential equation that, together with the limiting conditions discussed before,
determines the function β(r), for all r, and that for convenience we will write with an extra
overall factor of rM , as

2ωrM [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ ω(1 + ω)r2M
[

rβ′(r)
]2

+

−6ωrrM
[

rβ′(r)
]

+ (1 + 7ω)r2Mβ(r)
[

rβ′(r)
]

= 0, (74)

with the boundary conditions at r = 0 and the asymptotic conditions for r → ∞ given by

β′(0) = 0,

β′′(0) = 0,

lim
r→∞

β(r) = 1,

lim
r→∞

[

rβ′(r)
]

= 0,

lim
r→∞

[

r2β′′(r)
]

= 0. (75)

It is an interesting fact that this same equation for β(r), given in Equation (74), can also
be derived from the consistency condition shown in Equation (27). This serves as an inde-
pendent verification of the correctness of the derivation mentioned above and detailed in
Appendix A. The detailed calculation for this second derivation can be found in Subsec-
tion A.2.3 of Appendix A. If we use in the consistency condition the results obtained before
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for ν ′(r) and T(r), we find that it becomes exactly the same expression shown in Equa-
tion (74). Therefore, once we have determined β(r) we will have satisfied all the relevant
equations, including all the component equations and the consistency condition as well.

We can simplify Equation (74) somewhat by means of a simple change of variables.
For this purpose we define a new dimensionless radial variable by ξ = r/r0 where r0 is
simply an arbitrary reference point for measuring the radial positions. We then have the
particular value ξM = rM/r0, which corresponds therefore to the total mass M . It would
also be possible to define another particular value, given by ξS = rS/r0, but this value will
not appear in the equations, due to the difficulty in defining in general, and with precision,
the position rS of the sphere that contains essentially all the fluid matter. It is not difficult
to see that the definition of ξ implies for the corresponding derivatives that we have

r∂r = ξ∂ξ. (76)

With this, and using, from now on, the primes to denote derivatives with respect to ξ, we
can write our final equation in the form

2ωξM [ξ − ξMβ(ξ)]
{

ξ
[

ξβ′(ξ)
]

′

}

+ ω(1 + ω)ξ2M
[

ξβ′(ξ)
]2

+

−6ωξξM
[

ξβ′(ξ)
]

+ (1 + 7ω)ξ2Mβ(ξ)
[

ξβ′(ξ)
]

= 0. (77)

We may further simplify this equation by defining a new dimensionless function γ(ξ), in
terms of the equally dimensionless function β(ξ), by

γ(ξ) =
rM
r0

β(ξ)

= ξMβ(ξ). (78)

Therefore, we get for our final equation, now for the function γ(ξ),

2ω [ξ − γ(ξ)]
{

ξ
[

ξγ′(ξ)
]

′

}

+ ω(1 + ω)
[

ξγ′(ξ)
]2

+

−6ωξ
[

ξγ′(ξ)
]

+ (1 + 7ω)γ(ξ)
[

ξγ′(ξ)
]

= 0, (79)

where we see that the parameter ξM no longer appears in the equation, which now depends
only on the parameter ω. On the other hand, ξM now appears in one of the relevant
boundary and asymptotic conditions on γ(ξ). The boundary conditions at ξ = 0 and the
ξ → ∞ asymptotic conditions for γ(ξ) are given by

γ′(0) = 0,

γ′′(0) = 0,

lim
ξ→∞

γ(ξ) = ξM ,

lim
ξ→∞

[

ξγ′(ξ)
]

= 0,

lim
ξ→∞

[

ξ2γ′′(ξ)
]

= 0. (80)

Note that with these changes of variable we have clearly separated the roles of the parameter
ξM , which represents here the total mass M , and of the parameter ω, which represents here
the state of the fluid matter. While the parameter ω appears in the differential equation
and therefore modulates the propagation of the solution along ξ, the parameter ξM appears
only in the asymptotic condition involving γ(ξ). We may now write all our previous results
in terms of γ(ξ), rather that β(r),
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T(ξ) = γ′(ξ), (81)

e2λ(ξ) =
ξ

ξ − γ(ξ)
, (82)

[

ξν ′(ξ)
]

=
1

2

γ(ξ) + ω [ξγ′(ξ)]

ξ − γ(ξ)
, (83)

[

ξλ′(ξ)
]

= − 1

2

γ(ξ)− [ξγ′(ξ)]

ξ − γ(ξ)
, (84)

ξ
[

ξν ′(ξ)
]

′

(ξ) =
1

2





ω [ξ − γ(ξ)]
{

ξ [ξγ′(ξ)]′
}

+

+ω [ξγ′(ξ)]2+
+(1− ω)ξ [ξγ′(ξ)]− ξγ(ξ)





[ξ − γ(ξ)]2
. (85)

For use in the arguments that follow, it is important to record here that Equation (79) can
also be written in the form

2ωξ2 [ξ − γ(ξ)] γ′′(ξ) + ω(1 + ω)ξ2
[

γ′(ξ)
]2

+

−4ωξ2γ′(ξ) + (1 + 5ω)ξγ(ξ)γ′(ξ) = 0, (86)

where we have used the fact that

ξ
[

ξγ′(ξ)
]

′

= ξ2γ′′(ξ) + ξγ′(ξ). (87)

We must now consider how to solve the equation for the function β(r) that appears in the
invariant interval, or equivalently the equation for γ(ξ) given in Equations (79) or (86). For
the time being the complete determination of γ(ξ) has to be made numerically, but enough
can be established about the properties of the solutions to give us a fairly complete picture
of the physics involved. Given the general qualitative behavior of the function β(r), which
we already know, and given the simple relation between β(r) and γ(ξ), we can state at once
that the function γ(ξ) must have the general qualitative behavior shown in Figures 2 and 3.
Just like β(r), the function γ(ξ) must have non-negative derivative everywhere, must have
a finite negative value at ξ = 0 and a finite positive limit when ξ → ∞.

Certain special values of ξ play an important role in this analysis. As shown in the
figures, ξi is the point of inflection of the function γ(ξ), where we have that γ′′(ξi) = 0, and
which will play an important role in the description and classification of the solutions. The
point ξr is the root of the function γ(ξ), the single point where we have that γ(ξr) = 0.
The critical point ξc is the point where exp[2λ(ξ)] may develop a singularity, and it is the
point which may become an event horizon in a certain limit. It is defined as the point
where γ′(ξc) = 1, and it is also the point where the difference [ξ − γ(ξ)] has its minimum
value. This is a consequence of the fact that the singularity in the metric factor exp[2λ(ξ)]
comes about when the graph of γ(ξ) just touches the graph of the identity function, so that
[ξc − γ(ξc)] becomes zero.

We know that the function γ(ξ) has non-negative derivative at all points, and that it
goes from some negative finite value at ξ = 0 to some positive finite value for ξ → ∞. It
follows that the function cannot have any local maxima or minima and that it must have at
least one inflection point. In fact, as we will see in what follows, it has exactly one inflection
point. At this inflection point we have that γ′′(ξi) = 0, and that the functions γ(ξi) and
γ′(ξi) have some definite values. In principle, since the differential equation determining
γ(ξ) is of the second order, given the values of these two functions at this point, a solution for
γ(ξ) is completely determined. Interestingly, we can easily obtain from the equation itself
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Figure 2: The qualitative behavior of the dimensionless function γ(ξ), showing the main
features: the inflection point ξi, the root ξr, the critical point ξc and the asymptotic limit
ξM ; the identity function ξ is also shown; the configuration show is that of the middle-
density regime.

a definite relation between these two values, leaving us with only one arbitrary parameter
for the determination of the solution. We can write an equation for the inflection point ξi
of the function γ(ξ), by simply putting γ′′(ξi) = 0 in Equation (86), which then results in

[

− 4ωξ2i + (1 + 5ω)ξiγ(ξi) + ω(1 + ω)ξ2i γ
′(ξi)

]

γ′(ξi) = 0. (88)

Since at the inflection point ξi 6= 0, this implies that either we have that γ′(ξi) = 0, which
in fact only happens at ξ = 0 and for ξ → ∞, or we must have that

ω(1 + ω)ξiγ
′(ξi) = 4ωξi − (1 + 5ω)γ(ξi). (89)

This equation involves ω, ξi, γ(ξi) and γ′(ξi). Given values of ω and ξi, it relates the values
of γ(ξi) and γ′(ξi) for a solution which has its inflection point at ξi. We may therefore
describe and classify all the possible solution of this equation by the use of two parameters,
one being the parameter ω that describes the state of the matter. We will choose the other
to be the positive parameter given by π(ξi) = γ′(ξi), and then the value γ(ξi) is given by

γ(ξi) = ωξi
4− (1 + ω)π(ξi)

1 + 5ω
. (90)

Note that there is a single solution for this quantity, and therefore a single inflection point.
Note also that the actual value of ξi can be chosen arbitrarily because, since we have that
ξ = r/r0, choosing this value just corresponds to choosing a position for the arbitrary
reference point r0. We now draw attention to the fact that the linear function

γ0(ξ) =
4ω

1 + 6ω + ω2
ξ (91)

is a particular solution of the equation that determines γ(ξ), show in Equation (86). How-
ever, this solution clearly does not satisfy the correct asymptotic conditions. Is we consider
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Figure 3: The qualitative behavior of the dimensionless function γ(ξ), showing the main
features: the root ξr, the inflection point ξi, the critical point ξc and the asymptotic limit
ξM ; the identity function ξ is also shown; the configuration show is that of the high-density
regime.

the inflection point of γ(ξ), which corresponds to the maximum value of the derivative
γ′(ξ), and where γ′′(ξ) is zero, then we must also impose that the second derivative of
γ′(ξ) be negative there, thus characterizing a local maximum of the derivative γ′(ξ). This
is therefore a condition on the third derivative of γ(ξ), and we may calculate it explicitly
using the form of that equation shown in Equation (86), which can be written as

2ω
[

ξ2 − ξγ(ξ)
]

γ′′(ξ) + ω(1 + ω)ξ
[

γ′(ξ)
]2

+

−4ωξγ′(ξ) + (1 + 5ω)γ(ξ)γ′(ξ) = 0. (92)

If we simply differentiate this equation, we get

2ω
[

ξ2 − ξγ(ξ)
]

γ′′′(ξ) + 2ω
[

2ξ − γ(ξ)− ξγ′(ξ)
]

γ′′(ξ)+

+ω(1 + ω)
[

γ′(ξ)
]2

+ ω(1 + ω)ξ 2γ′(ξ)γ′′(ξ)+

−4ωγ′(ξ)− 4ωξγ′′(ξ)+

+(1 + 5ω)
[

γ′(ξ)
]2

+ (1 + 5ω)γ(ξ)γ′′(ξ) = 0. (93)

Applying this at the inflection point, where we have that γ′′(ξi) = 0, we are left with

2ω
[

ξ2i − ξiγ(ξi)
]

γ′′′(ξi) + ω(1 + ω) [π(ξi)]
2+

−4ωπ(ξi) + (1 + 5ω) [π(ξi)]
2 = 0 ⇒

2ω
[

ξ2i − ξiγ(ξi)
]

γ′′′(ξi)− 4ωπ(ξi)+

+
(

1 + 6ω + ω2
)

[π(ξi)]
2 = 0. (94)

Isolating the third derivative we get
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γ′′′(ξi) =
4ω −

(

1 + 6ω + ω2
)

π(ξi)

2ωξi [ξi − γ(ξi)]
π(ξi). (95)

All the quantities appearing on this expression except the numerator are manifestly strictly
positive at the inflection point, so that in order for the third derivative to be strictly negative
we must impose that the numerator be strictly negative, thus leading to

π(ξi) >
4ω

1 + 6ω + ω2
. (96)

The particular solution γ0(ξ) seems to represent a situation in which the gravitational field
and the pressure are such as to cause the matter to escape the gravitational attraction
well and thus spread out to infinity. It is not difficult to determine that for this particular
solution we have that T(ξ) is in fact a constant, corresponding to an energy density T0(r)
that goes to zero at infinity slowly, as 1/r2, rather than exponentially fast. Therefore, in
this case there is no sphere at some radial coordinate rS that contains essentially all the
matter. In other words, the matter fails to be localized. There seems to be no independent
solutions for γ(ξ) if π(ξi) is smaller that this limiting value. This means, of course, that in
this case there can be no static solution of the field equation. We have therefore the first
and most important limit of our energy-density parameter π(ξi),

π(ξi) >
4ω

1 + 6ω + ω2
. (97)

We now shift our attention to the relation in Equation (90), that determines the value of
γ(ξ) at the inflection point. We observe that the sign of γ(ξi) will be determined by the
value of π(ξi). Since all the other factors in the right-hand side of that equation are positive,
we conclude that we will have γ(ξi) ≥ 0 when

π(ξi) ≤
4

1 + ω
. (98)

The value given by the equality corresponds, of course, to γ(ξi) = 0, which means that the
inflection point ξi coincides with the root ξr of γ(ξ). In a complementary way, we will have
γ(ξi) ≤ 0 when

π(ξi) ≥
4

1 + ω
. (99)

There is therefore an interval of values of π(ξi) given by

4ω

1 + 6ω + ω2
< π(ξi) ≤

4

1 + ω
, (100)

for which γ(ξi) ≥ 0. For the allowed values of ω the left limit is in the interval (0, 3/7], and
the right limit is in the interval [3, 4), which are two intervals that do not intersect. In this
case, since γ(ξi) ≥ 0, the root ξr of γ(ξ) is necessarily to the left of the inflection point ξi.
This is the situation depicted in Figure 2. On the other hand, the critical point ξc will only
exist if π(ξi) ≥ 1, because otherwise, since π(ξi) is the largest value of the derivative, it
will never be equal to one, so that the critical point, which is defined as the point ξc where
π(ξc) = 1, will not exist. The complementary interval of values of π(ξi), to the one given
in the equation above, is that for which we have that γ(ξi) ≤ 0, and which is given by

4

1 + ω
≤ π(ξi) < ∞. (101)
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In this case, since we always have π(ξi) ≥ 1, the critical point always exists, and the root
ξr of γ(ξ) is necessarily to the right of the inflection point ξi. This is the situation depicted
in Figure 3. We may therefore classify the possible values of π(ξi), and the corresponding
possible solutions for γ(ξ), in the following way.

Low Energy-Density Regime: if we have that

4ω

1 + 6ω + ω2
< π(ξi) < 1, (102)

then there is no critical point ξc, and we have that ξr < ξi. We will call this the low

energy-density regime.

Middle Energy-Density Regime: if we have that

1 ≤ π(ξi) ≤
4

1 + ω
, (103)

then there is a critical point ξc, and we have that ξr ≤ ξi < ξc. We will call this the
middle energy-density regime.

High Energy-Density Regime: if we have that

4

1 + ω
≤ π(ξi), (104)

then there is a critical point ξc, and we have that ξi < ξr < ξc. We will call this the
high energy-density regime.

Black-Hole Limit: the limit in which we make π(ξi) → ∞ we will name the black hole

limit, since it can be shown that in this limit, as seen from outside the horizon, the
general character of the solutions does in fact approach that of a black hole.

Note that the case of the middle energy-density regime includes the special case

π(ξi) =
4

1 + ω
, (105)

in which case we have γ(ξi) = 0, so that the points ξr and ξi coincide. Note also that in the
case of the high energy-density regime we can easily prove that γ(0) must be negative. Since
we have that at the inflection point γ(ξi) < 0, and since we also have that the derivative
γ′(ξ) is always positive, it follows that at every point to the left of ξi the function γ(ξ) must
be smaller than γ(ξi), and hence negative, including at the point ξ = 0.

Finally, note that the classification of the solutions in these various regimes does not
mean that the solutions always exist, for every pair of values of the physical parameters
ω and π(ξi) within each one of the regimes. They may fail to exist, mostly for the larger
values of ω, and in particular for the case ω = 1/3, that corresponds to pure radiation, since
in this case we have a maximum intensity of the expanding tendency of the pressure, as
compared to the compressing tendency of gravity, thus leading to the possibility of the fluid
matter being non-localized. The way in which a solution fails to exist is that the asymptotic
conditions fail to hold. In particular, the ξ → ∞ limit of γ(ξ) fails to be finite, and instead
increases without bound, much like what happens in the particular solution γ0(ξ) shown
in Equation (91). In other words, unlike what is the typical situation for the case of linear
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differential equations, in this case the available parameters of the model cannot always be
used to adjust the boundary conditions. In fact, most often they cannot be used in this
way. The situation is simply that there are pairs of values of the two physical parameters
ω and π(ξi) for which a solution exists, and other for which a solution does not exist.

6 A Sampling of Numerical Results

Let us now show and briefly discuss some sample results obtained by means of a numerical
computer program written to calculate the solution for γ(ξ), so as to confirm the existence
of solutions, as well as to confirm and display some of the main properties of the solutions, in
order to illustrate their general behavior in a qualitative and visual way. A full description
and discussion of the numerical solution, as well as of the properties of the solutions, will
be given in a separate paper, which is forthcoming. This will include a detailed analysis of
the π(ξi) → ∞ black-hole limit.

In the graphs shown in Figures 4 to 6 one can see results for γ(ξ) (solid line), π(ξ) (dashed
line) and π′(ξ) (dotted line) for several runs of a program written to solve Equation (86).
The program used to plot these graphs employed the Runge-Kutta fourth-order integration
algorithm, running in quadruple-precision mode, that is, in double-precision mode on a
64-bit machine, with a self-adjustable increment for ξ, and about 1000 plotting points. The
most relevant physical data in each case is reported within each graph, such as the value
of γ(0) and the value of ξM . The graph in Figure 4 exemplifies the low energy-density
regime, the one in Figure 5 the middle energy-density regime, and that in Figure 6 the high
energy-density regime.

In two of these graphs, those in Figures 5 and 6, a rendering of the identity function
is included (dash-dotted line), for comparison with γ(ξ). Since the difference [ξ − γ(ξ)]
appears in the denominator of the factor exp[2λ(r)] that multiplies the term dr2 in the
invariant interval, the proximity between the two corresponding curves tells us how close
we are to having a singularity in that factor. The critical point ξc is the point of greatest
proximity between ξ and γ(ξ) and thus indicates approximately where the corresponding
event horizon would form, if and when that was the case. The critical point is also the
point of minimum of the difference [ξ − γ(ξ)], which seems to be always positive, as one
would expect.

Due to the rather large values either set or obtained for some of these quantities, in the
graphs shown in Figures 5 and 6 the curves for π(ξ) and π′(ξ) are normalized so that the
maximum value of their amplitudes become 1. For the same reason, in the graph in Figure 6
the negative part of the data for γ(ξ) is given in a logarithmic scale, using base-10 logs.
What is actually plotted is the quantity − log10[1 − γ(ξ)]. This means that the negative
part of the curve for γ(ξ) in this graph has much larger absolute values than is immediately
apparent. All the other parts of the curves shown are on a linear scale, including the positive
part of the curve for γ(ξ).

The basic qualitative behavior of both the function γ(ξ) and the function π(ξ) is thus
confirmed by the numerical analysis. The limits both for ξ → 0 and for ξ → ∞ behave
just as was predicted by our previous analysis. In particular, the Schwarzschild solution is
indeed the r → ∞ asymptotic limit of our solutions here, thus indicating that the matter is
indeed localized, and in most cases quite strongly so, with an apparent exponential decay
of the energy density for large values of ξ. The fact that γ(ξ) and hence β(r) can become
negative and large has important consequences. The fact that they become negative seems
to be a general feature of all the solutions worked out so far. Once γ(ξ) and hence β(r)
become negative, the metric factor exp[2λ(r)] becomes
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Figure 4: Sample solution for the function γ(ξ) (solid line), showing also the the corre-
sponding derivative function π(ξ) (dashed line), as well as the second derivative function
π′(ξ) (dotted line). In this case we used ω = 0.001 and π(ξi) = 0.1 at the inflection point,
so that we are in the low energy-density regime.

e2λ(r) =
1

1 + |γ(ξ)|/ξ , (106)

which goes towards zero as |γ(ξ)|/ξ increases. Note that, once γ(ξ) becomes negative, there
is no longer any possibility of this factor having a singularity like the one at rM in the
Schwarzschild solution. When |γ(ξ)|/ξ ≫ 1, we have for the physical element of length dℓ
in the radial direction

dℓ = eλ(r)dr

=
dr

√

1 + |γ(ξ)|/ξ
≪ dr. (107)

When ξ → 0 we have that γ(ξ) tends to some possibly large but finite negative value, so
that we actually have that

lim
ξ→0

|γ(ξ)|/ξ = ∞, (108)

which means that

lim
r→0

e2λ(r) = 0. (109)
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Figure 5: Sample solution for the function γ(ξ) (solid line), showing also the identity
function (dash-dotted line) and normalized versions of the corresponding derivative function
π(ξ) (dashed line) and second derivative function π′(ξ) (dotted line), so that their maximum
amplitudes become 1. In this case we used ω = 0.01 and π(ξi) = 2.0 at the inflection point,
so that we are in the middle energy-density regime.

The numerical data seems to indicate that, in the situations in which [ξc − γ(ξc)] is close
to zero at the critical point, the quantity |γ(ξ)| seems to tend to become very large for
smaller non-zero values of ξ, so that the radial lengths are significantly shrunk in most
of the interior of the fluid matter distribution. The data seems to be consistent with the
situation in which, in the limit in which we make π(ξi) → ∞, we have that [ξc−γ(ξc)] → 0,
and also that γ(0) → −∞ linearly with π(ξi). In fact, it seems that we also have that

lim
π(ξi)→∞

|γ(ξ)| = ∞, (110)

for all values of ξ smaller than ξr, so that in this limit the radial lengths shrink all the
way to zero in most of the interior of the region containing the matter. In this way, the
approach to a black-hole configuration seems to be tied up with a complete shrinkage of
most of the volume of the region where the fluid matter is located. Note that, due to the
shrinking of the radial lengths, below the value ξr of ξ there is no possibility of working out
an illustrative isometric embedding such as the one we worked out for the Schwarzschild
solution, shown in Figure 1.

In such circumstances the geometry within the region containing the fluid matter dis-
tribution does have some rather odd characteristics indeed, since the radial lengths shrink
while the angular lengths at the same position do not change at all. In essence, this is what
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Figure 6: Sample solution for the function γ(ξ) (solid line), showing also the identity
function (dash-dotted line) and normalized versions of the corresponding derivative function
π(ξ) (dashed line) and second derivative function π′(ξ) (dotted line), so that their maximum
amplitudes become 1. In this case we used ω = 0.1 and π(ξi) = 40.0 at the inflection point,
so that we are in the high energy-density regime. In this case the negative portion of γ(ξ)
is shown in a base-10 logarithmic scale.

makes the embedding just mentioned impossible. Since it suffices for one of the lengths
involved do decrease in order for the volume to decrease, this radial shrinkage does cause
the volume to shrink under the fluid matter distribution. Note that, although the angular
lengths do not change, they cease to be anything close to geodesics of the spatial geom-
etry. One can always go from any point to any other point within the region containing
the fluid matter distribution through only radial displacements, going from the first point
to the center and from the center to the second point. With enough radial shrinkage, the
distance traversed in this way will be smaller than that of a path between the two points
that involves angular displacements. If the radial lengths shrink all the way to zero, then
the geodesic distances between any two points in the shrunk region are zero. In effect, it is
as if all the points in that region become effectively the same point.

According to the numerical data, the larger the value of π(ξi), where ξi is the position
of the inflection point of γ(ξ), the closer to a singularity of exp[2λ(r)] at the critical point,
where [ξc − γ(ξc)] → 0, we get. But so far indications are that one never actually gets to
such a singular solution for finite values of π(ξi). The larger the value of π(ξi), the closer
rM will be to the radial position rS of the sphere that contains essentially all the fluid
matter, coming from within. In the cases which are closer to exhibiting a singularity of
exp[2λ(r)], and therefore closer to the formation of a black hole with an event horizon, the

27



remaining internal volume seems to be highly concentrated near the surface of the matter
distribution, while the radial lengths seem to shrink to zero somewhat faster for smaller
values of ξ. In fact, under these conditions the energy density seems to develop a large and
narrow peak near that surface, as can be seen in some cases, if one recalls that π(ξ) = T(ξ)
is closely related to the energy density. All these issues will be described and examined in
detail in the aforementioned forthcoming paper.

The case ω = 1/3 corresponds to “fluid matter” in the form of pure radiation, and it
is interesting that even in this case, so long as π(ξi) is large enough, we do still obtain
static solutions, in which the fluid matter is still strongly localized. Of course, at least
in part this is being allowed by the fact that we are ignoring losses of energy by outward
radiation from the surface of the matter distribution, a more detailed treatment of which
would certainly lead to non-static solutions. However, if we are close to a configuration
that has a singularity of exp[2λ(r)] at the critical point, where [ξc − γ(ξc)] → 0, then the
strong red shift effect for any outward radiation from the vicinity of the spherical surface
at that radial position will tend to make such energy losses very small, and then our static
solution may still be a fair approximation of reality.

7 Conclusions and Outlook

We have established a two-parameter class of solutions of the Einstein gravitational field
equation, corresponding to the presence of static fluid matter with the equation of state
P = ωρ, for all values of ω in the relevant interval (0, 1/3]. There are in fact three parameters
in play, the equation of state parameter ω, the Schwarzschild radius rM and the radius rS
of the sphere containing essentially all the matter, where we could put our arbitrary radial
reference point r0, but the solutions depend only on ω and on a ratio such as rM/rS . The
fluid matter is strongly localized, and the Schwarzschild solution is indeed the r → ∞
asymptotic limit of the solutions we found here.

Two main physical facts can be abstracted from the results. The first is that the
central space in the interior of a dense conglomeration of matter is necessarily shrunk, with
actual radial lengths that are smaller, and in some circumstances much smaller, than the
corresponding variations of the coordinate r. It is even possible that these lengths go all
the way to zero in the limit in which a black hole with an event horizon would form. In any
case, this reduces the available volume of space under the matter, and therefore compresses
the matter even further. This seems to indicate that the apparent volume of a very dense
star or black hole is therefore much larger than the actual physical one.

The second is that it is possible to have a static solution with a localized conglomeration
of pure energy, that is, of matter with the pure radiation equation of state ρ = 3P , matter
that consists, therefore, of pure relativistic radiation. Of course this is, in part, a conse-
quence of the fact that we are ignoring the outward radiation of energy from the surface
of the fluid matter to asymptotic infinity. However, close to the limit in which a black
hole would form the loss of energy by this mechanism is strongly contained by the red shift
effect upon outgoing radiation originating from close to the position of the Schwarzschild
radius, thus justifying the static hypothesis as an approximation. Therefore, we can only
claim that this type of static or quasi-static solution with pure radiation exists in the case
of distributions of fluid matter which are very close to a black-hole configuration.

In the limit in which we make π(ξi) → ∞, where ξi is the position of the inflection
point of γ(ξ), we seem to have that rS → rM , where rS > rM is the radial position of the
sphere that contains essentially all the fluid matter, and rM is the Schwarzschild radius of
the corresponding mass M . At the same time we seem to have that γ(ξ) → −∞ for almost
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all ξ < ξi, so that all radial lengths within the matter distribution are going toward zero.
In this limit one does seem to obtain a black hole, in the usual sense given to that term,
or at least something that is indistinguishable from it when viewed from the outside. This
is not, however, a “naked” black hole as is usually thought to be the case, but a “dressed”
one, with plenty of matter and a definite, if unexpected, geometry within it.

It is very interesting to observe that this situation establishes an unexpected connection
with G. ’t Hooft’s ideas about quantum mechanics and black holes [5]. In describing his
studies involving quantum entanglement around black holes, that author has used the figure
of speech that the interior of the black hole “is not really there”, motivated by quantum
correlations between antipodal points of the surface of the black hole. Well, one way to
have this situation realized is to have the internal volume of the black hole be zero, and
the distances between these diametrically opposed points also be zero, just like all other
radial lengths within the region containing the fluid matter. It is interesting that while that
author’s conclusions come from a quantum theory involving black holes, our conclusions
here emerge from a theory which is, in so far as one can currently see, entirely classical.

We end with a few words about the possible routes for the continuation of this line of
work. It is to be noted that this is a very simple model, in so far as the hypotheses about
the matter are concerned, and one should not expect it to have immediate applicability
in all realistic physical cases of interest. For realistic stars, which are known to have an
internal structure consisting of layers, it would probably be necessary to extend the model
to include equations of state that depend on r, that is, to exchange the constant ω for a
function ω(r). Also with the intent of making the model more realistic, a possibly simple
extension would be to the time-dependent case, still with spherical symmetry. This would
concern only the solution strictly within the matter, since by the Jebsen-Birkhoff [2, 3]
theorem the Schwarzschild solution outside would not change in a significant way. It might
be sufficient, though, to simply accommodate slowly changing solutions due to outward
radiation from the surface of the fluid matter distribution.

It would certainly be interesting to extend the results obtained here to the case of the
Kerr metric, so that the extended results would be applicable to rotating stars and black
holes. However, this is likely to turn out to be quite a difficult enterprise. Another possible
extension, as an alternative to having a fully non-homogeneous equation of state with a
function ω(r), would be to fluid matter with a discretely non-homogeneous equation of state,
possibly fluid matter with layered distributions, with different equations of state in each
layer, each with a different constant ω, tied up together by the imposition of appropriate
boundary conditions at the interfaces between layers. Although it is not at all clear that this
is actually possible, it seems like a possibility worthwhile examining. Instabilities in these
configurations could possibly lead to fast transitions such as those which are characteristic
of some astrophysical phenomena.

Since what we presented here is a previously unknown class of solutions of the Einstein
gravitational field equation, it is likely that these new solutions will find applications in
the study of stars, as well as of other denser astrophysical objects. Further study of the
non-linear differential equation show in Equations (77) for the function β(ξ), and in Equa-
tions (79) and (86) for the function γ(ξ), may turn out to be useful to elucidate the actual
physical structure of extremely dense objects such as neutron stars and black holes. In
particular, further numerical studies aimed at clarifying the behavior of various aspects of
the geometry in the limit in which π(ξi) → ∞, where ξi is the position of the inflection
point of γ(ξ), a limit which we might loosely describe as the black-hole limit, would prob-
ably be quite interesting. This is currently being worked on, and will be included in the
aforementioned forthcoming paper.
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A Detailed Calculations

Here we present detailed and explicit versions of some of the calculations referred to in the
text, and whose results are used there.

A.1 Consistency Condition

In this section we calculate this consistency condition for the specific case of time indepen-
dence and spherical symmetry. In other words, we now write explicitly, under these con-
ditions, the expression that is given in Equation (14) of the text. The energy-momentum
tensor in Equation (13) of the text, in its mixed form, can be written symbolically in the
following way,

T ν
µ (r) = δ0µδ

ν
0T0(r) + δ1µδ

ν
1T1(r) + δ2µδ

ν
2T2(r) + δ3µδ

ν
3T3(r). (111)

This symbolic form encodes the fact that T ν
µ (r) is a diagonal matrix. We may calculate

the covariant divergence using this symbolic form of the tensor. In order to do this we first
write explicitly the contracted covariant derivative of the mixed tensor T ν

µ (r) that appears
in its covariant divergence,

DνT
ν
µ (r) = ∂νT

ν
µ (r)− Γα

νµT
ν
α(r) + Γν

ναT
α
µ (r). (112)

As we will see, the only non-trivial condition that comes from Equation (14) of the text is
the one for the case µ = 1. However, let us calculate first the general, non-contracted case,
of this covariant derivative,
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DλT
ν
µ (r) = ∂λT

ν
µ (r)− Γα

λµT
ν
α(r) + Γν

λαT
α
µ (r). (113)

We can do this using the symbolic form for T ν
µ (r),

DλT
ν
µ (r) = ∂λ

[

δ0µδ
ν
0T0(r) + δ1µδ

ν
1T1(r) + δ2µδ

ν
2T2(r) + δ3µδ

ν
3T3(r)

]

+

−Γα
λµ

[

δ0αδ
ν
0T0(r) + δ1αδ

ν
1T1(r) + δ2αδ

ν
2T2(r) + δ3αδ

ν
3T3(r)

]

+

+Γν
λα

[

δ0µδ
α
0 T0(r) + δ1µδ

α
1 T1(r) + δ2µδ

α
2 T2(r) + δ3µδ

α
3 T3(r)

]

= δ0µδ
ν
0 [∂λT0(r)] + δ1µδ

ν
1 [∂λT1(r)] + δ2µδ

ν
2 [∂λT2(r)] + δ3µδ

ν
3 [∂λT3(r)] +

−Γα
λµδ

0
αδ

ν
0T0(r)− Γα

λµδ
1
αδ

ν
1T1(r)− Γα

λµδ
2
αδ

ν
2T2(r)− Γα

λµδ
3
αδ

ν
3T3(r) +

+Γν
λαδ

0
µδ

α
0 T0(r) + Γν

λαδ
1
µδ

α
1 T1(r) + Γν

λαδ
2
µδ

α
2 T2(r) + Γν

λαδ
3
µδ

α
3 T3(r)

= δ0µδ
ν
0δ

1
λT

′

0(r) + δ1µδ
ν
1δ

1
λT

′

1(r) + δ2µδ
ν
2δ

1
λT

′

2(r) + δ3µδ
ν
3δ

1
λT

′

3(r) +

−Γ0
λµδ

ν
0T0(r)− Γ1

λµδ
ν
1T1(r)− Γ2

λµδ
ν
2T2(r)− Γ3

λµδ
ν
3T3(r) +

+Γν
λ0δ

0
µT0(r) + Γν

λ1δ
1
µT1(r) + Γν

λ2δ
2
µT2(r) + Γν

λ3δ
3
µT3(r), (114)

where we have used the fact that, since Tµ(r) are functions of only r, we have that

∂λTµ(r) = δ1λT
′

µ(r), (115)

where the prime indicates derivatives with respect to r, just as in the text. If we now
contract the indices λ and ν we get

DνT
ν
µ (r) = δ0µδ

ν
0δ

1
νT

′

0(r) + δ1µδ
ν
1δ

1
νT

′

1(r) + δ2µδ
ν
2δ

1
νT

′

2(r) + δ3µδ
ν
3δ

1
νT

′

3(r) +

−Γ0
νµδ

ν
0T0(r)− Γ1

νµδ
ν
1T1(r)− Γ2

νµδ
ν
2T2(r)− Γ3

νµδ
ν
3T3(r) +

+Γν
ν0δ

0
µT0(r) + Γν

ν1δ
1
µT1(r) + Γν

ν2δ
2
µT2(r) + Γν

ν3δ
3
µT3(r)

= δ0µδ
1
0T

′

0(r) + δ1µδ
1
1T

′

1(r) + δ2µδ
1
2T

′

2(r) + δ3µδ
1
3T

′

3(r) +

−Γ0
0µT0(r)− Γ1

1µT1(r)− Γ2
2µT2(r)− Γ3

3µT3(r) +

+Γν
ν0δ

0
µT0(r) + Γν

ν1δ
1
µT1(r) + Γν

ν2δ
2
µT2(r) + Γν

ν3δ
3
µT3(r)

= δ1µT
′

1(r)− Γ0
0µT0(r)− Γ1

1µT1(r)− Γ2
2µT2(r)− Γ3

3µT3(r) +

+Γν
ν0δ

0
µT0(r) + Γν

ν1δ
1
µT1(r) + Γν

ν2δ
2
µT2(r) + Γν

ν3δ
3
µT3(r), (116)

since we have that δ10 = 0, δ11 = 1, δ12 = 0 and δ13 = 0. We now observe that, from the values
of the components of the connection Γα

µν that were given in Table 1 of the text, we can
get the values of the elements that appear in the contractions Γν

ν0, Γ
ν
ν1, Γ

ν
ν2 and Γν

ν3,
and in this way we get for these contractions

Γν
ν0 = Γ0

00 + Γ1
10 + Γ2

20 + Γ3
30

= 0 + 0 + 0 + 0

= 0,

Γν
ν1 = Γ0

01 + Γ1
11 + Γ2

21 + Γ3
31

= ν ′(r) + λ′(r) +
1

r
+

1

r

= ν ′(r) + λ′(r) +
2

r
,

Γν
ν2 = Γ0

02 + Γ1
12 + Γ2

22 + Γ3
32

= 0 + 0 + 0 + cot(θ)
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= cot(θ),

Γν
ν3 = Γ0

03 + Γ1
13 + Γ2

23 + Γ3
33

= 0 + 0 + 0 + 0

= 0. (117)

We therefore have for our contracted covariant derivative

DνT
ν
µ (r) = δ1µT

′

1(r)− Γ0
0µT0(r)− Γ1

1µT1(r)− Γ2
2µT2(r)− Γ3

3µT3(r) +

+

[

ν ′(r) + λ′(r) +
2

r

]

δ1µT1(r) + cot(θ)δ2µT2(r)

= δ1µT
′

1(r)− Γ0
0µT0(r)−

{

Γ1
1µ −

[

ν ′(r) + λ′(r) +
2

r

]

δ1µ

}

T1(r) +

−
[

Γ2
2µ − cot(θ)δ2µ

]

T2(r)− Γ3
3µT3(r). (118)

This must be zero for all values of µ, and therefore we must write out each one of the cases,
using once more the values of the components of the connection Γα

µν , shown in Table 1 of
the text,

DνT
ν
0 (r) = δ10T

′

1(r)− Γ0
00T0(r)−

{

Γ1
10 −

[

ν ′(r) + λ′(r) +
2

r

]

δ10

}

T1(r) +

−
[

Γ2
20 − cot(θ)δ20

]

T2(r)− Γ3
30T3(r)

= −Γ0
00T0(r)− Γ1

10T1(r)− Γ2
20T2(r)− Γ3

30T3(r)

= −0× T0(r)− 0× T1(r)− 0× T2(r)− 0× T3(r)

= 0,

DνT
ν
1 (r) = δ11T

′

1(r)− Γ0
01T0(r)−

{

Γ1
11 −

[

ν ′(r) + λ′(r) +
2

r

]

δ11

}

T1(r) +

−
[

Γ2
21 − cot(θ)δ21

]

T2(r)− Γ3
31T3(r)

= T ′

1(r)− Γ0
01T0(r)−

{

Γ1
11 −

[

ν ′(r) + λ′(r) +
2

r

]}

T1(r) +

−Γ2
21T2(r)− Γ3

31T3(r)

= T ′

1(r)− ν ′(r)T0(r) +

[

ν ′(r) +
2

r

]

T1(r)−
T2(r)

r
− T3(r)

r

= T ′

1(r)− ν ′(r)[T0(r)− T1(r)] +
[2T1(r)− T2(r)− T3(r)]

r
,

DνT
ν
2 (r) = δ12T

′

1(r)− Γ0
02T0(r)−

{

Γ1
12 −

[

ν ′(r) + λ′(r) +
2

r

]

δ12

}

T1(r) +

−
[

Γ2
22 − cot(θ)δ22

]

T2(r)− Γ3
32T3(r)

= −Γ0
02T0(r)− Γ1

12T1(r)−
[

Γ2
22 − cot(θ)

]

T2(r)− Γ3
32T3(r)

= −0× T0(r)− 0× T1(r) + cot(θ)T2(r)− cot(θ)T3(r)

= 0,

DνT
ν
3 (r) = δ13T

′

1(r)− Γ0
03T0(r)−

{

Γ1
13 −

[

ν ′(r) + λ′(r) +
2

r

]

δ13

}

T1(r) +

−
[

Γ2
23 − cot(θ)δ23

]

T2(r)− Γ3
33T3(r)

= −Γ0
03T0(r)− Γ1

13T1(r)− Γ2
23T2(r)− Γ3

33T3(r)

= −0× T0(r)− 0× T1(r)− 0× T2(r)− 0× T3(r)

= 0, (119)
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where we used the fact that T2(r) = T3(r) in the third equation above. Thus we see that
three of the four consistency conditions DνT

ν
µ (r) = 0, those for µ = 0, µ = 2 and µ = 3,

are automatically satisfied. The only non-trivial condition is that given by DνT
ν
1 (r) = 0,

which results in

T ′

1(r)− ν ′(r)[T0(r)− T1(r)] +
[2T1(r)− T2(r)− T3(r)]

r
= 0, (120)

and which can also be written as

[

rν ′(r)
]

[T0(r)− T1(r)] =
[

rT ′

1(r)
]

+ [2T1(r)− T2(r)− T3(r)]. (121)

This condition, as a condition on T ν
µ , is required to be satisfied if this energy-momentum

tensor is to be used in the right-hand side of the Einstein gravitational field equation.

A.2 Equation for β(r)

Here we present a few detailed calculations involved in the derivation of the differential
equation which determined the function β(ξ),

A.2.1 Derivation from the Field Equation

Here we calculate in terms of β(r) the quantity r [rν ′(r)]′. If we simply differentiate the
quantity [rν ′(r)] given in Equation (62) of the text, we get

r
[

rν ′(r)
]

′

= r
rM
2

[

β(r) + ω [rβ′(r)]

r − rMβ(r)

]

′

= r
rM
2

{

β′(r) + ω [rβ′(r)]′

r − rMβ(r)
− β(r) + ω [rβ′(r)]

[r − rMβ(r)]2
[

1− rMβ′(r)
]

}

=
rM
2

(

[rβ′(r)] + ω
{

r [rβ′(r)]′
}

[r − rMβ(r)]2
[r − rMβ(r)] +

− β(r) + ω [rβ′(r)]

[r − rMβ(r)]2
{

r − rM
[

rβ′(r)
]}

)

=
rM

2[r − rMβ(r)]2
×

×
[

(

[

rβ′(r)
]

+ ω
{

r
[

rβ′(r)
]

′

})

[r − rMβ(r)] + (122)

−
{

β(r) + ω
[

rβ′(r)
]} {

r − rM
[

rβ′(r)
]}

]

=
rM

2[r − rMβ(r)]2
×

×
(

ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ r
[

rβ′(r)
]

− rMβ(r)
[

rβ′(r)
]

+

−rβ(r) + rMβ(r)
[

rβ′(r)
]

− ωr
[

rβ′(r)
]

+ ωrM
[

rβ′(r)
]2
)

=
rM

2[r − rMβ(r)]2

(

ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ ωrM
[

rβ′(r)
]2

+

+(1− ω)r
[

rβ′(r)
]

− rβ(r)

)

,
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so that we have

r
[

rν ′(r)
]

′

= rM

(

ω [r − rMβ(r)]
{

r [rβ′(r)]′
}

+ ωrM [rβ′(r)]2+
+(1− ω)r [rβ′(r)]− rβ(r)

)

2[r − rMβ(r)]2
, (123)

which therefore determines r [rν ′(r)]′, and indirectly also determines ν ′′(r), in terms of β(r).

A.2.2 Simplification to Final Form

Here we will work on Equation (58) of the text, the one that will become the equation
that determines β(r), in order to put it in final form for further analysis. That equation is
written as

r
[

rν ′(r)
]

′

+
[

rν ′(r)
]2 −

[

rλ′(r)
] [

rν ′(r)
]

=
[

rλ′(r)
]

+ e2λ(r)ωT(r). (124)

We will now work, in turn, on the right-hand and left-hand sides of this equation. Using
the results obtained in the text for λ(r), λ′(r) and T(r), we can write the right-hand side
as

RHS = − rM
2

β(r)− [rβ′(r)]

r − rMβ(r)
+

rωrMβ′(r)

r − rMβ(r)

=
rM
2

2ω [rβ′(r)]

r − rMβ(r)
− rM

2

β(r)− [rβ′(r)]

r − rMβ(r)

=
rM
2

2ω [rβ′(r)]− β(r) + [rβ′(r)]

r − rMβ(r)

=
rM

2[r − rMβ(r)]

{

(1 + 2ω)
[

rβ′(r)
]

− β(r)
}

. (125)

For convenience in the manipulations that follow afterward, we may write the final form of
this equation as

RHS =
rM

4[r − rMβ(r)]2

{

2(1 + 2ω)
[

rβ′(r)
]

− 2β(r)
}[

r − rMβ(r)
]

=
rM

4[r − rMβ(r)]2

{

2(1 + 2ω)r
[

rβ′(r)
]

− 2rβ(r)+

−2(1 + 2ω)rMβ(r)
[

rβ′(r)
]

+ 2rMβ2(r)
}

. (126)

As one can see, this involves the function β(r), its derivative β′(r), and the parameters ω
and rM . Using again the results obtained in the text for the relevant quantities, we can
now write the left-hand side of our θ component equation as

LHS =
rM

2[r − rMβ(r)]2

(

ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+

+ωrM
[

rβ′(r)
]2

+

+(1− ω)r
[

rβ′(r)
]

− rβ(r)

)

+

+
r2M

4[r − rMβ(r)]2

{

β(r) + ω
[

rβ′(r)
]

}2

+

+
r2M

4[r − rMβ(r)]2

{

β(r)−
[

rβ′(r)
]

}{

β(r) + ω
[

rβ′(r)
]

}
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=
rM

4 [r − rMβ(r)]2
×

×
(

2ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ 2ωrM
[

rβ′(r)
]2

+

+ 2(1− ω)r
[

rβ′(r)
]

− 2rβ(r) + rMβ2(r)+

+ 2ωrMβ(r)
[

rβ′(r)
]

+ ω2rM
[

rβ′(r)
]2

+ rMβ2(r)+

+ ωrMβ(r)
[

rβ′(r)
]

− rMβ(r)
[

rβ′(r)
]

− ωrM
[

rβ′(r)
]2
)

. (127)

Some simplifications can now be made, so that we may write that

LHS =
rM

4 [r − rMβ(r)]2

(

2ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+

+ ω(1 + ω)rM
[

rβ′(r)
]2

+

+ 2(1− ω)r
[

rβ′(r)
]

− 2rβ(r)+

+2rMβ2(r) + (3ω − 1)rMβ(r)
[

rβ′(r)
]

)

. (128)

Using the expressions for the left-hand and right-hand sides we may now write for the θ
component of the field equation,

2ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ ω(1 + ω)rM
[

rβ′(r)
]2

+

+ 2(1− ω)r
[

rβ′(r)
]

− 2rβ(r) + 2rMβ2(r) + (3ω − 1)rMβ(r)
[

rβ′(r)
]

= 2(1 + 2ω)r
[

rβ′(r)
]

− 2rβ(r) +

− 2(1 + 2ω)rMβ(r)
[

rβ′(r)
]

+ 2rMβ2(r). (129)

Some of the terms now cancel off, and passing all the remaining terms to the left-hand side
we are left with

2ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ ω(1 + ω)rM
[

rβ′(r)
]2

+

+(2− 2ω)r
[

rβ′(r)
]

+ (3ω − 1)rMβ(r)
[

rβ′(r)
]

+

− (2 + 4ω)r
[

rβ′(r)
]

+ (2 + 4ω)rMβ(r)
[

rβ′(r)
]

= 0. (130)

One can see that some more terms will cancel off. For convenience we will write this
equation with an extra overall factor of rM , as

2ωrM [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ ω(1 + ω)r2M
[

rβ′(r)
]2

+

−6ωrrM
[

rβ′(r)
]

+ (1 + 7ω)r2Mβ(r)
[

rβ′(r)
]

= 0, (131)

so that it is now ready for the further manipulations made in the text.

A.2.3 Derivation from the Consistency Condition

Here we derive Equation (74) of the text from the consistency condition shown in Equa-
tion (27) of the text. If we use the results obtained in the text for ν ′(r) and T(r) the
consistency condition can be written as
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rM
2

β(r) + ω [rβ′(r)]

r − rMβ(r)
=

2ω

1 + ω
− ω

1 + ω

[rβ′′(r)]

β′(r)
. (132)

If we now use the fact that

rβ′′(r) =
[

rβ′(r)
]

′ − β′(r), (133)

we can write this equation as

rM
2

β(r) + ω [rβ′(r)]

r − rMβ(r)
=

2ω

1 + ω
− ω

1 + ω

{

[rβ′(r)]′ − β′(r)
}

β′(r)

=
2ω

1 + ω
− ω

1 + ω

[rβ′(r)]′

β′(r)
+

ω

1 + ω

=
3ω

1 + ω
− ω

1 + ω

[rβ′(r)]′

β′(r)
. (134)

Making the crossed-products in order to eliminate the denominators we get

(1 + ω)rMβ(r)β′(r) + ω(1 + ω)rMβ′(r)
[

rβ′(r)
]

= [r − rMβ(r)]
{

6ωβ′(r)− 2ω
[

rβ′(r)
]

′

}

= 6ω
[

rβ′(r)
]

− 2ω
{

r
[

rβ′(r)
]

′

}

− 6ωrMβ(r)β′(r) + 2ωrMβ(r)
[

rβ′(r)
]

′

. (135)

Making the product by an extra factor of r and reorganizing the terms we get

(1 + ω)rMβ(r)
[

rβ′(r)
]

+ ω(1 + ω)rM
[

rβ′(r)
]2

= 6ωr
[

rβ′(r)
]

− 2ωr
{

r
[

rβ′(r)
]

′

}

− 6ωrMβ(r)
[

rβ′(r)
]

+ 2ωrMβ(r)
{

r
[

rβ′(r)
]

′

}

= −2ω [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ 6ωr
[

rβ′(r)
]

− 6ωrMβ(r)
[

rβ′(r)
]

, (136)

so that, passing all terms to the left-hand side and finally multiplying by an extra factor of
rM , we get

2ωrM [r − rMβ(r)]
{

r
[

rβ′(r)
]

′

}

+ ω(1 + ω)r2M
[

rβ′(r)
]2

+

−6ωrrM
[

rβ′(r)
]

+ (1 + 7ω)r2Mβ(r)
[

rβ′(r)
]

= 0. (137)

One can now see that this is exactly the same expression shown in Equation (74) of the
text.
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