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Abstract

In the context of the complex-analytic structure within the unit disk centered at the
origin of the complex plane, that was presented in a previous paper, we show that
singular Schwartz distributions can be represented within that same structure, so long
as one defines the limits involved in an appropriate way. In that previous paper it
was shown that essentially all integrable real functions can be represented within the
complex-analytic structure. The infinite collection of singular objects which we analyze
here can thus be represented side by side with those real functions, thus allowing all
these objects to be treated in a unified way.

1 Introduction

In a previous paper [1] we introduced a certain complex-analytic structure within the unit
disk of the complex plane, and showed that one can represent essentially all integrable real
functions within that structure. In this paper we will show that one can represent within
the same structure the singular objects known as distributions, loosely in the sense of the
Schwartz theory of distributions [2, 3], which are also known as generalized real functions.
All these objects will be interpreted as parts of this larger complex-analytic structure,
within which they can be treated and manipulated in a robust and unified way.

In Sections 2 and 3 we will establish the relation between the complex-analytic structure
and the singular distributions. There we will show that one obtains these objects through
the properties of certain limits to the unit circle, involving a particular set of inner analytic
functions, which will be presented explicitly. Following what was shown in [1] for integrable
real functions, each singular distribution will be associated to a corresponding inner analytic
function. In fact, we will show that the entire space of all singular Schwartz distributions
defined within a compact domain is contained within this complex-analytic structure. In
Section 4 we will analyze a certain collection of integrable real functions which are closely
related to the singular distributions, through the concept of infinite integral-differential
chains of functions.

For ease of reference, we include here a one-page synopsis of the complex-analytic struc-
ture introduced in [1]. It consists of certain elements within complex analysis [4], as well
as of their main properties.
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Synopsis: The Complex-Analytic Structure

An inner analytic function w(z) is simply a complex function which is analytic within the
open unit disk. An inner analytic function that has the additional property that w(0) = 0
is a proper inner analytic function. The angular derivative of an inner analytic function is
defined by

w·(z) = ız
dw(z)

dz
. (1)

By construction we have that w·(0) = 0, for all w(z). The angular primitive of an inner
analytic function is defined by

w−1·(z) = −ı

∫ z

0
dz′

w(z′)− w(0)

z′
. (2)

By construction we have that w−1·(0) = 0, for all w(z). In terms of a system of polar
coordinates (ρ, θ) on the complex plane, these two analytic operations are equivalent to
differentiation and integration with respect to θ, taken at constant ρ. These two operations
stay within the space of inner analytic functions, they also stay within the space of proper
inner analytic functions, and they are the inverses of one another. Using these operations,
and starting from any proper inner analytic function w0·(z), one constructs an infinite
integral-differential chain of proper inner analytic functions,

{

. . . , w−3·(z), w−2·(z), w−1·(z), w0·(z), w1·(z), w2·(z), w3·(z), . . .
}

. (3)

Two different such integral-differential chains cannot ever intersect each other. There is
a single integral-differential chain of proper inner analytic functions which is a constant
chain, namely the null chain, in which all members are the null function w(z) ≡ 0.

A general scheme for the classification of all possible singularities of inner analytic
functions is established. A singularity of an inner analytic function w(z) at a point z1 on
the unit circle is a soft singularity if the limit of w(z) to that point exists and is finite.
Otherwise, it is a hard singularity. Angular integration takes soft singularities to other soft
singularities, and angular differentiation takes hard singularities to other hard singularities.

Gradations of softness and hardness are then established. A hard singularity that be-
comes a soft one by means of a single angular integration is a borderline hard singularity,
with degree of hardness zero. The degree of softness of a soft singularity is the number of
angular differentiations that result in a borderline hard singularity, and the degree of hard-

ness of a hard singularity is the number of angular integrations that result in a borderline
hard singularity. Singularities which are either soft or borderline hard are integrable ones.
Hard singularities which are not borderline hard are non-integrable ones.

Given an integrable real function f(θ) on the unit circle, one can construct from it a
unique corresponding inner analytic function w(z). Real functions are obtained through
the ρ → 1(−) limit of the real and imaginary parts of each such inner analytic function and,
in particular, the real function f(θ) is obtained from the real part of w(z) in this limit. The
pair of real functions obtained from the real and imaginary parts of one and the same inner
analytic function are said to be mutually Fourier-conjugate real functions.

Singularities of real functions can be classified in a way which is analogous to the
corresponding complex classification. Integrable real functions are typically associated with
inner analytic functions that have singularities which are either soft or at most borderline
hard. This ends our synopsis.
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When we discuss real functions in this paper, some properties will be globally assumed for
these functions, just as was done in [1]. These are rather weak conditions to be imposed on
these functions, that will be in force throughout this paper. It is to be understood, without
any need for further comment, that these conditions are valid whenever real functions
appear in the arguments. These weak conditions certainly hold for any integrable real
functions that are obtained as restrictions of corresponding inner analytic functions to the
unit circle.

The most basic condition is that the real functions must be measurable in the sense
of Lebesgue, with the usual Lebesgue measure [5, 6]. The second global condition we will
impose is that the functions have no removable singularities. The third and last global
condition is that the number of hard singularities on the unit circle be finite, and hence
that they be all isolated from one another. There will be no limitation on the number of
soft singularities.

The material contained in this paper is a development, reorganization and extension of
some of the material found, sometimes still in rather rudimentary form, in the papers [7–11].

2 The Dirac Delta “Function”

This is where we begin the discussion of inner analytic functions that have hard singularities
with strictly positive degrees of hardness. Let us start by simply introducing a certain
particular inner analytic function of z. If z1 is a point on the unit circle, this function is
defined as a very simple rational function of z,

wδ(z, z1) =
1

2π
−

1

π

z

z − z1
. (4)

This inner analytic function has a single point of singularity, which is a simple pole at z1.
This is a hard singularity with degree of hardness equal to one. Our objective here is to
examine the properties of the real part uδ(ρ, θ, θ1) of this inner analytic function,

wδ(z, z1) = uδ(ρ, θ, θ1) + ıvδ(ρ, θ, θ1). (5)

We will prove that in the ρ → 1(−) limit uδ(ρ, θ, θ1) can be interpreted as a Schwartz

distribution [2,3], namely as the singular object known as the Dirac delta “function”, which
we will denote by δ(θ − θ1). This object is also known as a generalized real function, since
it is not really a real function in the usual sense of the term. In the Schwartz theory of
distributions this object plays the role of an integration kernel for a certain distribution.
Note that wδ(z, z1) can, in fact, be written explicitly as a function of ρ and θ − θ1. Since
we have that z = ρ exp(ıθ) and that z1 = exp(ıθ1), we have at once that

wδ(z, z1) =
1

2π
−

1

π

ρ eı(θ−θ1)

ρ eı(θ−θ1) − 1
. (6)

The definition of the Dirac delta “function” is that it is a symbol for a limiting process,
which satisfies certain conditions. In our case here the limiting process will be the limit
ρ → 1(−) from the open unit disk to the unit circle. The limit of uδ(ρ, θ, θ1) represents the
delta “function” in the sense that it satisfies the conditions that follow.

1. The defining limit of δ(θ − θ1) tends to zero when one takes the ρ → 1(−) limit while
keeping θ 6= θ1.
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2. The defining limit of δ(θ−θ1) diverges to positive infinity when one takes the ρ → 1(−)

limit with θ = θ1.

3. In the ρ → 1(−) limit the integral

∫ b

a

dθ δ(θ − θ1) = 1 (7)

has the value shown, for any open interval (a, b) which contains the point θ1.

4. Given any continuous integrable function g(θ), in the ρ → 1(−) limit the integral

∫ b

a

dθ g(θ)δ(θ − θ1) = g(θ1) (8)

has the value shown, for any open interval (a, b) which contains the point θ1.

This is the usual form of this condition, when it is formulated in strictly real terms.
However, we will impose a slight additional restriction on the real functions g(θ), by
assuming that the limit to the point z1 on the unit circle that corresponds to θ1, of
the corresponding inner analytic function wγ(z), exists and is finite. This implies that
wγ(z) may have at z1 a soft singularity, but not a hard singularity.

Note that, although it is customary to list both separately, the third condition is in fact
just a particular case of the fourth condition. It is also arguable that the second condition
is not really necessary, because it is a consequence of the others. We may therefore consider
that the only really essential conditions are the first and the fourth ones.

The functions g(θ) are sometimes named test functions within the Schwartz theory of
distributions [2, 3]. The additional part of the fourth condition, that the limit to the point
z1 of the corresponding inner analytic function wγ(z) must exist and be finite, consists of
a weak limitation on these test functions, and does not affect the definition of the singular
distribution itself. This is certainly the case for our definition here, since we define this
object through a definite and unique inner analytic function.

In this section we will prove the following theorem.

Theorem 1: The ρ → 1(−) limit of the real part of the inner analytic function wδ(z, z1)
converges to the generalized function δ(θ − θ1).

Before we attempt to prove this theorem, our first task is to write explicitly the real and
imaginary parts of wδ(z, z1). In order to do this we must now rationalize it,

wδ(z, z1) =
1

2π
−

1

π

z(z∗ − z∗1)

(z − z1)(z∗ − z∗1)

=
1

2π
−

1

π

ρ2 − ρ cos(∆θ)− ıρ sin(∆θ)

ρ2 − 2ρ cos(∆θ) + 1
, (9)

where ∆θ = θ − θ1. We must examine the real part of this function,

uδ(ρ, θ, θ1) =
1

2π
−

1

π

ρ [ρ− cos(∆θ)]

(ρ2 + 1)− 2ρ cos(∆θ)
. (10)

We are now ready to prove the theorem, which we will do by simply verifying all the
properties of the Dirac delta “function”.
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Proof 1.1:

If we take the limit ρ → 1(−), under the assumption that ∆θ 6= 0, we get

lim
ρ→1(−)

uδ(ρ, θ, θ1) =
1

2π
−

1

π

1− cos(∆θ)

2− 2 cos(∆θ)

= 0, (11)

which is the correct value for the case of the Dirac delta “function”. Thus we see that the
first condition is satisfied.

If, on the other hand, we calculate uδ(ρ, θ, θ1) for ∆θ = 0 and ρ < 1 we obtain

uδ(ρ, θ1, θ1) =
1

2π
−

1

π

ρ(ρ− 1)

(ρ− 1)2

=
1

2π
−

1

π

ρ

ρ− 1
, (12)

which diverges to positive infinity as ρ → 1(−), as it should in order to represent the singular
Dirac delta “function”. This establishes that the second condition is satisfied.

We now calculate the real integral of uδ(ρ, θ, θ1) over the circle of radius ρ < 1, which is
given by

∫ π

−π

dθ ρ uδ(ρ, θ, θ1) =
1

2π

∫ π

−π

dθ ρ

{

1−
2ρ [ρ− cos(∆θ)]

(ρ2 + 1)− 2ρ cos(∆θ)

}

=
ρ

2π

∫ π

−π

d(∆θ)

(

1− ρ2
)

(ρ2 + 1)− 2ρ cos(∆θ)

=

(

1− ρ2
)

4π

∫ π

−π

d(∆θ)
1

[(ρ2 + 1) /(2ρ)]− cos(∆θ)
, (13)

since d(∆θ) = dθ. This real integral over ∆θ can be calculated by residues. We introduce
an auxiliary complex variable ξ = λ exp(ı∆θ), which becomes simply exp(ı∆θ) on the unit
circle λ = 1. We have dξ = ıξd(∆θ), and so we may write the integral on the right-hand
side as

∫ π

−π

d(∆θ)
1

[(1 + ρ2) /(2ρ)]− cos(∆θ)
=

∮

C

dξ
1

ıξ

2

[(1 + ρ2) /ρ]− ξ − 1/ξ

= 2ı

∮

C

dξ
1

1− [(1 + ρ2) /ρ] ξ + ξ2
, (14)

where the integral is now over the unit circle C in the complex ξ plane. The two roots of
the quadratic polynomial on ξ in the denominator are given by

ξ(+) = 1/ρ,

ξ(−) = ρ. (15)

Since ρ < 1, only the simple pole corresponding to ξ(−) lies inside the integration contour,
so we get for the integral

∫ π

−π

dθ
1

[(1 + ρ2) /(2ρ)]− cos(∆θ)
= 2ı(2πı) lim

ξ→ρ

1

ξ − 1/ρ

= 4π
ρ

(1− ρ2)
. (16)
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It follows that we have for the real integral in Equation (13)

∫ π

−π

dθ ρ uδ(ρ, θ, θ1) =

(

1− ρ2
)

4π
4π

ρ

(1− ρ2)

= ρ, (17)

and thus we have that the integral is equal to 1 in the ρ → 1(−) limit. Once we have this
result, and since according to the first condition the integrand goes to zero everywhere on
the unit circle except at ∆θ = 0, which is the same as θ = θ1, the integral can be changed
to one over any open interval (a, b) on the unit circle containing the point θ1, without any
change in its limiting value. This establishes that the third condition is satisfied.

In order to establish the validity of the fourth and last condition, we consider an essentially
arbitrary integrable real function g(θ), with the additional restriction that it be continuous
at the point z1. As was established in [1], it corresponds to an inner analytic function

wγ(z) = uγ(ρ, θ) + ıvγ(ρ, θ), (18)

where we also assume that g(θ) is such that wγ(z) may have at z1 a soft singularity, but
not a hard singularity, so that its limit to z1 exists. We now consider the following real
integral1 over the circle of radius ρ < 1,

∫ π

−π

dθ ρ uγ(ρ, θ)uδ(ρ, θ, θ1) =
1

2π

∫ π

−π

dθ ρ uγ(ρ, θ)

{

1−
2ρ [ρ− cos(∆θ)]

(ρ2 + 1)− 2ρ cos(∆θ)

}

=
ρ

2π

∫ π

−π

d(∆θ)uγ(ρ, θ)

(

1− ρ2
)

(ρ2 + 1)− 2ρ cos(∆θ)

=

(

1− ρ2
)

4π

∫ π

−π

d(∆θ)
uγ(ρ, θ)

[(ρ2 + 1) /(2ρ)]− cos(∆θ)
, (19)

since d(∆θ) = dθ. This real integral over ∆θ can be calculated by residues, exactly like
the one in Equation (13) which appeared before in the case of the third condition. The
calculation is exactly the same except for the extra factor of uγ(ρ, θ) to be taken into
consideration when calculating the residue, so that we may write directly that

∫ π

−π

d(∆θ)
uγ(ρ, θ)

[(ρ2 + 1) /(2ρ)]− cos(∆θ)
= 2ı(2πı) lim

ξ→ρ

uγ(ρ, θ)

ξ − 1/ρ

= 4π
ρ

(1− ρ2)
lim
ξ→ρ

uγ(ρ, θ). (20)

Note now that since ξ = λ exp(ı∆θ), and since we must take the limit ξ → ρ, we in fact
have that in that limit

λ eı∆θ = ρ, (21)

which implies that λ = ρ and that ∆θ = 0, and therefore that θ = θ1. We must therefore
write uγ(ρ, θ) at the point given by ρ and θ1, thus obtaining

∫ π

−π

d(∆θ)
uγ(ρ, θ)

[(ρ2 + 1) /(2ρ)]− cos(∆θ)
= 4π

ρ

(1− ρ2)
uγ(ρ, θ1). (22)

1Post-publication note: it is important to observe here that, from its very beginning, this argument goes
through without any change if we replace uγ(ρ, θ) directly by g(θ) in the integrand. Hence, the theorem is
true regardless of whether or not the real function g(θ) is represented by an inner analytic function.
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It follows that we have for the real integral in Equation (19)

∫ π

−π

dθ ρ uγ(ρ, θ)uδ(ρ, θ, θ1) =

(

1− ρ2
)

4π
4π

ρ

(1− ρ2)
uγ(ρ, θ1)

= ρuγ(ρ, θ1). (23)

Finally, we may now take the ρ → 1(−) limit, since wγ(z) and thus uγ(ρ, θ) are well defined
at z1 in that limit, and thus obtain

lim
ρ→1(−)

∫ π

−π

dθ ρ uγ(ρ, θ)uδ(ρ, θ, θ1) = uγ(1, θ1) ⇒

∫ π

−π

dθ uγ(1, θ)

[

lim
ρ→1(−)

uδ(ρ, θ, θ1)

]

= uγ(1, θ1) ⇒

∫ π

−π

dθ g(θ)

[

lim
ρ→1(−)

uδ(ρ, θ, θ1)

]

= g(θ1), (24)

since uγ(ρ, θ) converges to g(θ), in the ρ → 1(−) limit, almost everywhere on the unit
circle. Just as before, once we have this result, and since according to the first condition
the integrand goes to zero everywhere on the unit circle except at ∆θ = 0, which is the
same as θ = θ1, the integral can be changed to one over any open interval on the unit circle
containing the point θ1, without any change in its value. This establishes that the fourth
and last condition is satisfied.

Having established all the properties, we may now write symbolically that

δ(θ − θ1) = lim
ρ→1(−)

uδ(ρ, θ, θ1). (25)

This concludes the proof of Theorem 1.

It is important to note that, when we adopt as the definition of the Dirac delta “function”
the ρ → 1(−) limit of the real part of the inner analytic function wδ(z, z1), the limitations
imposed on the test functions g(θ) and on the corresponding inner analytic functions wγ(z)
become irrelevant. In fact, this definitions stands by itself, and is independent of any set of
test functions. Given any integrable real function f(θ) and the corresponding inner analytic
function w(z) with real part u(ρ, θ), we may always assemble the real integral over a circle
of radius ρ < 1

∫ π

−π

dθ ρ u(ρ, θ)uδ(ρ, θ, θ1), (26)

which is always well defined within the open unit disk. It then remains to be verified only
whether or not the ρ → 1(−) limit of this integral exists, in order to define the corresponding
integral

∫ π

−π

dθ f(θ)δ(θ − θ1). (27)

This limit may exist for functions that do not satisfy the conditions imposed on the test
functions. In fact, one can do this for the real part of any inner analytic function, regardless
of whether or not it corresponds to an integrable inner analytic function, so long as the
ρ → 1(−) limit of u(ρ, θ) exists almost everywhere. Whenever the ρ → 1(−) limit of the
integral exists, it defines the action of the delta “function” on that particular real object.
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It is also interesting to observe that the Dirac delta “function”, although it is not
simply a conventional integrable real function, is in effect an integrable real object, even
if it corresponds to an inner analytic functions that has a simple pole at z1, which is
a non-integrable hard singularity, with degree of hardness equal to one. This apparent
contradiction is explained by the orientation of the pole at z = z1. If we consider the
real part uδ(ρ, θ) of the inner analytic function wδ(z, z1), although it is not integrable along
curves arriving at the singular point from most directions, there is one direction, that of the
unit circle, along which one can approach the singular point so that uδ(ρ, θ) is identically
zero during the approach, which allows us to define its integral using the ρ → 1(−) limit2.
The same is not true, for example, for the imaginary part vδ(ρ, θ) of the same inner analytic
function, which generates the Fourier-conjugate function to the delta “function”, and that
diverges to infinity as 1/|z − z1| when one approaches the singular point along the unit
circle, thus generating a non-integrable real function in the ρ → 1(−) limit.

In the development presented in [1] the real functions were represented by their Fourier
coefficients, and the inner analytic functions by their Taylor coefficients. We can easily do
the same here, if we observe that the inner analytic function wδ(z, z1) in Equation (4) is
the sum of a geometric series,

wδ(z, z1) =
1

2π
+

1

π

z/z1
1− z/z1

=
1

2π
+

1

π

∞
∑

k=1

(

z

z1

)k

=
1

2π
+

1

π

∞
∑

k=1

[cos(kθ1)− ı sin(kθ1)] z
k. (28)

This power series is the Taylor series of wδ(z, z1) around the origin, and therefore it follows
that the Taylor coefficients of this inner analytic function are given by

c0 =
1

2π
,

ck =
cos(kθ1)

π
− ı

sin(kθ1)

π
, (29)

where k ∈ {1, 2, 3, . . . ,∞}. Since according to the construction presented in [1] we have
that c0 = α0/2 and that ck = αk − ıβk, we have for the Fourier coefficients of the delta
“function”

α0 =
1

π
,

αk =
cos(kθ1)

π
,

βk =
sin(kθ1)

π
, (30)

where k ∈ {1, 2, 3, . . . ,∞}. Note that these are in fact the results one obtains via the
integrals defining the Fourier coefficients [12],

2Post-publication note: this characterizes the inner analytic function wδ(z, z1) associated to the Dirac
delta “function” as an irregular inner analytic function, since it is not integrable around its singular point,
which is a hard singular point with degree of hardness 1, while the corresponding real object is.
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αk =
1

π

∫ π

−π

dθ cos(kθ)δ(θ − θ1),

βk =
1

π

∫ π

−π

dθ sin(kθ)δ(θ − θ1), (31)

by simply using the fundamental property of the delta “function”.
Having established the representation of the Dirac delta “function” within the structure

of the inner analytic functions, in sequence we will show that the Dirac delta “function”
is not the only singular distribution that can be represented by an inner analytic function.
As we will see, one can do the same for its first derivative, and in fact for its derivatives
of any order. This is an inevitable consequence of the fact that the proper inner analytic
function w0·

δ (z, z1) associated to wδ(z, z1) is a member of an integral-differential chain.

3 Derivatives of the Delta “Function”

The derivatives of the Dirac delta “function” are defined in a way which is similar to that
of the delta “function” itself. The first condition is the same, and the second and third
conditions are not really required. The crucial difference is that the fourth condition in the
definition of the Dirac delta “function” is replaced by the second condition in the list that
follows. The “function” δn′(θ− θ1) is the nth derivative of δ(θ− θ1) with respect to θ if its
defining limit ρ → 1(−) satisfies the two conditions that follow.

1. The defining limit of δn′(θ−θ1) tends to zero when one takes the ρ → 1(−) limit while
keeping θ 6= θ1.

2. Given any integrable real function g(θ) which is differentiable to the nth order, in the
ρ → 1(−) limit the integral

∫ b

a

dθ g(θ)δn′(θ − θ1) = (−1)ngn′(θ1) (32)

has the value shown, for any open interval (a, b) which contains the point θ1, where
gn′(θ) is the nth derivative of g(θ) with respect to θ.

This is the usual form of this condition, when it is formulated in strictly real terms.
However, we will impose a slight additional restriction on the real functions g(θ), by
assuming that the limit to the point z1 on the unit circle that corresponds to θ1, of
the nth angular derivative of the corresponding inner analytic function wγ(z), exists
and is finite. Since these proper inner analytic functions are all in the same integral-
differential chain, this implies that the limits to z1 of all the inner analytic functions
wm·
γ (z) exist, for all 0 ≤ m ≤ n.

The second condition above is, in fact, the fundamental property of each derivative of the
delta “function”, including the “function” itself in the case n = 0. Just as in the case of
the delta “function” itself, the additional part of the second condition, involving the inner
analytic function wγ(z), consists of a weak limitation on the test functions g(θ), and does
not affect the definition of the singular distributions themselves. This is certainly the case
for our definitions here, since we define each one of these objects through a definite and
unique inner analytic function.

In this section we will prove the following theorem.
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Theorem 2: For every strictly positive integer n there exists an inner analytic function

wδn′(z, z1) whose real part, in the ρ → 1(−) limit, converges to δn′(θ − θ1).

Before we attempt to prove this theorem, let us note that the proof relies on a property
of angular differentiation, which was established in [1], namely that angular differentiation
is equivalent to partial differentiation with respect to θ, at constant ρ. When we take the
ρ → 1(−) limit, this translates to the fact that taking the angular derivative of the inner
analytic function w(z) within the open unit disk corresponds to taking the derivative with
respect to θ, on the unit circle, of the corresponding real object.

If this derivative cannot be taken directly on the unit circle, then one can define it
by taking the angular derivative of the corresponding inner analytic function and then
considering the ρ → 1(−) limit of the real part of the resulting function. Since analytic
functions can be differentiated any number of times, the procedure can then be iterated
in order to define all the higher-order derivatives with respect to θ on the unit circle.
Equivalently, one can just consider traveling along the integral-differential chain indefinitely
in the differentiation direction.

Consider therefore the integral-differential chain of proper inner analytic functions that
is obtained from the proper inner analytic function associated to wδ(z, z1), that is, the
unique integral-differential chain to which the proper inner analytic function

w0·
δ (z, z1) = wδ(z, z1)−

1

2π

= −
1

π

z

z − z1
(33)

belongs. Consider in particular the set of proper inner analytic functions which is obtained
from w0·

δ (z, z1) in the differentiation direction along this chain, for which we have

wn·
δ (z, z1) = un′δ (ρ, θ, θ1) + ıvn′δ (ρ, θ, θ1)

=
∂n

∂θn
uδ(ρ, θ, θ1) + ı

∂n

∂θn
vδ(ρ, θ, θ1), (34)

for all strictly positive n, where we recall that

wδ(z, z1) = uδ(ρ, θ, θ1) + ıvδ(ρ, θ, θ1). (35)

We will now prove that in the ρ → 1(−) limit we have

δn′(θ − θ1) = lim
ρ→1(−)

un′δ (ρ, θ, θ1), (36)

for n ∈ {1, 2, 3, . . . ,∞}, or, equivalently, that we have for the inner analytic function
wδn′(z, z1) associated to the derivative δn′(θ − θ1)

wδn′(z, z1) = wn·
δ (z, z1), (37)

for n ∈ {1, 2, 3, . . . ,∞}. We are now ready to prove the theorem, as stated in Equation (36).
Let us first prove, however, that the first condition holds for all the derivatives of the delta
“function”.

10



Proof 2.1:

Since wδ(z, z1) has a single singular point at z1, the same is true for all its angular deriva-
tives. Therefore the ρ → 1(−) limit of all the angular derivatives exists everywhere within
the open interval of the unit circle that excludes the point θ1. Since uδ(1, θ, θ1) is identi-
cally zero within this interval, and since angular differentiation within the open unit disk
corresponds to differentiation with respect to θ on the unit circle, so that we have

un′δ (1, θ, θ1) =
∂n

∂θn
uδ(1, θ, θ1), (38)

for n ∈ {1, 2, 3, . . . ,∞}, it follows at once that

un′δ (1, θ, θ1) = 0 ⇒

lim
ρ→1(−)

un′δ (ρ, θ, θ1) = 0, (39)

for n ∈ {1, 2, 3, . . . ,∞}, everywhere but at the singular point θ1, for all values of n. This
establishes that the first condition holds.

Let us now prove that the second condition, which relates directly to the singular point,
holds, leading to the result as stated in Equation (36).

Proof 2.2:

In order to do this, we start with the case n = 1, and consider the following real integral
on the circle of radius ρ < 1, which we integrate by parts, noting that the integrated term
is zero because we are integrating on a circle,

∫ π

−π

dθ uγ(ρ, θ)

[

∂

∂θ
uδ(ρ, θ, θ1)

]

= −

∫ π

−π

dθ

[

∂

∂θ
uγ(ρ, θ)

]

uδ(ρ, θ, θ1), (40)

where wγ(z) = uγ(ρ, θ) + ıvγ(ρ, θ) is the inner analytic function associated to g(θ). Note
that the partial derivatives involved certainly exist, since both uδ(ρ, θ, θ1) and uγ(ρ, θ) are
the real parts of inner analytic functions. If we now take the ρ → 1(−) limit, on the
right-hand side we recover the Dirac delta “function” on the unit circle, and therefore we
have

∫ π

−π

dθ g(θ)

[

lim
ρ→1(−)

∂

∂θ
uδ(ρ, θ, θ1)

]

= −

∫ π

−π

dθ

[

d

dθ
g(θ)

]

δ(θ − θ1)

= (−1) g′(θ1), (41)

so long as g(θ) is differentiable, were we used the fundamental property of the Dirac delta
“function”. We thus obtain the relation for the derivative of the delta “function”,

∫ π

−π

dθ g(θ)δ′(θ − θ1) = (−1) g′(θ1), (42)

where

δ′(θ − θ1) = lim
ρ→1(−)

∂

∂θ
uδ(ρ, θ, θ1). (43)

We may therefore write that
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δ′(θ − θ1) = lim
ρ→1(−)

u′δ(ρ, θ, θ1). (44)

In this way we have obtained the result for δ′(θ−θ1) by using the known result for δ(θ−θ1).
We may now repeat this procedure to obtain the result for δ2′(θ − θ1) from the result for
δ′(θ− θ1), and therefore from the result for δ(θ− θ1). We simply consider the following real
integral on the circle of radius ρ < 1, which we again integrate by parts, recalling that the
integrated term is zero because we are integrating on a circle,

∫ π

−π

dθ uγ(ρ, θ)

[

∂

∂θ
u′δ(ρ, θ, θ1)

]

= −

∫ π

−π

dθ

[

∂

∂θ
uγ(ρ, θ)

]

u′δ(ρ, θ, θ1). (45)

If we now take the ρ → 1(−) limit, on the right-hand side we recover the first derivative of
the Dirac delta “function” on the unit circle, and therefore we have

∫ π

−π

dθ g(θ)

[

lim
ρ→1(−)

∂

∂θ
u′δ(ρ, θ, θ1)

]

= −

∫ π

−π

dθ

[

d

dθ
g(θ)

]

δ′(θ − θ1)

= (−1)2g2′(θ1), (46)

so long as g(θ) is differentiable to second order, were we used the fundamental property of
the first derivative of the Dirac delta “function”. We thus obtain the relation for the second
derivative of the delta “function”,

∫ π

−π

dθ g(θ)δ2′(θ − θ1) = (−1)2g2′(θ1), (47)

where

δ2′(θ − θ1) = lim
ρ→1(−)

∂2

∂θ2
uδ(ρ, θ, θ1). (48)

We may therefore write that

δ2′(θ − θ1) = lim
ρ→1(−)

u2′δ (ρ, θ, θ1). (49)

Clearly, this procedure can be iterated n times, thus resulting in the relation

δn′(θ − θ1) = lim
ρ→1(−)

un′δ (ρ, θ, θ1), (50)

for n ∈ {1, 2, 3, . . . ,∞}. Note that all the derivatives with respect to θ involved in the
argument exist, for arbitrarily high orders, since both uδ(ρ, θ, θ1) and uγ(ρ, θ) are the real
parts of inner analytic functions, and thus are infinitely differentiable on both arguments.

We may now formalize the proof using finite induction. We thus assume the results for
the case n− 1,

δ(n−1)′(θ − θ1) = lim
ρ→1(−)

u
(n−1)′
δ (ρ, θ, θ1),

∫ b

a

dθ g(θ)δ(n−1)′(θ − θ1) = (−1)n−1g(n−1)′(θ1), (51)

and proceed to examine the next case. We consider therefore the following real integral
on the circle of radius ρ < 1, which we integrate by parts, recalling once more that the
integrated term is zero because we are integrating on a circle,
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∫ π

−π

dθ uγ(ρ, θ)

[

∂

∂θ
u
(n−1)′
δ (ρ, θ, θ1)

]

= −

∫ π

−π

dθ

[

∂

∂θ
uγ(ρ, θ)

]

u
(n−1)′
δ (ρ, θ, θ1). (52)

If we now take the ρ → 1(−) limit, on the right-hand side we recover the (n−1)th derivative
of the Dirac delta “function” on the unit circle, and therefore we have

∫ π

−π

dθ g(θ)

[

lim
ρ→1(−)

∂

∂θ
u
(n−1)′
δ (ρ, θ, θ1)

]

= −

∫ π

−π

dθ

[

d

dθ
g(θ)

]

δ(n−1)′(θ − θ1)

= (−1)n gn′(θ1), (53)

so long as g(θ) is differentiable to order n, were we used the fundamental property of the
(n− 1)th derivative of the Dirac delta “function”. We thus obtain the relation for the nth

derivative of the delta “function”,

∫ π

−π

dθ g(θ)δn′(θ − θ1) = (−1)n gn′(θ1), (54)

where

δn′(θ − θ1) = lim
ρ→1(−)

∂n

∂θn
uδ(ρ, θ, θ1). (55)

We may therefore write that, by finite induction,

δn′(θ − θ1) = lim
ρ→1(−)

un′δ (ρ, θ, θ1), (56)

for n ∈ {1, 2, 3, . . . ,∞}. We have therefore completed the proof of Theorem 2.

It is important to note that, just as in the case of the Dirac delta “function”, when we
adopt as the definition of the nth derivative of the delta “function” the ρ → 1(−) limit of

the real part of the inner analytic function wn·
δ (z, z1), for n ∈ {1, 2, 3, . . . ,∞}, the limitations

imposed on the test functions g(θ) and on the corresponding inner analytic functions wγ(z)
become irrelevant. In fact, these definitions stand by themselves, and are independent of
any set of test functions. Not only one can use them for any inner analytic functions derived
from integrable real functions, but one can do this for any inner analytic function w(z),
regardless of whether or not it corresponds to an integrable real function, so long as the
ρ → 1(−) limit of the corresponding real part u(ρ, θ) exists almost everywhere. Just as in
the case of the Dirac delta “function”, whenever the ρ → 1(−) limit of the real integral

∫ π

−π

dθ ρ u(ρ, θ)un′δ (ρ, θ, θ1), (57)

exists, it defines the action of the nth derivative of the delta “function” on that particular
real object.

It is also interesting to observe that, just as in the case of the Dirac delta “function”,
it is true that its derivatives of all orders, although they are not simply integrable real
functions, are in fact integrable real objects, even if they are related to inner analytic
functions with non-integrable hard singularities. Just as is the case for the inner analytic
function associated to the delta “function” itself, the poles of the proper inner analytic
functions associated to the derivatives are always oriented in such a way that one can
approach the singularities along the unit circle while keeping the real parts of the functions

13



equal to zero, a fact that allows one to define the integrals on θ of the real parts via the
ρ → 1(−) limit3. Just as in the case of the delta “function”, the Fourier-conjugate functions
of the derivatives are simply non-integrable real functions. This fact provides the first hint
that there must be some relation of such non-integrable real functions with corresponding
inner analytic functions.

In the development presented in [1] the real functions were represented by their Fourier
coefficients, and the inner analytic functions by their Taylor coefficients. The same can be
done in our case here. Starting from the power series for w0·

δ (z, z1) given in Equation (28),
we can see that the definition of the angular derivative implies that we have for the inner
analytic functions associated to the derivatives of the delta “function”,

wn·
δ (z, z1) =

1

π

∞
∑

k=1

ı
nkn [cos(kθ1)− ı sin(kθ1)] z

k, (58)

for n ∈ {1, 2, 3, . . . ,∞}, so that the corresponding Taylor coefficients are given by c
(n)
0 = 0

and

c
(n)
k =

ı
nkn

π
[cos(kθ1)− ı sin(kθ1)] , (59)

for n ∈ {1, 2, 3, . . . ,∞}, and where k ∈ {1, 2, 3, . . . ,∞}. The identification of the Fourier

coefficients α
(n)
k and β

(n)
k will now depend on the parity of n.

Once we have the Dirac delta “function” and all its derivatives, both as inner analytic
functions and as the corresponding real objects, we may consider collections of such singular
objects, with their singularities located at all the possible points of the periodic interval
[−π, π], as well as arbitrary linear combinations of some or all of them. There is a well-known
theorem of the Schwartz theory of distributions [2, 3] which states that any distribution
which is singular at a given point θ1 can be expressed as a linear combination of the Dirac
delta “function” δ(θ − θ1) and its derivatives of arbitrarily high orders δn′(θ − θ1).

Since, as was observed in [1], the set of all inner analytic functions forms a vector space
over the field of complex numbers, it is immediately apparent that we may assemble such
linear combinations within the space of inner analytic functions. Therefore, the set of
distributions formed by the delta “functions” and all their derivatives, as defined here, with
their singularities located at all possible points of the unit circle, constitutes a complete basis
that spans the space of all possible singular Schwartz distributions defined in a compact
domain. We may conclude therefore that the whole space of Schwartz distributions in a
compact domain is contained within the set of inner analytic functions.

It is interesting to note that, since we have the inner analytic function that corresponds
to the delta “function” in explicit form, we are in a position to perform simple calculations
in order to obtain in explicit form the inner analytic functions that correspond to the first
few derivatives of the delta “function”. For example, a few simple and straightforward
calculations lead to the following proper inner analytic functions,

wδ1′(z, z1) = −
1

πı1
zz1

(z − z1)2
,

wδ2′(z, z1) = −
1

πı2
z(z + z1)z1
(z − z1)3

,

3Post-publication note: this characterizes all the inner analytic functions wn·
δ (z, z1) associated to the

derivatives of the Dirac delta “function” as irregular inner analytic functions, since they are not integrable
around their singular points, which are hard singular points with degrees of hardness n + 1, while the
corresponding real objects are.
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wδ3′(z, z1) = −
1

πı3
z
(

z2 + 4zz1 + z21
)

z1

(z − z1)4
. (60)

These proper inner analytic functions are all very simple rational functions of the complex
variable z, which can be written as functions of only z/z1, and hence as functions of only
ρ and θ − θ1. Note that we can induce from these examples that the nth derivative of the
delta “function” is indeed represented by an inner analytic function with a pole of order
n+ 1 on the unit circle, which is thus a hard singularity with degree of hardness n+ 1, as
one would expect from the structure of the corresponding integral-differential chain.

4 Piecewise Polynomial Functions

It is important to note that the Dirac delta “function” and all its derivatives, with their
singularities located at a given point z1 on the unit circle, are all contained within a single
integral-differential chain, making up, in fact, only a part of that chain, the semi-infinite
chain starting from the delta “function” and propagating indefinitely in the differentiation
direction along the chain. However, the chain propagates to infinity in both directions. In
order to complete its analysis, we must now determine what is the character of the real
objects in the remaining part of that chain, in the integration direction. In fact, they are
just integrable real functions, although they do have a specific character. They consist of
sections of polynomials wrapped around the unit circle, of progressively higher orders, and
progressively smoother across the singular point, as functions of θ, as one goes along the
integral-differential chain in the integration direction.

Let us illustrate this fact with a few simple examples. Instead of performing angular
integrations of the inner analytic functions, we will do this by performing integrations on
the unit circle. As was established in [1], one can determine these functions by simple
integration on θ, so long as one remembers two things: first, to make sure that the real
functions or related objects to be integrated on θ have zero average over the unit circle, and
second, to choose the integration constant so that the resulting real functions also have zero
average over the unit circle. For example, the integral of the zero-average delta “function”

δ0′(θ − θ1) = δ(θ − θ1)−
1

2π
, (61)

which is obtained from the real part of the proper inner analytic function in Equation (33),
can be integrated by means of the simple use of the fundamental property of the delta
“function”, thus yielding

δ−1′(∆θ) =
1

2
−

∆θ

2π
for ∆θ > 0,

δ−1′(∆θ) = −
1

2
−

∆θ

2π
for ∆θ < 0,

(62)

where ∆θ = θ − θ1. This is a sectionally linear function, with a single section consisting of
the intervals [−π, 0) and (0, π], thus excluding the point ∆θ = 0 where the singularity lies,
and with a unit-height step discontinuity at that point. Note that it is an odd function of
∆θ. The next case can now be calculated by straightforward integration, which yields

δ−2′(∆θ) = −
π

6
+

∆θ

2
−

∆θ2

4π
for ∆θ > 0,

δ−2′(∆θ) = −
π

6
−

∆θ

2
−

∆θ2

4π
for ∆θ < 0.

(63)
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This is a sectionally quadratic function, this time a continuous function, again with the
same single section excluding the point ∆θ = 0, but now with a point of non-differentiability
there. Note that it is an even function of ∆θ. The next case yields, once more by straight-
forward integration,

δ−3′(∆θ) = −
π∆θ

6
+

∆θ2

4
−

∆θ3

12π
for ∆θ > 0,

δ−3′(∆θ) = −
π∆θ

6
−

∆θ2

4
−

∆θ3

12π
for ∆θ < 0.

(64)

This is a sectionally cubic continuous and differentiable function, again with the same single
section excluding the point ∆θ = 0. Note that it is an odd function of ∆θ. The trend is
now quite clear. All the real functions in the chain, in the integration direction starting
from the delta “function”, are what we may call piecewise polynomials, even if we have
just a single piece within a single section of the unit circle, as is the case here. The nth

integral is a piecewise polynomial of order n, which has zero average over the unit circle,
and which becomes progressively smoother across the singular point as one goes along the
integral-differential chain in the integration direction.

In order to generalize this analysis, we must now consider linear superpositions of delta
“functions” and derivatives of delta “functions”, with their singularities situated at vari-
ous points on the unit circle. A simple example of such a superposition, which we may
use to illustrate what happens when we make one, is that of two delta “functions”, with
singularities at θ = 0 and at θ = ±π, added together with opposite signs,

f(θ) = δ(θ)− δ(θ − π), (65)

that corresponds to the following inner analytic function, which this time is already a proper
inner analytic function, with two simple poles at z = ±1,

w(z) = −
1

π

z

z − 1
+

1

π

z

z + 1

= −
2

π

z

z2 − 1
. (66)

Since we have now two singular points, one at z = 1 and another at z = −1, corresponding
respectively to θ = 0 and θ = ±π, we have now two sections, one in (−π, 0) and another
in (0, π). The inner analytic functions at the integration side of the integral-differential
chain to which this function belongs are obtained by simply adding the corresponding
inner analytic functions at the integration sides of the integral-differential chains of the two
functions that are superposed. The same is true for the corresponding real objects within
each section of the unit circle. Since the real functions corresponding to each one of the two
delta “functions” that were superposed are zero-average piecewise polynomials, so are the
real functions corresponding to the superposition. For example, it is not difficult to show
that the first integral is the familiar square wave, with amplitude 1/2,

f−1′(θ) =
1

2
for θ > 0,

f−1′(θ) = −
1

2
for θ < 0,

(67)

which is a piecewise linear function with two sections, having unit-height step discontinuities
with opposite signs at the two singular points θ = 0 and θ = ±π.

We want to determine what is the character of the real functions, in the integration
side of the resulting integral-differential chain, in the most general case, when we consider
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arbitrary linear superpositions of a finite number of delta “functions” and derivatives of
delta “functions”, with their singularities situated at various points on the unit circle.
From the examples we see that, when we superpose several singular distributions with their
singularities at various points, the complete set of all the singular points defines a new set
of sections. Given one of these singular points, since at least one of the distributions being
superposed is singular at that point, in general so is the superposition. Let there be N ≥ 1
singular points {θ1, . . . , θN} in the superposition. It follows that in general we end up with
a set of N contiguous sections, consisting of open intervals between singular points, that
can be represented as the sequence

{

(θ1, θ2), . . . , (θi−1, θi), (θi, θi+1), . . . , (θN , θ1)
}

, (68)

where we see that the sequence goes around the unit circle, and where we adopt the con-
vention that each section (θi, θi+1) is numbered after the singular point θi at its left end. In
addition to this, since for each one of the distributions being superposed the real functions
on the integration side of the integral-differential chain of the corresponding delta “func-
tion” are piecewise polynomials, and since the sum of any finite number of polynomials
is also a polynomial, so are the real functions of the integral-differential chain to which
the superposition belongs, if we are at a point in that integral-differential chain where all
singular distributions have already been integrated out. Let us establish a general notation
for these piecewise polynomial real functions, as well as a formal definition for them.

Definition 1: Piecewise Polynomial Real Functions

Given a real function f(n)(θ) that is defined in a piecewise fashion by polynomials in N ≥ 1
sections of the unit circle, with the exclusion of a finite set of N singular points θi, with

i ∈ {1, . . . , N}, so that the polynomial P
(ni)
i (θ) at the ith section has order ni, we denote

the function by

f(n)(θ) =
{

P
(ni)
i (θ), i ∈ {1, . . . , N}

}

, (69)

where n is the largest order among all the N orders ni. We say that f(n)(θ) is a piecewise

polynomial real function of order n.

Note that, being made out of finite sections of polynomials, the real function f(n)(θ) is
always an integrable real function. In fact, it is also analytic within each section, so that
the N singularities described above are the only singularities involved. Since f(n)(θ) is an
integrable real function, let w(z) be the inner analytic function that corresponds to this
integrable real function, as constructed in [1]. The (n+1)th angular derivative of w(z) is the
inner analytic function w(n+1)·(z), which corresponds therefore to the (n + 1)th derivative

of f(n)(θ) with respect to θ, that we denote by f
(n+1)′
(n) (θ).

In this section we will prove the following theorem.

Theorem 3: If the real function f(n)(θ) is a non-zero piecewise polynomial function of

order n, defined in N ≥ 1 sections of the unit circle, with the exclusion of a finite non-empty

set of N singular points θi, then and only then the derivative f
(n+1)′
(n) (θ) is the superposition

of a non-empty set of delta “functions” and derivatives of delta “functions” on the unit

circle, with the singularities located at some of the points θi, and of nothing else.
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Proof 3.1:

In order to prove this, first let us note that the derivative f
(n+1)′
(n) (θ) is identically zero within

all the open intervals defining the sections. This is so because the maximum order of all
the polynomials involved is n, and the (n + 1)th derivative of a polynomial of order equal
to or less than n is identically zero,

f
(n+1)′
(n) (θ) = 0 for all θ 6= θi, i ∈ {1, . . . , N}. (70)

We conclude, therefore, that the real object represented by the inner analytic function
w(n+1)·(z) has support only at the N isolated singular points θi, thus implying that it can
contain only singular distributions.

Second, let us prove that the derivative cannot be identically zero over the whole unit
circle. In order to do this we note that one cannot have a non-zero piecewise polynomial
real function of order n, such as the one described above, that is also continuous and
differentiable to the order n on the whole unit circle. This is so because this hypothesis
would lead to an impossible integral-differential chain.

If this were possible, then starting from a non-zero real function f(n)(θ) that corresponds
to a non-zero inner analytic function w(z), and after a finite number n of steps along the
differentiation direction of the corresponding integral-differential chain, one would arrive
at a real function that is continuous over the whole unit circle, that is constant within

each section and that has zero average over the whole unit circle. It follows that such a
function would have to be identically zero, thus corresponding to the inner analytic function
w(z) ≡ 0. But this is not possible, because this inner analytic function belongs to another
chain, the one which is constant, all members being w(z) ≡ 0, and we have shown in [1]
that two different integral-differential chains cannot intersect.

It follows that f(n)(θ) can be globally differentiable at most to order n−1, so that the nth

derivative is a discontinuous function, and therefore the (n + 1)th derivative already gives
rise to singular distributions. Therefore, every real function that is piecewise polynomial on
the unit circle, of order n, when differentiated n+1 times, so that it becomes zero within the
open intervals corresponding to the existing sections, will always result in the superposition
of some non-empty set of singular distributions with their singularities located at the points
between two consecutive sections.

We can also establish that only functions of this form give rise to such superpositions of
singular distributions and of nothing else. The necessity of the fact that the real functions
on integral-differential chains generated by superpositions of singular distributions must
be piecewise polynomials comes directly from the fact that all such distributions and all
such superpositions of distributions are zero almost everywhere, in fact everywhere but at
their singular points. Due to this, it is necessary that these real functions, upon a finite

number n+ 1 of differentiations, become zero everywhere strictly within the sections, that
is, within the open intervals between two successive singularities. Therefore, within each
open interval the condition over the sectional real function at that interval is that

d(n+1)

dθ(n+1)
fi(θ) ≡ 0, (71)

and the general solution of this ordinary differential equation of order n+1 is a polynomial
of order ni ≤ n, containing at most n+ 1 non-zero arbitrary constants,

fi(θ) = P
(ni)
i (θ). (72)
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Since only polynomials have the property of becoming identically zero after a finite num-
ber of differentiations, it is therefore an absolute necessity that these real functions be
polynomials within each one of the sections. This completes the proof of Theorem 3.

Note that the inner analytic function w(n+1)·(z) corresponding to f
(n+1)′
(n) (θ) represents

therefore the superposition of a non-empty set of singular distributions with their singular-
ities located at the singular points. In other words, after n + 1 angular differentiations of
w(z), which correspond to n+1 straight differentiations with respect to θ of the polynomials

P
(ni)
i (θ) within the sections, one is left with an inner analytic function w(n+1)·(z) whose

real part converges to zero in the ρ → 1(−) limit, at all points on the unit circle which are
not one of the N singular points.

It is interesting to note that, since we have the inner analytic function that corresponds
to the Dirac delta “function” in explicit form, it is not difficult to calculate directly its first
angular primitive. A few simple and straightforward calculations lead to

w−1·
δ (z, z1) =

ı

π

∫ z

0
dz′

z′

z′ − z1

=
ı

π
ln

(

z1 − z

z1

)

. (73)

This inner analytic function has a logarithmic singularity at z1, which is a borderline hard
singularity. Note that, as expected, we have that w−1·

δ (0, z1) = 0.

5 Products of Distributions

In the Schwartz theory of distributions one important theorem states that it is not possible
to define, in a general way, the product of two distributions [13], which has the effect that
the space of Schwartz distributions cannot be promoted from a vector space to an algebra.
In this section we will interpret this important fact in the context of the representation
of integrable real functions and singular distributions in terms of inner analytic functions.
We start by noting that, although it is always possible to define the product of two inner
analytic functions, which is always an inner analytic function itself, this does not correspond
to the product of the two corresponding real functions or related objects. If we have two
inner analytic functions given by

w1(z) = u1(ρ, θ) + ıv1(ρ, θ),

w2(z) = u2(ρ, θ) + ıv2(ρ, θ), (74)

the product of the two inner analytic functions is given by

w(z) = [u1(ρ, θ)u2(ρ, θ)− v1(ρ, θ)v2(ρ, θ)]

+ı [u1(ρ, θ)v2(ρ, θ) + v1(ρ, θ)u2(ρ, θ)] , (75)

whose real part is not just the product u1(ρ, θ)u2(ρ, θ). In fact, the problem of finding an
inner analytic function whose real part is this quantity often has no solution. One can see
this very simply by observing that both u1(ρ, θ) and u2(ρ, θ) are always harmonic functions,
and that the product of two harmonic functions in general is not a harmonic function. Since
the real and imaginary parts of an inner analytic function are always harmonic functions,
it follows that the problem posed in this way cannot be solved in general. The only simple
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case in which we can see that the problem has a solution is that in which one of the two
functions being multiplied is a constant function.

Let us state in a general way the problem of the definition of the product of two distri-
butions. Suppose that we have two inner analytic functions such as those in Equation (74).
The two corresponding real objects are u1(1, θ) and u2(1, θ), and their product, assuming
that it can be defined in strictly real terms, is simply the real object u1(1, θ)u2(1, θ). The
problem of finding an inner analytic function that corresponds to this product is the prob-
lem of finding an harmonic function uπ(ρ, θ) whose limit to the unit circle results in this
real object,

uπ(1, θ) = u1(1, θ)u2(1, θ). (76)

If one can find such a harmonic function, then it is always possible to find its harmonic
conjugate function vπ(ρ, θ) and therefore to determine the inner analytic function

wπ(z) = uπ(ρ, θ) + ıvπ(ρ, θ), (77)

which corresponds to the product of the two real objects. According to the construction
presented in [1], this can always be done so long as the product u1(1, θ)u2(1, θ) is an
integrable real function of θ. However, if u1(1, θ) and u2(1, θ) are singular objects that
can only be defined as limits from within the open unit disk, then the product may not be
definable in strictly real terms, and it may not be possible to find an inner analytic function
such that the ρ → 1(−) limit of its real part results in this product, interpreted in some
consistent way. This is the content of the theorem that states that this cannot be done in
general.

It is not too difficult to give examples of products which are not well defined. It suffices
to consider the product of any two singular distributions which have their singularities at
the same point on the unit circle. If one considers integrating the resulting object and
using for this purpose the fundamental property of any of the two distributions involved,
one can see that the integral is not well defined in the context of the definitions given here
for the singular distributions. Although one cannot rule out that some other definition can
be found to include some such cases, we certainly do not have one at this time.

We thus see that we are in fact unable to promote the whole space of integrable real
functions and singular distributions to an algebra. However, there are some sub-spaces
within which this can be done. Under some circumstances one can solve the problem of
defining within the complex-analytic structure the product of two integrable real functions.
This cannot be done for the whole sub-space of integrable real functions, because there is the
possibility that the product of two integrable real function will not be integrable. However,
if we restrict the sub-space to those integrable real functions which are also limited, then
it can be done. This is so because the product of two limited integrable real functions is
also a limited real function, and therefore integrable. In this way, one can find the inner
analytic function that corresponds to the product, since according to the construction which
was presented in [1], this can be done for any integrable real function. The resulting inner
analytic function will not, however, be related in a simple way to the inner analytic functions
of the two factor functions.

One case in which the product can always be defined is that of an integrable real function
with a Dirac delta “function”, so long as the real function is well defined at the singular
point of the delta “function”. Given the nature of the delta “function”, this is equivalent
to multiplying it by a mere real number, the value of the integrable real function at the
singular point of the delta “function”,
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g(θ)δ(θ − θ1) = g(θ1)δ(θ − θ1). (78)

The corresponding inner analytic function is therefore given simply by g(θ1)wδ(z, z1). Sim-
ilar statements are true, of course, for all the derivatives of the delta “function”. Therefore,
in all such cases there is no difficulty in determining the inner analytic function that corre-
sponds to the product.

Note that this difficulty relates only to the definition of the product of two real objects
on the unit circle. As was observed before, for all the singular distributions their definition
by means of inner analytic functions always provides the means to determine whether or
not they can be applied to a given real object, so long as it is represented by an inner
analytic function, and determines what results from that operation, if it is possible at all.

6 Conclusions and Outlook

We have extended the close and deep relationship established in a previous paper [1], be-
tween integrable real functions and complex analytic functions in the unit disk centered
at the origin of the complex plane, to include singular distributions. This close relation-
ship between, on the one hand, real functions and related objects, and on the other hand,
complex analytic functions, allows one to use the powerful and extremely well-known ma-
chinery of complex analysis to deal with the real functions and related objects in a very
robust way, even if these objects are very far from being analytic. The concept of integral-
differential chains of proper inner analytic functions, which we introduced in that previous
paper, played a central role in the analysis presented.

One does not usually associate non-differentiable, discontinuous and unbounded real
functions with single analytic functions. Therefore, it may come as a bit of a surprise that,
as was established in [1], all integrable real functions are given by the real parts of certain
inner analytic functions on the open unit disk when one approaches the unit circle. This
surprise is now compounded by the fact that inner analytic functions can represent singular
distributions as well and, in fact, can represent what may be understood as a complete set
of such singular objects.

There are many more inner analytic functions within the open unit disk than those
that were examined here and in [1], in relation to integrable real functions and singular
distributions. Therefore, it may be possible to further generalize the relationship between
real objects on the unit circle and inner analytic functions. For example, we have observed in
this paper that there are inner analytic functions whose real parts converge to non-integrable
real functions on the unit circle. Simple examples are the inner analytic functions given by

w̄δn′(z, z1) = −ıwδn′(z, z1), (79)

for n ∈ {0, 1, 2, 3, . . . ,∞}, that correspond to the non-integrable real functions which are
the Fourier-conjugate functions of the Dirac delta “function” and its derivatives. This
suggests that we consider the question of how far this can be generalized, that is, of what
is the largest set of non-integrable real functions that can be represented by inner analytic
functions. This issue will be discussed in the fourth paper of this series.

The singular distributions are integrable real objects associated to non-integrable sin-
gularities of the corresponding inner analytic functions, a fact which is made possible by
the orientation of the singularities with respect to the direction along the unit circle. This
suggests that the most general definition of such singular distributions may be formulated
in terms of the type and orientation of the singularities present on the unit circle. In this
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case one would expect that singular distributions would be associated to inner analytic
functions with hard singularities that are oriented in a particular way, so that the integrals
of their real parts can be defined via limits from the open unit disk to the unit circle4.

We believe that the results presented here establish a new perspective for the representa-
tion and manipulation of singular distributions. It might also constitute a simpler and more
straightforward way to formulate and develop the whole theory of Schwartz distributions
within a compact domain.
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