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Preface

This is the first of a series of a few short books about the foundations of quantum
field theory. It is not meant as a traditional textbook on that subject. Its intention
is not to exhaust the subject, but to probe deeply into just a few essential topics
of a conceptual nature. These topics are treated in a way that is mathematically
more solid than what is usually the case in the subject without, however, any in-
tention to aim at extreme generality or extreme mathematical rigor. The use of the
mathematics is kept as elementary as possible throughout the text.

This first volume has as its subject the Gaussian model, which is the Euclidean
version of the theory of the free scalar field. This model is treated mostly by ana-
lytical means, which are within reach of anyone with a solid background in physics.
Only a very limited use of computation is involved, mostly in an auxiliary role. Since
the Gaussian model is the only model that can be solved completely by analytical
means, in all the space-time dimensions we will be interested in, it is essential that
we take maximum advantage of it, in our exploration of the conceptual foundations
of the theory.

The second volume of the series will address some non-linear models of scalar
fields which can be understood as generalizations of the Gaussian model, namely
the polynomial models and the sigma models. In this second volume the ideas and
techniques developed in the present volume will be applied to these more complex
models, in the same spirit in which they are used here, to probe into the foundations
of the theory. Since in these non-linear models no exact analytical solutions can be
found, the use of numerical computation will have a much more extensive role to
play in the second volume.

The strong dependence on the use of rather large computational resources for the
very large scale stochastic simulations needed to deal with this subject is a serious
stumbling block for its teaching and dissemination. In fact, one of the criteria
for the contents of the current volume is that they do not depend on such large-
scale stochastic simulations. A third volume of the series will eventually cover the
technical aspects of programming and of the use of computers and of free software,
which are essential for the acquisition of a real measure of technical control over the
subject.

This subject is still an open and incomplete chapter of physics, and is full of
misunderstandings and misconceptions. The line of thought developed here is meant
to point a way out of the state of confusion in which one currently finds the subject.
However, this line of thought is very far from finished, and it is likely that most of the
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important work on it still lies ahead. These volumes are being written and published
freely through the Internet in the hope that they may be useful for physicists involved
with this difficult subject. Students and researchers troubled by the deficiencies of
the usual approach to the subject may find here some food for thought.

All the source code of the programs used to produce the data and results pre-
sented in this book will be made available through the network. At a time when
progress in science is so dependent on computer work, sometimes on massive amounts
of it, it is a question of scientific integrity and of intellectual honesty that the source
code used in science be made openly available to all those that may be interested
in it. It is important that the source code be made available, not only in order to
allow for its free and open criticism, but also to allow it to be used and improved by
others, thus promoting cooperation in this most crucially important human activity.

Considering that the historical development of science, and consequently of the
technology that springs from it, has given us the means to promote very easily
and cheaply the publication of truly massive amounts of information, as well as the
tools needed to retrieve very fast whatever part of this information we find relevant,
it is only appropriate that we use this new technology for the dissemination and
development of scientific ideas, and hence for the furthering of science.

We would like to acknowledge here the contribution to parts of the material
contained within this book by former students and collaborators who were active
in this subject in the past. The work on the discontinuity of the fields was done in
collaboration with Dr. Timothy Edward Gallivan and Dr. See Kit Foong. Some
of the work on states of particles was done in cooperation with Dr. Silvana Perez.
Some contributions to specific things were made by Mr. Arnaldo Gomes de Oliveira
Filho. When appropriate, due credit will be given in footnotes along the text. We
would also like to thank those that helped by reading and correcting the manuscript
at various stages of its production.
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Chapter 1

Conceptual Foundations

In this chapter we will discuss some preliminary philosophical points, dealing with
what should be required of the definition of a physical theory in the quantum domain.
We will also introduce the most basic foundational objects of the mathematical
structure of the theory as it is presented in this book, that is, we will discuss the
basic nature of the lattice and introduce the notion of fields defined on it, as well
as the notion of functionals of these fields. Special attention will be paid to the
notion of the lattice as a representation of space-time, in particular with respect to
its geometrical aspects.

The somewhat philosophical points which we will discuss in the first section are
nevertheless important to guide the analysis of the mathematical structure of the
physical theory, dealing with quantum fields, to be discussed in the other chapters.
Although these points are not exactly physical principles, their discussion here is
not idle, because they will play a crucial role when the time comes to make some
fundamental choices about the mathematical structure of the physical theory, as will
be discussed in the last chapter of this book.

The first section is not needed for the understanding of many of the detailed
technical aspects presented in the other chapters, except for the discussion in the
last chapter, and could be skipped without trouble on a first reading.

1.1 Philosophical Preliminaries

The first thing we must do here is to point out an important duality of nature,
according to which all things that exist in nature can be classified either as belonging
to what has been termed the world of atoms, or as belonging to what can be described
as the world of bits. By the first of these two general classes what is meant here is
really the set of all physical objects. To put it in a more precise and fundamental way,
this consists of matter and radiation. The name “world of atoms” is too restrictive
for our purposes, and maybe one should use “world of energy” instead, since the
energy is the one concept common to all forms of matter and radiation. This world
of energy is the set of objects which are the subject of the physical sciences, and
comprises what one usually understands in physics as objective physical reality.
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2 CONCEPTUAL FOUNDATIONS

The world of bits, on the other hand, is better described, perhaps, as the world of
information. The concept of information is much harder to define than the concept
of energy, perhaps because it is a rather new concept, while the concept of energy has
a long story behind it. However, it is rather easy to recall a few familiar examples,
such as the contents of a book, the contents stored within a digital computer, and the
contents of the nuclear DNA of the cells of a living being. Energy and information
are very different concepts. While the most fundamental property of energy is its
conservation, that is, the fact that it may be transformed into many different forms
while its total amount remains constant in all physical processes, information can
be easily destroyed, and can also be created, usually with some difficulty, as those
involved in research activities know well.

The two concepts are of course related, and one may even go so far as to further
classify information according to the nature of this relation. For example, one may
consider active and passive forms of information, the active form being one that
interacts more closely with some object capable of information processing, enabling
it to do things it would not be otherwise capable of doing, while the passive form
consists of stacks of data that may or may not be used by this information-processing
enabled object. Examples of active information in the case of a digital computer
are the programs that can run on it, while passive information consists of stacks of
data that can be used by such programs. In the case of the human mind one can say
that the acquisition of skills, such as playing the piano or performing differentiations
and integrations in mathematical calculus, is as example of the existence of active
information within the mind, while the memorization of lists of things and facts may
be understood as the acquisition by the mind of passive information.

Our universal duality becomes then the duality of energy and information. What
we must point out here is that physical theory exists in the interface between these
two worlds. If, on the one hand, it must contain a representation of objective physical
reality, its structure must also allow for reasonably easy manipulation by the human
mind, which is an object living in the world of information. Note that just as one
can think of the hardware and software aspects of a computer, so one can think of
the brain as a hardware aspect belonging to the world of energy, and of the mind as
a software aspect belonging to the world of information. It is the mind that matters
here.

One very fundamental example of an object that deals with the interface be-
tween these two worlds is the concept of a physical measurement, which is one of
the fundamental concepts of quantum mechanics. A physical measurement can be
described as a process taking place in the world of energy that has as its end-result
the production of a certain amount of information. It is therefore a process that
starts in the world of energy and ends up in the world of information. We see there-
fore that both the experimental or measurement aspect and the theoretical aspect
of physics exist in the same realm.

Since physical theory exists in the interface of the worlds of energy and informa-
tion, it may be argued that its structure must cater as much to the facts of objective
physical reality as to the characteristics and limitations of the mind it is built to
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serve. We will therefore not require the physical theory to contain exclusively the
elements of objective physical reality, but rather require that it also make life easy
for the mind. In other words, physical theory will be allowed to contain elements
which are not mandated by objective physical reality, and that are allowed in for
the convenience of the mind.

The next subject we must tackle here relates to the issue of the mathematical
definition of the structure of the physical theory. At risk of stating the obvious,
we must say here that the mathematical structure of the theory should be clearly
and completely defined. Theoretical physics is a very difficult subject, and it leads
to a strong tendency towards unbridled speculation. Although this may be a good
and healthy thing, and can be an important tool of discovery, it should not become
an end in itself. After all the speculations are proposed, examined, and possibly
discarded, a well-structured mathematical theory should emerge. Too much wild
speculation for too long can not only lead to loss of contact with physical reality,
it may also lead to loss of contact with mathematical reality, and even to loss of
contact with logic.

Besides requiring that the mathematical structure of the theory be stated clearly
and completely, we must further require that this definition be constructive, that
is, ultimately built without gaps from basic things such as the arithmetic of integer
and real numbers. One way to interpret this requirement is to say that the defi-
nition should allow for an algorithmic realization. What this means is that, given
a definite physical question within the theory, it should be possible to derive from
its definition a set of rules and chained operations that would make it possible to
answer that question, at least in principle, by the use of a program running on a
digital computer. The proviso “at least in principle” is included because obtaining
an infinitely precise answer might require the use of an infinitely powerful computer,
being therefore impossible in practice. A less strict but sufficient requirement would
be that the answer can be obtained within a finite and limited level of precision,
given a sufficiently powerful computer and sufficient time to run the program on it.

Note that we do not regard as a requirement that it be possible to execute the
necessary calculations with the unaided human mind, or by the use of the tradi-
tional analytical methods of mathematics. The ability to use a digital computer
may be an essential element for the utilization of a physical theory as we under-
stand it here. Although it is conceivable that the future may bring new analytical
methods in mathematics, which may find use in the most important calculations
in the theoretical physics described here, no such analytical methods are known at
present, and it may even turn out that none exist. We do not, therefore, require that
purely analytical methods be applicable to the theory, and regard direct numerical
methods as sufficient.

The next subject to be discussed here has to do with the nature of the limits
involved in the mathematical definition of the theory. Although the mathematical
structures involved in the theory will, by the end of the definition process, become
continuum mathematical structures, we will require that such continuum structures
be obtainable by means of limiting procedures starting from finite mathematical
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structures. What we mean here is that the structures involved in the construction
of the limits be not only discrete, but actually finite as well, in terms of the number
of elements involved.

A simple and familiar object defined by a limiting procedure of this kind is the
Riemann integral, which is defined as a limit from a set of finite sums, that is, sums
with a finite number of terms. Note that there is no veto here to the existence
of some other definition, equivalent to the original one, which may be formulated
exclusively in terms of continuum quantities. What we impose here is a veto against
continuum mathematical structures that cannot be formulated as limits from strictly
finite mathematical structures. We will also regard the definition by such a limiting
procedure as the most fundamental one, and choose it over any others in case any
doubts arise regarding the equivalences among them.

This philosophical attitude, which some may regard as a preconception or prej-
udice, can be motivated by the fact that, ultimately, the set of all possible physical
measurements and experiments that can be actually carried out by us within any
possibly large but certainly finite amount of time is certainly a finite set. It is there-
fore not natural to think that the results of all these measurements and experiments
can only be systematized and encoded within a mathematical structure which is
intrinsically undefinable in terms of finite mathematical structures. One may also
formulate this philosophical concept in terms of the number of particles of either
matter or radiation that can be ever detected by us, which is also necessarily a finite
number.

The next subject to be discussed is that of the definition of observables within
the theory. As explained before, we do not expect the theory to consist only of
observable quantities. Even non-relativistic quantum mechanics contains elements
that, although playing important roles within the theory, are not themselves observ-
able, such as the wave function. We expect the theory to contain elements that are
there for the convenience of the mind, not because they are observables. One such
object in quantum field theory is the fundamental field itself, because the value of
the field at a given point of space-time is not an observable of the theory.

What is required of the theory regarding the physical observables is that they be
clearly and concisely identified as such. The definition of the theory must include a
clear and concise discrimination of the parts or aspects of the structure which are
physical observables. The requirement of conciseness is included because it will not
do to have a definition which has to be revised or modified each time a new quantity
comes into consideration. There must be a global and fixed set of criteria that can
be used to identify the quantities which correspond to physical observables.

Note that this leaves open the possibility that one may use a computer, or some
other computational means, to perform mathematical probes into the structure of
the theory, which may not necessarily correspond to physically realizable observa-
tions. This “inner look” into the mathematical structure of the theory may be useful
for establishing a better understanding of the inner workings of the theory, which
may have consequences for our understanding of the realm of physical observables,
even if only in an indirect way. In the subsequent chapters we will be using this
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freedom constantly, and we will arrive at a fairly complete definition of the observ-
ables only very slowly, using our mathematical and computational probes into the
inner workings of the theory along the way.

The last issue we would like to address here is that of the closure of the theory. By
this we mean that, once it is defined completely in a concise way, all physical elements
which are needed to describe objective physical reality must be contained within
its structure, either directly as fundamental elements or as higher-level constructs
derived from them. It should not be necessary to call on any external elements
in order to complete the description. Although this may sound as somewhat self-
evident, it is important to state it here, for clarity of definition. The role of this
property will become evident in the subsequent chapters, but its most important
consequences only come into play much later on, when one discusses the geometry
of space-time, and are therefore outside the scope of this book.

The closure of the theory has a role to play in the very difficult issue of the physi-
cal measurement process. Measurement apparata are part of physical reality and are
of course subject to the same physical laws they are meant to probe. The definition
of the observables within the theory if of course closely tied to the definition of the
process of physical measurement, by which information is created out of physical
processes involving energy, and is therefore equally difficult. In the chapters that
follow we will attempt to narrow down gradually the definition of an observable, but
no complete description of the physical measurement process will be possible within
the confines of the Gaussian model, which contains only free, non-interacting fields.

The complete description of the measurement process, including what is usually
referred to as the reduction of the wave packet, and hence the complete definition of
the physical observables, is probably only possible in the context of a complete and
interacting theory, in which there are stable bound states. This is so because without
bound states it would not be possible to store the bits of information generated by
the measurement process. Such a complete and realistic theory is certainly a very
difficult object to deal with, and we are not currently in a position to describe a
complete model having all these properties.

1.2 The Euclidean Lattice

The object we will call the Euclidean lattice consists of a finite set of points with a
certain relation of neighborhood established among them. The type and structure of
this relation of neighborhood will determine the dimension of the lattice, a whole
number that, for us, will always be between 1 and 5. The points will be called
sites and the neighborhood relations will be represented by connections among the
points, which we will call links. A simple example of a lattice could be

We have here four sites and five links in sequence, connecting sites which are neigh-
bors to each other. Another lattice similar to this one could be obtained intercon-
necting the two loose ends of the outer links, resulting in the lattice
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Lattices have the property that the number of links connected to each site is
constant, the same for all sites. This number will always be even and equal to 2d,
where d is the dimension of the lattice. In this second example we have d = 1, the
lattice has dimension 1, and it is said to be one-dimensional. The lattice in the
previous example is also one-dimensional, but in that case there are two links that
are connected to only one site. We say that the lattice in the first example, unlike
the one in the second example, has a boundary.

The existence or not of a boundary will have, later on, an important role to
play in the development of the theory, relating to the different types of boundary
conditions that may or may not be adopted under various circumstances. Since the
second example can be obtained from the first, by the interconnection of the two
links with loose ends, resulting in a cyclic structure, we say that the second example
adopts periodic boundary conditions.

Observe that, for the time being, there is no additional structure in this object,
besides the connectivity of sites and links. In particular, there is no geometric
structure or notion of distance. Our second example could be represented as

without any change in the structure of the object as defined so far. We will usually
employ symmetrical pictorial representations of the lattices, for simplicity of the
drawings, but it is important to keep in mind that there are no predetermined
notions regarding the geometry of the lattice or the length of the links.

Also for simplicity of the drawings that we will use to illustrate the ideas, we
will usually use as examples lattices of dimension 1 or 2. However, our fundamental
interest will be in lattices of dimension 3 and 4. Occasionally we may make use of
lattices with d = 5, but never with dimensions larger than this. The case d = 1
is very different from the others, within the scope of the quantum theory to be
developed, and will be used as counterpoint, in order to contrast its results with
the corresponding results of the lattices with larger dimensions. The case d = 2 is
also significantly different from the others, and will be used only for illustration. A
typical two-dimensional lattice could be represented as shown in figure 1.2.1.

In the case of the adoption of periodical boundary conditions the links identified
in this drawing with the same numbers or letters would be interconnected. Since it
is unpractical to draw the toroidal structure of a lattice of dimension 2 or larger with
periodical boundary conditions, sometimes we may simply state that such boundary
conditions have been adopted and represent the lattice as shown in figure 1.2.2,
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Figure 1.2.1: The basic elements of a typical two-dimensional lattice.

leaving as implicitly understood the connections of the links at the boundary with
those on the opposite side.

If we somehow associate physical lengths to the links, we may understand these
lattices as rough representations of a finite volume of space (in the case d = 3) or
of space-time (in the case d = 4), in this case in an Euclideanized version. What we
mean by this is that this is not really the usual space-time, since there is here no
temporal direction that differs fundamentally from the other three. However, it is
possible to establish a relation between the Euclidean space of dimension 4 and the
space-time of physics. Further along we will come back to the issue of the relation
between real space-time and its Euclideanized version.

It is clear that, in order to obtain a finer representation of the space, whatever
its dimension, we must increase the number of sites in our lattice of that same
dimension. The purely mathematical issue of the representation of a continuous
space by a scheme based on lattices of increasing size is quite complex and, as it
turns out, not relevant for our purposes here, so it will not be further discussed and
will be left at this intuitive level. Anyway, it is clear that we will be interested in the
properties of lattice systems when the number of sites they contain increases without
bound. The examples we drew in the figures of this section have N = 4, where N
is the number of vertices, that is, the number of consecutive sites, according to the
relations of neighborhood established by the links, in each one of the d directions
of the lattice. The total number of sites of the lattice is given by Nd where d is its
dimension.

Our strategy is, then, to study the properties of lattices of finite but arbitrary
size, with the purpose of eventually discovering to what these properties tend when
N tends to infinity. We will refer to this limit, using its traditional name, as the
continuum limit. As we shall see, this limit contains the central mathematical diffi-
culty of the theory. It is within it that we find the main problems and the deepest
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Figure 1.2.2: A simpler representation of a two-dimensional lattice with periodical
boundary conditions.

questions of the theory, and it is from it that arise all the fundamental difficulties
we will find during the development of the theory.

Still for simplicity, we will usually consider only hypercubical lattices, with a
symmetrical structure containing the same number N of sites in all the d directions,
as in the examples given in figures 1.2.1 and 1.2.2. When it becomes necessary, for
the discussion of some point of foundation of the theory, as will happen later on, we
will lift this restriction. Also, we will usually employ periodical boundary conditions,
in all directions of the lattice, except when we come to the specific discussion of the
issue of the choice of boundary conditions.

It is clear that the structure of the lattices can be generalized and made more
complex in many different ways. We are taking here a small subset of the set of all
possible lattices, which is particularly simple and symmetrical. Our strategy here is
to focus attention only on the simplest cases, until some fundamental reason appears
to lead us to more complex and sophisticated representations of the structure of the
physical models we are dealing with.

Finally, let us note once more that the limit N → ∞ by itself means nothing in
terms of the physical geometry of the lattice. In particular, nothing happens to the
physical lengths of the links in this limit, since there is as yet no notion of physical
length established within the structure we are building. Later on, when the notion
of metric distance appears, it will be discussed in detail in regard to its nature,
origin and role in the structure and in the physical interpretation of the quantum
theory.
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1.3 Fields on the Lattice

The fundamental variables of our structure will be fields, that is, functions defined
on the lattice, for example with real values. The notion of particle will not be an
elementary notion in our theory. Instead, it will appear later, as a notion derived
from the structure of the theory. We will make, on the other hand, extensive use
of the notion of wave. However, the physical interpretation of these waves will still
be kept at an imprecise and intuitive level, serving mostly to guide our intuition
regarding the identification, for closer examination, of the most important elements
of the structure.

A scalar field ϕ is a function that associates, to each one of the Nd sites of the
lattice, a real number. Since a single real value is associated to each site, we say
that this is a field with a single component. A particular one-component real field
in our first example lattice could be represented as

0.04.0−2.01.3=ϕ

It is usual to represent this field by means of a set of arrows located at the sites,
pointing along a real axis R, with lengths given by the values associated by the field
to each site,

ϕ

0

Note that the values of the field at each site are not discrete, they exist within
a continuous set, the real line. Occasionally one may be interested in fields with
discrete values, but this is not the case in general. In this book we will consider
only real fields with continuous values. Note also that this field is dimensionless, its
values are real numbers without units, because so far there is no physical dimension
associated to the fields.

In later parts of the development of the theory one may be interested in scalar
fields with values in spaces which are larger and more complex than the real line
R. For example, fields which n components may have values in Rn, and one may
have fields with values in other spaces, not necessarily flat, such as the circle and
the sphere. A field with values on the circle may be represented by arrows oriented
along it,
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Note that all such fields are scalars, not vectors. In further parts of the development
one would see that vector fields in space-time are associated to the links and not to
the sites of the lattice. The vectors drawn above are vectors in the internal space
of the fields, not in space-time. These internal spaces are simple vector spaces in
which act symmetry transformations among the fields. Usually these are continuous
objects even in finite lattices, while space-time is represented in a discrete form by
the lattice. In this book we will not discuss such possibilities any further, and will
limit ourselves to scalar fields with a single real component. However, many of the
results we will arrive at will apply to multi-component fields as well.

In part of what follows we will be interested in single configurations, or particular
possibilities for the field function ϕ, specially when we discuss the so-called classical

version of the theory. However, our greater objective is the exploration of what we
will refer to as the quantum theory, for which we will be interested, not in particular
cases for the function ϕ, but rather in the set of all possible functions ϕ, a set
which we will call the space of configurations of ϕ. On finite lattices this usually
is a continuous space with a large but finite dimension. For example, for a single-
component real field in a lattice with Nd sites the space of configurations is R(Nd).
Only in the limit N → ∞ we will have an infinite-dimension space as part of our
structure.

We have, then, the structure of the lattice and the fields defined over it, which
are the basic elements for the construction of the theory. The theory will be about
functionals of the fields, that is, functions that associate a real value to each one of
the possible configurations ϕ of the field. We will be interested in several functionals
of this type. A very simple example of such a functional is one which associates to
each configuration ϕ the value that it assumes at a given site s0, namely the value
ϕ(s0). Usually we will be interested in more complex functionals than these, which
involve sums over all the sites of the lattice. An example of such a functional, still
quite simple, would be the one which associates to ϕ the sum of its values at all the
sites,

F0[ϕ] =
∑

s

ϕ(s),

where the dependence of the functional on the configuration will always be denoted
by square brackets and the sum symbolized by the subscript s extends over all
the sites of the lattice. If we describe the lattice by a set of integer variables nµ,
µ = 1, . . . d, where each one of the d components nµ of the vector ~n is an integer
which numbers the sites along one of the directions of the lattice, we may write this
sum explicitly as

∑

s

≡
∑

~n

≡
N∑

n1=1

. . .
N∑

nd=1

.

Hence, we may denote ϕ(s), equivalently, by ϕ(~n), the first notation being more
conceptual while the second makes more explicit reference to the system of inte-
ger coordinates. In the two-dimensional case, for example, we will usually employ
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Figure 1.3.1: A system of integer coordinates in a typical two-dimensional lattice.

the system of integer coordinates which indexes the sites in the way indicated in
figure 1.3.1.

A particularly important functional, which will be used to define completely
each particular model to be considered in the theory, is the one we will call the
action, usually denoted by S[ϕ]. From the physical standpoint, we will say that this
functional determines the dynamics of a given model within the scope of the theory.
In order for this to be possible this functional must satisfy some basic properties.
First, it must be bounded from below, that is, there must exist a real number Sm

such that S[ϕ] ≥ Sm for any configuration ϕ and for any lattice size N . Second, it
must involve only sums of functions of the field at each site and sums of functions of
products of fields at neighboring sites, that is, there is a veto against any dependence
on products of fields at sites which are not neighbors, according to the relations of
neighborhood established by the links of the lattice.

The first of these two conditions we call the stability condition of the model, for
reasons to be made clear later. The second one we call the locality condition, for it
means that this fundamental functional cannot depend on the product of values of
the field which are associated to sites which are mutually distant from each other, in
terms of the number of links that it is necessary to cross to go from one site to the
other, in terms of the neighborhood relations of the lattice. This second condition
may also be called the next-neighbor condition. It corresponds, in the continuum
limit, to the inclusion in the action of terms containing derivatives of at most second
order on the fields.

A possible example of an action S would be given by

S[ϕ] =
∑

s

ϕ2(s).

This functional satisfies the two conditions, because it depends only on a function
(the square) of the field at each site, and because there is a number Sm = 0 such
that S[ϕ] ≥ Sm for any configuration ϕ and for any value of N . However, this
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kind of action, which depends only on the fields at individual sites, and which we
may call ultra-local, is too simple to be of much interest to us. For the theory of
quantum fields it is essential that the action depend also on products of the fields
at neighboring sites. This is what happens when we include in the action, in the
continuum limit, dependencies on the derivatives of the fields. In finite lattices
we define as the objects that play the role of derivatives certain finite differences
between values of the fields.

If ϕ+ and ϕ− are the two values of a real field ϕ on the sites at the two ends
of a link in the direction µ, ϕ+ being on the positive side of the link and ϕ− on
the negative side, according to the orientation defined by a given system of integer
coordinates, the finite derivative of the field is defined as

∆ℓϕ = ∆µϕ(s) = ϕ+ − ϕ−.

The positive and negative orientations of the direction µ which are mentioned here
are those in which the integer coordinate nµ associated to that direction is, respec-
tively, increasing and decreasing in magnitude. The notations ∆ℓϕ and ∆µϕ(s) are
equivalent because, given a site s and a positive direction of µ starting from it, a
certain link ℓ is uniquely determined,

s µ
l

ϕ+ϕ−

We see that the finite derivative is a variable naturally associated to an oriented
link, not to sites. In this way, we may now define a new action functional as

S[ϕ] =
∑

ℓ

(∆ℓϕ)
2 +

∑

s

ϕ2(s),

which also satisfies the two fundamental conditions. The first sum, as symbolized by
the subscript ℓ, extends over all the links of the lattice, that is, it is an abbreviation
for a double sum, over all sites and all the directions of the lattice. We may write
explicitly that

∑

ℓ

≡
∑

µ

∑

s

≡
d∑

µ=1

N∑

n1=1

. . .
N∑

nd=1

.

Clearly, we may generalize this expression for the action, without any violation
of the two conditions, if we multiply each one of the two terms by any positive
coefficients. We will be specially interested in the particular form of this action
given by

S0[ϕ] =
1

2

∑

ℓ

(∆ℓϕ)
2 +

α0

2

∑

s

ϕ2(s), (1.3.1)
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where α0 ≥ 0. The model defined by this action is called the Gaussian model or
the free scalar field. As we shall see, this is the sole type of model over which we
have complete analytical control for any value of the lattice size N in any of the
dimensions d in which we are interested. For this reason, it will be extensively
studied here as a way to probe into the concepts, issues and problems within the
theory.

In terms of the physical interpretation, we may say that the non-Euclidean ver-
sion of this model in d = 4 represents the dynamics of non-interacting plane waves,
or of free particles, which do not interact with each other. Despite this limitation in
scope, we will see that many important and useful things can be learned from this
model, which in fact holds a few surprises for us, and will help to clarify the very
foundations of the theory. A careful and complete understanding of this model is
also essential as a preparation for the future study of interacting fields.

Problems

1.3.1. Show that, if α0 < 0, then the action S0 of the theory of the free field has no
lower bound.

1.3.2. Determine the range of values of the parameters α and λ for which the func-
tional

S[ϕ] =
1

2

∑

ℓ

(∆ℓϕ)
2 +

α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s)

satisfies the conditions for an action functional. Determine the value of the
lower bound of this action as a function of α and λ.
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Chapter 2

Classical Field Theory

In this chapter we will give a complete definition on the lattice of the classical theory
of the free scalar field, showing by means of a few simple examples that one recovers
in this way the familiar results of the usual approach to the theory. Some concepts
and techniques which are important for the subsequent treatment of the quantum
theory will also be introduced and explored, such as the treatment of the boundary
conditions, the finite difference operators and their eigenvalues, the space of field
configurations, the finite Fourier transforms and the transformation to momentum
space, and the introduction and treatment of external sources.

It is important to observe that, although from the technical point of view this
may be seen as a preliminary exercise for the work in the quantum theory, it is not a
prerequisite to the quantum theory on a conceptual level. Conceptually, one should
first define the quantum theory and only afterwards derive the classical theory from
it, as the classical limit of that quantum theory. Although using the classical theory
as an intuitive guide for the construction of the quantum theory may be a very good
idea, the conceptual derivation must be from the quantum theory to the classical
one, and not the other way around. In other words, while the “quantization” of a
classical theory belongs to the realm of imaginative guesswork, the derivation of the
classical limit of a quantum theory should be precise deductive work.

The main objective of this chapter, besides introducing useful concepts and tech-
niques and establishing a standard notation for them, is to establish that the lattice
formalism can be used as a mathematically complete and precise way to define the
familiar structure of the classical theory of fields, including a careful discussion of
the continuum limit and of the introduction of a physical length scale leading to the
geometry of space-time.

2.1 Definition of the Classical Theory

We will now use the action S0 to illustrate the relation that exists between our
mathematical structure on the lattice and the classical (non-quantum) theory of
fields. It should be noted here that our approach to the subject, unlike the traditional
one, in both the classical and quantum cases, will not be based on equations of

15
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motion but rather on the action functional as the object defining the physical models.
This classical topic may not be our fundamental objective but it is useful to illustrate
the role of each element of the structure and also to help to orient the reader,
comparing the elements that appear here with with the corresponding elements as
seen in the traditional approach to the subject, usually in graduate courses.

In order to establish this relation it will be necessary to take the limit N → ∞
in our theory. Before this, however, there are two other things we must do. First,
we must define what we will call a finite classical field theory, on each finite lattice.
In addition to this, it will be necessary to introduce one more basic element into the
structure, to wit, an external dimensional scale.

In order to define the classical theory on finite lattices we consider the action
SN [ϕ] of a given model, on a given lattice of size N . We say that a classical solution

of the model is a configuration ϕ0 which minimizes SN [ϕ] locally, that is, at which
the action has a local minimum. The stability condition that we imposed on SN [ϕ]
implies that there is at least one local minimum of the action, the one located at
the position of the global minimum guaranteed by that condition. For the action
S0 of the free theory we see immediately that the classical solution is simply the
identically null configuration, ϕ ≡ 0, for all N . Note that, in principle, SN may
have more than one local minimum and that, when this happens, we will have more
than one classical solution. This is not the case for S0, but it is possible to construct
actions with this property, as we may see in a future opportunity.

Let us also recall that we are assuming the use of periodical boundary conditions.
In general the nature of the classical solutions depends on the boundary conditions.
With the introduction of other elements into the structure, such as other types of
boundary conditions or other terms in the action, the classical solutions may be
much less trivial than the simple example we gave here. In particular, later on we
will discuss the concept of external sources, which is very important for the physical
interpretation of the theory and in the presence of which the classical solutions will
change in significant and important ways.

Having defined what we mean by the classical solution of the theory on each
finite lattice, we turn to the limit N → ∞. We must now introduce into the theory
a dimensional scale, that is, a notion of distance in our structure. We assume that,
in a certain given system of physical units, external to our model and to be added
to our lattice structure, the length of a side of the lattice, which is formed by N
consecutive sites and links in a given direction, has the value L, a quantity with
dimensions of length in that external system of units. In what follows we will make
some choices as to the type of limit we will consider here. Both here and in the
quantum theory it is possible to take the limit N → ∞ of the models in several
different ways, depending on what is done with the parameters of the model during
the limiting process.

Let us imagine that L remains fixed and finite during the limit, which means
that we are taking the limit in such as way that our lattice remains perfectly fitted
within a cubic box with periodical boundary conditions and volume V = Ld. We
will also make the parameter α0 go to zero in the limit, in a certain well-defined
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a a

L

Figure 2.1.1: The geometrical elements of a periodical two-dimensional lattice.

way. In addition to this we will assume that the lattice remains symmetrical and
homogeneous from the point of view of the lengths induced by the introduction of
the external scale L into the theory. With all these assumptions made, we may now
define dimensionfull versions of each one of the original dimensionless elements of
our structure. For example, all the links of the lattice now have the same length,
which we will denote by a, which is related to L by L = Na, and which goes to zero
in the limit N → ∞. The volume of the box which contains the lattice may now
be divided into Nd disjoint cubes of volume ad, whose union reconstitutes the total
volume, as shown in figure 2.1.1.

We may now write the action S0 in the form

S0[ϕ] =
1

2

∑

s

ad
∑

µ

[
a(2−d)/2∆µϕ(s)

a

]2
+

α0

2a2

∑

s

ad
[
a(2−d)/2ϕ(s)

]2
,

where all the factors of a that we introduced cancel out. Note that the sums over the
sites combined with the factors ad approach Riemannian integrals over the volume
of the box. In order to make α0 go to zero in the limit, as mentioned before that
we must, we choose the relation α0 = (m0a)

2 for some finite m0. Besides this, we
define the dimensionfull version φ of the field as φ = a(2−d)/2ϕ, with which we may
write for S0, still on a finite lattice,

S0[φ] =
1

2

∑

s

ad
∑

µ

[
∆µφ(s)

a

]2
+

m2
0

2

∑

s

adφ2(s).

At this point it becomes clear that, since in the N → ∞ limit with constant L we
have a → 0, the sums indeed approach integrals over the volume of the lattice, with
integration element dv = ddx = ad, while the ratios between the finite differences of
the field and a approach partial derivatives ∂µ ≡ ∂/∂xµ. In short, we may write for
S0, in this limit, the expression
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S0[φ] =
1

2

∫

V

ddx
∑

µ

[∂µφ(~x)]
2 +

m2
0

2

∫

V

ddx φ2(~x).

We will refer to this limit as the continuum limit of the classical theory, because
in it the lattice spacing a goes to zero while the lattice acquires an increasing number
of points and tends to occupy densely the volume V of the interior of the box. The
object that results from this process is the usual classical theory of the free scalar
field within a box with periodical boundary conditions. In the limit the dimensionfull
coordinates 0 ≤ xµ ≤ L describe the continuous interior of the box and, on finite
lattices, they relate to the dimensionless coordinates nµ by xµ = nµa.

The functional S0[φ] above is the usual action that defines the classical dynamics
of the free scalar field within a box. Note that, for the dimensionfull mass parameter
m0 that appears in the second term to be finite in the limit, it is necessary that the
dimensionless parameter α0 go to zero as 1/N2, for any value of the mass in the
limit. This type of behavior for the dimensionless parameters of the theory is very
general. Usually there is a particular set of values of the parameters of the theory
that they must approach in any continuum limit which is to be of physical interest.
We refer to these special values as critical, for reasons that will become clearer later.
In our case here the value 0 is a critical point of the parameter α0.

In this continuum limit the classical solution of the model is given by the Euler-
Lagrange equation, which in this case is no more than a generalization of the d-di-
mensional Laplace equation, including the mass term. We can derive this equation
by means of the direct application of the principle of minimum action. In order to
do this we make a generic variation δφ(~x) of the fields, which is infinitesimal but
may be different in each point, and then determine the condition that the field must
satisfy so that the action does not change to first order, as a consequence of this
variation. Calculating the variation δS0 to first order in δφ we obtain

δS0[φ] =

∫

V

ddx

{
∑

µ

[∂µφ(~x)]δ[∂µφ(~x)] +m2
0φ(~x)δφ(~x)

}
.

Using now the easily verifiable fact that δ[∂µφ(~x)] = ∂µ[δφ(~x)] we obtain

δS0[φ] =

∫

V

ddx

{
∑

µ

[∂µφ(~x)]∂µ[δφ(~x)] +m2
0φ(~x)δφ(~x)

}
.

We may now integrate the first term by parts. There is no surface term, due to the
periodical boundary conditions, and we therefore have

δS0[φ] =

∫

V

ddx

{
−
∑

µ

[∂2
µφ(~x)]δφ(~x) +m2

0φ(~x)δφ(~x)

}

=

∫

V

ddx δφ(~x)

{
−
∑

µ

∂2
µφ(~x) +m2

0φ(~x)

}
.
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If we now impose the condition of minimum for S0, that is, that δS0 = 0 to first
order for any variation δφ(~x), we obtain the relation

−∂2φ+m2
0φ = 0, (2.1.1)

where ∂2 =
∑

µ ∂µ∂µ is the Laplacian operator in d dimensions. We refer to this
equation, using the usual terminology of physics, as the equation of motion, although
it may have nothing to do with movement, for example in the three-dimensional
case, in which there is no temporal coordinate. The non-Euclidean version of this
equation, in the case d = 4, is known as the Klein-Gordon equation and is related
to the relativistic dynamics of free particles with mass m0 and spin zero.

Observe that it is also possible to derive an equation corresponding to this one
on finite lattices, because the integration by parts which is used for the derivation
of this equation in the classical continuum theory has an exact counterpart on finite
lattices. In order to see this we write explicitly the term containing the derivatives,
for simplicity in only one dimension,

∑

l

(∆ℓϕ)
2

= . . .+ (ϕn−1 − ϕn)
2 + (ϕn − ϕn+1)

2 + . . .

= . . .+ ϕ2
n−1 − 2ϕn−1ϕn + ϕ2

n + ϕ2
n − 2ϕnϕn+1 + ϕ2

n+1 + . . .

= . . .+ ϕ2
n−1 − ϕn−1ϕn − ϕnϕn−1 + 2ϕ2

n − ϕnϕn+1 − ϕn+1ϕn + ϕ2
n+1 + . . .

= . . .+ ϕ2
n−1 − ϕn−1ϕn − ϕn(ϕn−1 − 2ϕn + ϕn+1)− ϕn+1ϕn + ϕ2

n+1 + . . .

= −
∑

n

ϕn(ϕn−1 − 2ϕn + ϕn+1),

where we denoted the dependency on the position by means of indices, for simplicity
of notation. With a detailed examination of the algebraic passages illustrated above
it becomes clear that the regrouping of the terms can be done all around the circle,
resulting in the final form, which relates a sum over links with a sum over sites,

∑

l

(∆ℓϕ)
2 = −

∑

s

ϕ(s)∆2ϕ(s),

where the Laplacian operator on finite one-dimensional lattices is defined as

∆2ϕ(n) = ϕ(n− 1)− 2ϕ(n) + ϕ(n+ 1).

Note that the Laplacian has values naturally defined on sites, like the field, not
on links. The generalization of this definition to lattices of higher dimensions is
immediate, the algebraic operation described can be repeated on all the directions
and therefore it suffices to add a sum over the directions,

∆2ϕ(~n) =
∑

µ

[ϕ(nµ − 1)− 2ϕ(nµ) + ϕ(nµ + 1)]. (2.1.2)
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With this we have on finite lattices the equation of movement which determines
the classical solution, whose derivation will be left to the reader (problem 2.1.1),

−∆2ϕ+ α0ϕ = 0. (2.1.3)

In three dimensions and in the continuum limit the zero-mass version of our
equation of movement reduces to the Laplacian on the torus, since we are using
here periodical boundary conditions. This is a rather familiar situation, since it
is just the electrostatics of a torus without internal charges. Something analogous
to this happens in the case of four dimensions, in which we obtain an Euclidean
version of the wave equation for the scalar potential, which is also a part of classical
electrodynamics. If we write equation (2.1.1) explicitly in four dimensions we obtain

−∂2
xφ− ∂2

yφ− ∂2
zφ− ∂2

t φ+m2
0φ = 0,

where x, y and z are the three spacial Cartesian coordinates and t corresponds to
the time. The process of passing from Euclidean space to Minkowski space can be
effected by the exchange of t for ıt in this expression, which takes us to

−~∇2φ+ ∂2
t φ+m2

0φ = 0.

where ~∇2 = ∂2
x + ∂2

y + ∂2
z is the three-dimensional Laplacian. In the case m0 = 0

this is the usual wave equation. In general, the passage to Minkowski space is
effected identifying within the answers obtained in Euclidean space the metrical
tensor gµν = δµν of this space and changing the sign of its diagonal term which
corresponds to the temporal coordinate. In the example above we may write the
equation in Euclidean space as

−
∑

µ,ν

gµν∂µ∂νφ+m2
0φ = 0

and making the transformation to Minkowski space by transforming the metric

gµν =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

This process of de-Euclideanization may always be realized in this fashion, either in
position space or in momentum space.

Problems

2.1.1. Derive the equation of movement (2.1.3) on finite lattices, applying the princi-
ple of minimum action to the action of the free theory given in equation (1.3.1).
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2.2 Fixed Boundary Conditions

In order to illustrate in a more familiar form the analogy between the d = 3 classical
field theory as defined here and electrostatics, it is necessary to change the boundary
conditions. We will do this, defining what we will call fixed boundary conditions,
first of all on finite lattices. This type of boundary condition and other similar types,
derived from it, will also have a role to play in the quantum theory, as we may see
in a future opportunity, but in the scope of this book we will use them only in this
chapter. We will represent a finite lattice with fixed boundary conditions in the
form shown in figure 2.2.1, where the sites marked with crosses are the one in the
external border. These sites have a different role from the others, which we will call
internal sites, being for this reason marked in a different way. Note that each one
of them connects to a single internal site, independently of the dimension d of the
lattice.

Figure 2.2.1: A two-dimensional lattice with fixed boundary conditions.

In the scope of the classical theory we assume that the values of the fields are

fixed and given a-priori at these border sites. The form of the action we considered
before in equation (1.3.1) does not change, except for the fact that the sum over
links includes now the links connecting the internal sites to the border. The sum
over sites does not change at all, it remains running over the internal sites. Under
these conditions the classical finite equation of motion in equation (2.1.3) also does
not change form. It applies to all internal sites, but not to the border sites, for two
reasons. For one thing, it is not necessary that it determine the values of the field at
these sites, since they are given a-priori. For another, it is not possible to calculate
the value of the Laplacian at these sites, because of the lack of sufficient data.

In order to see this, it is necessary to derive the equation in detail on a finite lat-
tice. Note that the action itself changes slightly in form, because in this case we have,
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repeating the derivation made previously for the periodical boundary conditions, in
d = 1,

∑

l

(∆ℓϕ)
2 =

(
∆ℓb−ϕ

)2
+ . . .+ (∆ℓϕ)

2 + . . .+
(
∆ℓb+ϕ

)2

= (ϕ0 − ϕ1)
2 + (ϕ1 − ϕ2)

2 + . . .

+ . . .+ (ϕn−1 − ϕn)
2 + (ϕn − ϕn+1)

2 + . . .

+ . . .+ (ϕN−1 − ϕN )
2 + (ϕN − ϕN+1)

2

= ϕ2
0 − 2ϕ0ϕ1 + ϕ2

1 + ϕ2
1 − 2ϕ1ϕ2 + ϕ2

2 + . . .

+ . . .− ϕn(ϕn−1 − 2ϕn + ϕn+1) + . . .

+ . . .+ ϕ2
N−1 − 2ϕN−1ϕN + ϕ2

N + ϕ2
N − 2ϕNϕN+1 + ϕ2

N+1

= ϕ2
0 − ϕ0ϕ1 − ϕ0ϕ1 + 2ϕ2

1 − ϕ1ϕ2 + . . .

+ . . .− ϕn−1ϕn − 2ϕ2
n + ϕnϕn+1 + . . .

+ . . .− ϕN−1ϕN + 2ϕ2
N − ϕNϕN+1 − ϕNϕN+1 + ϕ2

N+1

= −ϕ0(ϕ1 − ϕ0)− ϕ1(ϕ0 − 2ϕ1 + ϕ2) + . . .

+ . . .− ϕn(ϕn−1 − 2ϕn + ϕn+1) + . . .

+ . . .− ϕN(ϕN−1 − 2ϕN + ϕN+1) + ϕN+1(ϕN+1 − ϕN)

= −ϕ0(ϕ1 − ϕ0)−
N∑

n=1

ϕn(ϕn−1 − 2ϕn + ϕn+1) + ϕN+1(ϕN+1 − ϕN),

where ϕ0 and ϕN+1 are the fields at the external border, ϕ1 . . . ϕN are the fields
in the interior, ∆ℓb± are the derivatives at the two opposite borders and we have
detailed what happens at each one of the two ends. This time it results that the
final form relating a sum over links with a sum over sites is

∑

l

(∆ℓϕ)
2 = −ϕ0∆ℓb−ϕ−

N∑

n=1

ϕ(n)∆2ϕ(n) + ϕN+1∆ℓb+ϕ, (2.2.1)

where we now have, unlike the previous case, surface terms to consider.
In order to derive the equation of motion it is more convenient to start from the

initial form of the action given in equation (1.3.1), which we now write separating
explicitly the internal links ℓi and the links to the border ℓb±, still in one dimension,
for simplicity,

S0[ϕ] =
1

2
(∆ℓb−ϕ)

2 +
1

2

∑

ℓi

(∆ℓiϕ)
2 +

1

2
(∆ℓb+ϕ)

2 +
α0

2

N∑

n=1

ϕ2(n).

In order to find the configuration that minimizes the action we use the usual tech-
niques of the calculus of variations, making variations δϕ of the field on all the
internal sites. On the border sites the field remains fixed at the values given by the
boundary conditions. We impose then that the variation of the action be zero for
any δϕ(n). This variation of the action is given by
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δS0 = ∆ℓb−ϕδ(∆ℓb−ϕ) +
∑

ℓi

∆ℓiϕδ(∆ℓiϕ) + ∆ℓb+ϕδ(∆ℓb+ϕ) + α0

N∑

n=1

ϕ(n)δϕ(n).

It is easy to verify (problem 2.2.1) that, on any of the links,

δ(∆ℓϕ) = ∆ℓδϕ(s),

and we therefore have

δS0 = ∆ℓb−ϕ∆ℓb−δϕ+
∑

ℓi

∆ℓiϕ∆ℓiδϕ+∆ℓb+ϕ∆ℓb+δϕ+ α0

N∑

n=1

ϕ(n)δϕ(n).

We write now, explicitly, the part of the sum with the first terms containing deriva-
tives close to one of the ends of the lattice, recalling that δϕ(0) = δϕ(N + 1) = 0,

(ϕ1 − ϕ0)δϕ1 + (ϕ2 − ϕ1)(δϕ2 − δϕ1) + (ϕ3 − ϕ2)(δϕ3 − δϕ2) + . . .

= ϕ1δϕ1 − ϕ0δϕ1 + ϕ2δϕ2 − ϕ1δϕ2 − ϕ2δϕ1 + ϕ1δϕ1

+ϕ3δϕ3 − ϕ2δϕ3 − ϕ3δϕ2 + ϕ2δϕ2 + . . .

= −ϕ0δϕ1 + 2ϕ1δϕ1 − ϕ2δϕ1 − ϕ1δϕ2 + 2ϕ2δϕ2 − ϕ3δϕ2 + . . .

= −δϕ1(ϕ0 − 2ϕ1 + ϕ2)− δϕ2(ϕ1 − 2ϕ2 + ϕ3) + . . . .

With this we see that the variation of the action may be written as

δS0 = −
N∑

n=1

[∆2ϕ(n)]δϕ(n) + α0

N∑

n=1

ϕ(n)δϕ(n) =
N∑

n=1

[−∆2ϕ(n) + α0ϕ(n)]δϕ(n).

Se now see that, for δS0 to vanish for any function δϕ(n) it is necessary that, for all
n,

−∆2ϕ(n) + α0ϕ(n) = 0,

which is the equation of motion for this case. We see that its form does not change,
we have the same equation, although with different boundary conditions, of course.

Note that in this type of lattice there are N internal sites in each direction, but
a larger number, N + 1, of links in each direction. In order to take the continuum
limit we proceed in a way similar to the one used before, but this time the relation
between the size L of the box and the length a of the links is L = (N + 1)a. The
volume of the integration element is the same as before, ad, but there are now surface
terms to consider in the integrals. The new representation of the lattice with all
these elements is shows in figure 2.2.2.

In the continuum limit the equation of motion is the same differential equation we
obtained before for periodic boundary conditions, shown in (2.1.1). What changes,
naturally, are the boundary conditions. When m0 = 0 and d = 3 this equation
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a a

L

Figure 2.2.2: The geometrical elements of a two-dimensional lattice with a fixed
boundary.

reduces to the three-dimensional Laplacian and in this case we indeed have the
theory of electrostatics, ϕ being the electric potential within a cubic box of volume
V = L3 that contains no charges. However, this time the solution is not necessarily
trivial, because there may be charges on the surfaces that are the borders of the box
in the continuum limit, causing the potential not to be zero at these surfaces. In
this case the solution of the equation will not be simply ϕ ≡ 0 within the box, but
will have, instead of this, a value that will depend on the fixed values at the borders.
This is the typical example of electrostatic problem that may be solved numerically,
for example, by the relaxation method associated to the Laplacian (problems 2.2.2
and 2.2.3).

Observe that the sum over links in equation (2.2.1) may be written, in terms of
the dimensional variables, generalizing again to d dimensions, as

∑

~n

ad
∑

µ

[∆µφ(~n)]
2

a2
=
∑

~nb

ad−1φb
∆ℓbeφ

a
−
∑

~n

adφ(~n)
∆2φ(~n)

a2
,

where
∑

~nb
is a sum over the external border, φb is the field at the border and ∆ℓbeφ

is the finite external normal derivative of the field at the border. We have now the
integral

∑
~n a

d over the volume and the integral
∑

~nb
ad−1 over the oriented external

surface, so that in the continuum limit we obtain
∫

V

ddx
∑

µ

[∂µφ(~x)]
2 =

∫

S=∂V

dd−1x φ(~x)∂⊥φ(~x)−
∫

V

ddx φ(~x)∂2φ(~x),

where S = ∂V is the surface which is the border of the volume V and ∂⊥ is the
external normal derivative to this surface. If we assume that in the continuum limit
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the derivatives that appear in this expression have finite values, it now becomes
clear that in this limit the surface terms only vanish in the case in which the field
is kept equal to zero at the external surface. Hence, we see that the form of the
action changes by the addition of surface terms both on finite lattices and in the
continuum limit of the classical theory, while the equation of motion does not change,
the difference remaining implicitly only in the boundary conditions to be used to
solve the equation.

It is important to observe here that this kind of boundary condition will not
have a fundamental role to play in the quantum theory. This is due to the fact that
in the quantum theory the value of the field at sites is neither an observable nor a
controllable quantity that one can fix at a constant value without fluctuations. The
boundary conditions discussed here will be associated, in the context of the quantum
theory, to an approximation scheme, namely the so-called mean-field method. In any
case we do see here, by means of these examples, that our discrete structure on the
lattice reduces in fact to known cases of classical field theories in the continuum
limit, when we introduce into the structure a dimensional scale which is external to
the structure of our theory on the lattice.

Problems

2.2.1. If f(s) is an arbitrary function of the sites, s+ and s− are the sites at the two
ends of a link ℓ, ∆ℓf = f(s+) − f(s−) is the finite difference of the fields at
these sites, and assuming that an infinitesimal variation δϕ(s) at each site s
of the lattice is made, show that

δ(∆ℓϕ) = ∆ℓδϕ.

2.2.2. Show, on finite lattices in d dimensions, for an arbitrary position ~n in the
interior of the lattice, that the equation ∆2ϕ(~n) = 0 implies that ϕ(~n) is equal
to the average value of its 2d nearest neighbors.

2.2.3. (⋆) Write a program that uses the relaxation method, which is based on the
result of problem 2.2.2, to find the field ϕ(s) that satisfies the equation ∆2ϕ = 0
on a two-dimensional lattice in which ϕ = 1 at two opposite sides of the border
and ϕ = −1 at the other two opposite sides of the border.

2.3 Finite-Difference Operators

We will now elaborate a little the notion of operators that act on the lattice, related
to finite differences of the fields. In the usual numerical methods for the solution
of differential equations these operators are looked at as approximations on finite
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lattices for the corresponding objects in the continuum limit, which are differential
operators. In order to define the action functionals to be used in the quantum theory
it is useful to first study the relation between the discrete and continuum objects
in the scope of the classical theory. We will then, in this section, imagine that we
are starting from the continuum objects and trying to model them, approximating
them by discrete objects. It is clear that this is not our main point of view, but
there is no harm in adopting it temporarily to illustrate the discussion of the nature
of the relation between these mathematical objects.

Let us recall, then, that we are only talking about the classical theory of fields,
described on finite lattices, with the intention of taking the classical continuum
limit. It is therefore implicitly understood in all this discussion the existence of
an external dimensional scale L and of the corresponding lattice spacing a. For
ease of presentation, we will use in this section the dimensional coordinates ~x and
the corresponding versors x̂µ, for each one of the µ = 1, . . . , d direction of the
space. Let us consider now in more detail the definition on the lattice of the finite
difference operator ∆µ. Considered as an approximation of the differential operator
“partial derivative” it may be represented in several different ways, for example as
the forward difference operator ∆

(+)
µ , which when applied to a function f(~x) on the

lattice produces

∆(+)
µ f(~x) = f(~x+ ax̂µ)− f(~x),

or as the backward difference operator ∆
(−)
µ , which is defined by

∆(−)
µ f(~x) = f(~x)− f(~x− ax̂µ),

or even as the symmetrical difference operator or central difference operator ∆
(c)
µ ,

which is given by

∆(c)
µ f(~x) =

1

2
[f(~x+ ax̂µ)− f(~x− ax̂µ)].

The reason for the existence of all these different representations is that the finite
difference operator is in fact an operator with its arguments on sites and its values
on links, and there is no unique or natural way to represent it only on sites. Note
the absence of factors of a in the denominator in these definitions. In the continuum
limit the partial differentiation operator ∂µ may be identified with ∆µ/a in any of
the forms given above,

∂µ = lim
a→0

∆
(+)
µ

a
= lim

a→0

∆
(−)
µ

a
= lim

a→0

∆
(c)
µ

a
.

It is clear that the operator ∂µ can only be applied to differentiable functions in the
continuum limit, unlike the realizations of ∆µ on the lattice, which can be applied
to any functions defined on the lattice.
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Our action functional S0 depends only on the field and its first derivatives (or
rather, finite differences), therefore we are ready to write it in a more explicit way.

It can be verified that from the use of either the ∆
(+)
µ form or the ∆

(−)
µ form of

the finite-difference operator results the same action on the lattice, with only next-
neighbor couplings among the values of the field at the various sites,

S0[ϕ] =
1

2

∑

ℓ

[
∆

(+)
ℓ ϕ

]2
+

α0

2

∑

s

ϕ2(s) =
1

2

∑

ℓ

[
∆

(−)
ℓ ϕ

]2
+

α0

2

∑

s

ϕ2(s).

In both these cases, expanding the square of the finite-difference operator, one may
write S0 as (problem 2.3.1)

S0[ϕ] = −
∑

ℓ

[ϕ(~x)ϕ(~x+ ax̂ℓ)] +
(
d+

α0

2

)∑

s

ϕ2(~x).

What is understood by “next-neighbor couplings” is that, in the terms of the action
which involve products of values of the field at different sites, the values involved
are in adjacent sites, connected by a link. Note that the inter-site interaction that
appears above is similar to an interaction between two spins at neighboring sites,
such as the one that appears in the Ising model of magnetism. This elementary
interaction among neighboring sites should not be confused with what is usually
referred to in the theory as “interaction terms”, which supposedly couple together
the Fourier modes of the fields and thus cause plane waves to interact with each
other, giving rise to scattering processes in the non-Euclidean version of the theory.
These interaction terms will be discussed in a future volume, but are outside the
scope of this book.

The use of the realization ∆
(c)
µ , however, produces from the continuum action a

lattice action with more than interactions between next-neighbor sites. The associ-
ation of the finite-difference operator with links is intuitive and very attractive, as
well as closely related to the realization of the lattice of gauge theories, as will be
seen in a future volume. This fact, plus the simplicity of having to deal only with
couplings between next neighbors, would be sufficient to decide the question as to
the type of finite-differencing scheme to choose for the definition of the theory on the
lattice. But we will see in what follows, in a direct way, that the use of ∆

(c)
µ may also

be reduced to exactly the same theory on the lattice, and that the finite-difference
operator is inevitably defined on links.

In order to see this we consider the integration by parts of the first term of the
action S0 which, as commented previously, is only a not too appropriate name for
an algebraic operation involving sums of differences along the lattice. In this way
we may write the action as

S0[ϕ] = −1

2

∑

s,µ

ϕ(~x)∆2
µϕ(~x) +

α0

2

∑

s

ϕ2(~x) =
1

2

∑

s

[
−ϕ(~x)∆2ϕ(~x) +

α0

2
ϕ2(~x)

]
.

In spite of the fact that in order to do this with the usual mathematical language
of the continuum it may seem necessary to interpret the term (∆µϕ)

2 in a mixed
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way, with different realizations of the finite-difference operator ∆µ for each factor

involved, for example as (∆
(c)
µ ϕ)(∆

(+)
µ ϕ), integration by parts is just an application

of the Stokes theorem and it therefore a simplicial operation which is exact on the
lattice. The form above for the action is exactly equal to the previous ones, with the
use of any consistent realization of ∆µ. With the use of ∆

(±)
µ the Laplacian operator

∆2 that appears above may be defined through its action on lattice functions as

∆2f(~x) =
∑

µ

∆2
µf(~x),

where the definition of the action on the functions of the “second difference” ∆2
µ in

the direction µ is given by (no sum over µ here)

∆2
µf(~x) = f(~x+ ax̂µ)− 2f(~x) + f(~x− ax̂µ),

resulting therefore in

∆2f(~x) =
∑

µ

[f(~x+ ax̂µ)− 2f(~x) + f(~x− ax̂µ)].

Note that these operators are naturally defined with values on sites, as is necessary
for the expression of the action in terms of the Laplacian. The second derivative
maps values of the function f at the points ~x, ~x + ax̂µ and ~x − ax̂µ to a resulting
value to be associated to the point ~x. One can show (problems 2.3.2 and 2.3.3) that

the second-derivative operator is obtained by the iterated application of ∆
(+)
µ (which

maps ~x+ ax̂µ and ~x on ~x) and ∆
(−)
µ (which maps ~x− ax̂µ and ~x on ~x).

It is necessary to emphasize at this point that the iteration of ∆
(c)
µ does not

produce the operator ∆2 defined above but, instead of that, results in a different
realization of it, ∆2

(c), related to the differences of second order given by

∆2
(c)f(~x) =

1

4

∑

µ

[f(~x+ 2ax̂µ)− 2f(~x) + f(~x− 2ax̂µ)].

In the context of the classical theory this is related to a higher-order approximation
∆2

(c) to the continuum operator ∆2. Note that, with its use, the action S0 would
involve more than couplings between next neighbors. It is clear that our point here
is not to obtain better approximations to the solutions of the classical theory and we
will never use these higher-order realizations of the finite-difference operator. For us
the important realizations are those that appear in the various forms of the action
that we have already seen, which may be obtained by the direct application of the
realization on the links, be it in the form ∆

(+)
µ or in the form ∆

(−)
µ .

Of course we could consider the definition of the theory with the finite-difference
operator ∆

(c)
µ defined on sites and the higher-order realization ∆2 given above. The

interesting thing is that the theory would still be the same in any case, and that we
would be simply rescaling the continuum limit by a factor of two. In fact one can
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2a

Figure 2.3.1: A one-dimensional double lattice.

verify that, in d dimensions with even N and periodical boundary conditions, the
use of ∆

(c)
µ and ∆2

(c) corresponds exactly to the representation on the lattice of 2d

simultaneous and non-interacting copies of the same model, with a lattice spacing
parameter rescaled by two, equal therefore to 2a. For odd N the use of the central
finite-difference operator will produce a multiple cover of the torus and we end up
with a single realization of the model wrapped up 2d times around the torus, with
both a and L rescaled by a factor of two. Figure 2.3.1 may help in the visualization
of these facts in the case d = 1. In the figure the lines with arrows point to the two
subsets of sites which are related by the dynamics of the theory. In one dimension
one of the two sets is the set of sites with even integer coordinates, and the other
is the set of sites with odd integer coordinates. According to the dynamics of the
theory, each one of these two sets interacts internally, but each one of them does
not interact at all with the other one (problems 2.3.4 and 2.3.5).

Observe that this realization by means of ∆
(c)
µ does complicate the counting of

the degrees of freedom of the models. Where we thought we had a single field value
per site we end up with 2d independent field values, which are non-interacting or
interacting only through the boundary conditions. It is interesting to observe that
the realization on the lattice of fermionic fields also involves multiplications of the
spectrum of particles by factors of 2d, a phenomenon that remains as one of the
main open problems for that type of field. In that case the problem appears in
momentum space rather than position space, but it seems likely that in that case
too the problem may reduce to the question of counting degrees of freedom.

We see therefore that in these realizations the finite-difference operator ends up
once more associated in a natural way to links, now with length 2a, a fact that leads
us to think that the association of finite differences to links has a certain character
of inevitability. The same is true for more complex models such as, for example,
the polynomial models and the sigma models, so long as consistent use is made in
them of either the [∆

(±)
µ ,∆2] or the [∆

(c)
µ ,∆2

(c)] realizations. Since we do not have
any interest in having to deal with several identical copies of the same model sharing
the same lattice, in what follows we will restrict the discussion to only the case of
next-neighbor couplings.

Problems

2.3.1. Show, by expanding the term that contains the square of the finite-difference
operator, that the action S0 of the free scalar field can be written as
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S0[ϕ] = −
∑

ℓ

[ϕ(~x)ϕ(~x+ ax̂ℓ)] +
(
d+

α0

2

)∑

s

ϕ2(~x).

2.3.2. Show that one can obtain the second-difference operator ∆2
µ by the iteration

of the forward-difference operator ∆
(+)
µ and the backward-difference operator

∆
(−)
µ , in any order, that is, show that

∆2
µ = ∆(+)

µ ∆(−)
µ = ∆(−)

µ ∆(+)
µ .

Remember that ∆
(+)
µ maps ~x + ax̂µ and ~x to ~x and that ∆

(−)
µ maps ~x − ax̂µ

and ~x to ~x, and consider in detail the action of these operators over lattice
functions, calculating for example ∆

(+)
µ [∆

(−)
µ f(~x)] and ∆

(−)
µ [∆

(+)
µ f(~x)].

2.3.3. Show that the twice-repeated iteration of either ∆
(+)
µ or ∆

(−)
µ does not re-

produce the second-difference operator as defined in the text, that it, show
that

∆(+)
µ ∆(+)

µ 6= ∆2
µ 6= ∆(−)

µ ∆(−)
µ .

Verify in each case that, with respect to the definition given in the text, there
is a displacement of the point to which the value of the operator should be
associated, and examine the consequences of this displacement in the case of
fixed boundary conditions, and in the case of periodical boundary conditions.

2.3.4. Consider the action S0[ϕ] of the free scalar field written on a lattice with
N = 2N ′ sites in one dimension, with the use of the central finite-difference
operator ∆(c). Let so run over the N ′ sites with odd integer coordinates and
se over those with even integer coordinates. Show that it is possible to write
the action as

S0[ϕ] = So[ϕ] + Se[ϕ],

where So[ϕ] depends only on the fields ϕ(so) at the odd sites and Se[ϕ] only
on the fields ϕ(se) at the even sites. In this way one sees that the classical
dynamics of the system separates in two independent parts.

2.3.5. Apply the Euler-Lagrange equation or the principle of minimum action to the
actions So[ϕ] and Se[ϕ] of problem 2.3.4 and show that the equations of motion
relative to each one of the two sets of sites do not involve at all the variables
at the sites of the other set. In this way one sees that the classical dynamics of
the system decouples into independent dynamics for each one of the two sets
of sites.
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2.4 Space of Field Configurations

Linear operators and the spaces on which they act can in general be represented by
matrices and vectors, respectively. Having constructed the Laplacian operator both
on finite lattices and in the continuum limit, we will now show how to represent it in
matrix form on finite lattices. We will have in this way a very concrete representation
both of the operators and of the vectors that constitute the space on which they act.
This representation is very useful as a concrete mental image of the objects under
study, as well as a computational tool, which can be used to good advantage in the
context of the stochastic methods which constitute the main calculational approach
to the quantum theory.

In order to do this we will introduce and develop to some extent the concept of
the space of field configurations, which will be of great importance for the quantum
theory. The space of configurations, as previously defined, is the space of all possible
field-functions on the lattice. This is in fact a different space for each lattice size,
so we are actually talking here of a set or sequence of spaces. For a real field with
a single component on a lattice of Nd sites in d dimensions this space is R(Nd).

For simplicity we will do the construction for the case of periodical boundary
conditions. We shall start with the case d = 1, which is very simple. In this case
we can represent each configuration of the field by the collection of its values at the
sites along the lattice, in the order in which they appear on the linear chain defined
by it,




ϕ1

·
·
·
ϕi

·
·
·

ϕN




.

Any function defined on the lattice can be represented by a vector like this one,
with absolutely no additional restriction imposed on the nature of the functions.
The n = N1 components of the vector are the n values assumed by the function
on the n sites existent on the lattice. In this simple case the index i of the vector
that represents the field is simply the integer coordinate n1 of the one-dimensional
lattice. Further along the development of the theory one may have scalar fields ϕa

with more than a single component, that is, vectors ~ϕ in some internal symmetry
space of the fields, but one may still use this kind of representation for the fields
in the space of configurations. One will simply have several vectors like the one
illustrated above, one for each field component in the internal space. The ideas
involved in the representation of the field as a function over the lattice do not
change, the field simply acquires an additional index that does not mix with those
referring to space-time.
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Is is not difficult to verify that the Laplacian operator is represented by the
following matrix in this space formed by the vectors containing the values of the
fields at the sites,

∆2 =




−2 1 0 0 · · · 0 0 0 1
1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0
0 0 1 −2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −2 1 0 0
0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1
1 0 0 0 · · · 0 0 1 −2




. (2.4.1)

Note that almost all elements are zero, thus indicating the absence of long-range
couplings on the lattice. The only non-zero elements are the three central diagonals
indicated and the two elements at the corners along the anti-diagonal. These two
elements are the ones that establish the periodical boundary conditions. It suffices to
apply this matrix to the vector that represents the field to verify that it reproduces
the definition of the Laplacian on finite lattices given in (2.1.2).

The same procedure can be realized on lattices with dimensions larger than 1,
however in this case there is a slight complication because if the lattice is not one-
dimensional then it does not establish a natural order for the sites. We will establish
here a standard order for writing the components of vectors and matrices in the
space of field configurations, which will also be very useful for computer simulations.
Starting with a two-dimensional lattice with integer coordinates ~n = (n1, n2), where
n1, n2 = 1, . . . , N , consider the integer ι defined by

ι = 1 + (n1 − 1) + (n2 − 1)N.

Observe that ι varies from 1 to N2 when n1 and n2 assume all the possible values,
from 1 to N . The interesting thing is that this operation is invertible, that is, given
a certain value of ι between 1 and N2 it is possible to determine uniquely the values
of n1 and n2 that correspond to it. Hence, ι enumerates all the sites in a definite way.
This operation, which we call the indexing of the lattice by the index ι, is similar to
the operation of writing integers in the base N . The inversion of the operation is
realized by means of integer division. One can show (problem 2.4.1) that

n2 = 1 +
ι− 1

N
,

where the division is integer division, that is, there is truncation of the result as is
usual in the integer arithmetic of digital computers. Note that due to this the order
of operations is important here. Once n2 is obtained, we have for n1

n1 = ι− (n2 − 1)N.
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In this way we see that both the pair (n1, n2) and the index ι determine uniquely a
site. We may now use ι as the index of the vector that will represent the field on a
two-dimensional lattice,




ϕ1

·
·
·
ϕι

·
·
·

ϕN2




,

that is, we may represent the function ϕ(nµ) by the vector with components ϕι.
This method can be immediately generalized to any dimension d. For example

in three dimensions, with integer coordinates (n1, n2, n3), the index is given by

ι = 1 + (n1 − 1) + (n2 − 1)N + (n3 − 1)N2,

and the inversion operations are (problem 2.4.2)

n3 = 1 +
(ι− 1)

N2
,

n2 = 1 +
(ι− 1)− (n3 − 1)N2

N
,

n1 = 1 + (ι− 1)− (n3 − 1)N2 − (n2 − 1)N.

At this point it is already possible to see the pattern and imagine how to generalize
this. In general the index, on a lattice in d dimensions with integer coordinates nµ,
will be given by

ι = 1+(n1−1)+(n2−1)N+. . .+(nd−1−1)Nd−2+(nd−1)Nd−1 = 1+

d∑

µ=1

(nµ−1)Nµ−1,

where ι varies from 1 a Nd along all the extent of the lattice and the recursive
inversion operations are an immediate generalization of the relations for the three-
dimensional case, given above. For n1 = . . . = nd = 1 we immediately have ι = 1
and for n1 = . . . = nd = N we have ι = Nd, as we may verify by inspection,

(nd − 1)Nd−1

+ (nd−1 − 1)Nd−2

+ (nd−2 − 1)Nd−3

...
+ (n3 − 1)N2

+ (n2 − 1)N1

+ (n1 − 1)N0

+ 1





=





Nd − Nd−1

+ Nd−1 − Nd−2

+ Nd−2 − Nd−3

...
...

+ N3 − N2

+ N2 − N
+ N − 1
+ 1





= Nd.
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As one can see, the relation between the index ι and the integer coordinates is in fact
a bijection because, besides defining ι from a set of integer coordinates nµ, given a
value for ι we may also solve for all the coordinates nµ, dividing ι−1 successively by
Nd−1, Nd−2, . . . , N1, N0, so as to recover each one of the nµ as the complements of
the remainders of the successive divisions. This is, therefore, an unequivocal way to
pile up all the sites of a d-dimensional lattice into a single vector of size n = Nd. The
same ordering procedure can and should be used for the elements of the matrices
acting on these vectors.

The linear operators that act on this space are representable, of course, by n×n
matrices, as we saw before for the Laplacian in one dimension, with periodical
boundary conditions. One can verify that the determinant of that matrix is zero
(problem 2.4.3), which is a consequence of the fact that the operator ∆2 has a
null eigenvector, or a zero mode, on the torus. The matrix form of the operator
has a global character, including in its structure the boundary conditions which
are adopted. For example, the Laplacian in one dimension with fixed boundary
conditions, where each integer coordinate varies from 0 to N +1 and we have a total
of n′ = (N + 2)d sites, is represented by the n′ × n′ matrix

∆2 =




1 0 0 0 · · · 0 0 0 0
1 −2 1 0 · · · 0 0 0 0
0 1 −2 1 · · · 0 0 0 0
0 0 1 −2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −2 1 0 0
0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 1 −2 1
0 0 0 0 · · · 0 0 0 1




. (2.4.2)

In this case the operator is, in fact, an operator that acts on a space of dimension
n′ with values in a sub-space of dimension n = Nd, since it does not make sense
to calculate the Laplacian at the sites of the fixed border, at which we defined it
to act as the identity, in order to complete the square matrix above. On the other
hand, one can verify (problem 2.4.4) that the determinant of this matrix is not zero,
but (n′ − 1)(−1)n

′

instead, reflecting the fact that there is no zero-mode for fixed
boundary conditions.

Back to the case of periodical boundary conditions, the Euclidean Klein-Gordon
operator −∆2 +m2 is represented in this case by the matrix

−∆2 +m2 =




2 +m2 −1 0 · · · 0 0 −1
−1 2 +m2 −1 · · · 0 0 0
0 −1 2 +m2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 +m2 −1 0
0 0 0 · · · −1 2 +m2 −1
−1 0 0 · · · 0 −1 2 +m2




,
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which has a non-zero determinant so long as the mass is not zero. This corresponds
to the fact that only the theory of the free field with zero mass has a zero mode on the
torus and, potentially, problems due to the occurrence of divergences in the infra-red
limit, in which one makes the size L of the box tend to infinity, thus including into
the structure of the models arbitrarily large wavelengths and, therefore, arbitrarily
low frequencies.

Still for periodical boundary conditions, the forward difference operator ∆
(+)
µ has

the matrix representation

∆(+)
µ =




−1 1 0 0 · · · 0 0 0 0
0 −1 1 0 · · · 0 0 0 0
0 0 −1 1 · · · 0 0 0 0
0 0 0 −1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −1 1 0 0
0 0 0 0 · · · 0 −1 1 0
0 0 0 0 · · · 0 0 −1 1
1 0 0 0 · · · 0 0 0 −1




,

and the backward difference operator ∆
(−)
µ the representation

∆(−)
µ =




1 0 0 0 · · · 0 0 0 −1
−1 1 0 0 · · · 0 0 0 0
0 −1 1 0 · · · 0 0 0 0
0 0 −1 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · −1 1 0 0
0 0 0 0 · · · 0 −1 1 0
0 0 0 0 · · · 0 0 −1 1




.

It can be easily verified (problem 2.4.5), in this one-dimensional case, that they are
related to ∆2 by

∆2 = ∆(+)∆(−) = ∆(−)∆(+).

In this way the treatment, both of the fields and of the action on them of linear
operators such as the Laplacian, can always be reduced in an explicit way to oper-
ations with vectors and matrices in a space with a large but finite dimension, the
space of field configuration on the lattice. This is specially useful in programs for
the execution of stochastic simulations of models in the quantum theory.

Problems
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2.4.1. Show that, if the index ι for a two-dimensional lattice is defined as ι = 1 +
(n1 − 1) + (n2 − 1)N , then one can recover from it the integer coordinates n1

and n2 by means of the operations

n2 = 1 +
ι− 1

N
and n1 = ι− (n2 − 1)N,

in the indicated order, where the division is an integer division, that is, there
is truncation of the result as is usually the case in the integer arithmetic of
digital computers.

2.4.2. Repeat the demonstration described in problem 2.4.1 for the case of three
dimensions, in which the index is defined as ι = 1 + (n1 − 1) + (n2 − 1)N +
(n3 − 1)N2 and the inversion operations are, in order,

n3 = 1 +
(ι− 1)

N2
,

n2 = 1 +
(ι− 1)− (n3 − 1)N2

N
,

n1 = 1 + (ι− 1)− (n3 − 1)N2 − (n2 − 1)N.

2.4.3. Show, in the case d = 1 on a lattice with periodical boundary conditions, that
the determinant of the Laplacian given in equation (2.4.1) is zero, for any value
of N .

2.4.4. Show, in the case d = 1 on a lattice with fixed boundary conditions, that the
determinant of the Laplacian given in equation (2.4.2) has its value given by
(n′ − 1)(−1)n

′

, where n′ = (N + 2)d.

2.4.5. Show, in the one-dimensional case, executing explicitly the matrix products,
that the iteration of ∆(+) and ∆(−), in any order, has ∆2 as the result,

∆2 = ∆(+)∆(−) = ∆(−)∆(+).

2.4.6. Write explicitly the matrix of the Laplacian operator on a lattice with N = 4,
in two dimensions, with periodical boundary conditions.

2.4.7. Write the operations for the inversion of the index for a lattice in d = 4, with
periodical boundary conditions.

2.4.8. This one is just for fun: write explicitly the matrix of the Laplacian operator
on a one-dimensional lattice with N = 2 and periodical boundary conditions.
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2.5 Momentum Space

We will now define a concept which will be of great importance both for the so-
lution of the mathematical problems of the theory and in relation to its physical
interpretation, even when it is not possible to find exact solutions. This is the con-
cept of momentum space. The fields, as defined so far, are written as functions of
the sites s and hence of their integer coordinates ~n. As we saw before, we refer to
the space of all possible fields as the space of field configurations. We will call this
representation of the fields, as functions of the sites, by the name position space.
Another representation of the fields exists in momentum space, which is obtained
by means of a linear transformation that effects a change of basis in the space of
configurations. The integer coordinates ~n of the sites will be mapped on a new set
of integer coordinates ~k that index what we will call the modes of the lattice, in a
way similar to the indexing of the sites by ~n. The name originates from the classical
concept of normal modes of oscillation.

We will begin by showing a simple property of exponentials with discrete argu-
ments involving integers. Let 1 ≤ n ≤ N be an integer and consider the exponential
function

eı2πn/N

for the set of N possible values of the argument. We have here complex phases,
which means that this function assumes values along the unit circle of the complex
plane. As n varies from 1 to N the function goes around the circle, defining along
it N equally spaced points. In figure 2.5.1 we have an example with N = 8, with
the N values of n marked for each phase.

2
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Im

Re

Figure 2.5.1: Example of a complex unit circle for N = 8.
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Figure 2.5.2: Example of a complex unit circle for N = 7.

Note that, since the sum of the complex numbers is equivalent to the sum of the
two-dimensional vectors shown in the figure, its symmetry implies that

N∑

n=1

eı2πn/N = 0.

Note that this argument does not depend on the parity of N , but only on the fact
that the vectors are equally spaced along the circle. In figure 2.5.2 we show an
example with N = 7.

We will now consider the slightly more complicated case in which we multiply
the argument of the exponential by another integer 0 ≤ k ≤ N − 1, obtaining the
function

eı2πkn/N .

In this case, as n varies from 1 to N the function goes around the circle exactly k
times. In the case k 6= 0 we will still be defining in this way sets of points equally
spaced along it. For example, for k = 2 we have, for the two values of N used before,
the phases shown in figures 2.5.3 and 2.5.4.

As one can see, in the case N = 7 all the possible phases end up occupied a
single time, as before, but in a different order. In the case N = 8 only one half of
the possible phases ends up occupied, each one of them twice. Hence, in this latter
case, in which N is divisible by k, the set of phases ends up reduced to the set of
the case N ′ = N/k = 4, repeated k times. From the symmetry of the resulting sets
of phases in either case, we see that it is still true that the sum of all these phases
is zero,
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Figure 2.5.3: A double lap on the complex unit circle with N = 8.

N∑

n=1

eı2πkn/N = 0.

The same is valid for any other values of k in the interval under consideration,
except for k = 0. In this case we always have, very simply, N times the positive real
phase exp(0) = 1, so that we may write for our sum of phases

N∑

n=1

eı2πkn/N = Nδ(k, 0),

where δ(k, 0) is the Kronecker delta, equal to 1 if k = 0, equal to 0 if k 6= 0. In
order to convince oneself of the truth of this fundamental relation, which will give
rise to the relations of orthogonality and completeness that we will frequently use,
one may try out a certain number of particular cases, until one acquires a practical
understanding of how the sum of phases works. We may also verify it in a simple and
elegant way using the formula for the sum of a geometrical progression1, although
the numbers involved are complex rather than real. The extension of this formula
to the complex domain is a simple process of analytical extension and its validity
can be verified algebraically (problem 2.5.1). If we have as the initial element of the
progression a1 = exp(ı2πk/N) and as the ratio q = exp(ı2πk/N) 6= 1, with k 6= 0,
we will also have aN = exp(ı2πk) = 1 for any k, and the sum is given by

aNq − a1
q − 1

=
eı2πkeı2πk/N − eı2πk/N

eı2πk/N − 1
= eı2πk/N

eı2πk − 1

eı2πk/N − 1
= 0.

1This idea was proposed by Mr. Arnaldo Gomes de Oliveira Filho.
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Figure 2.5.4: A double lap on the complex unit circle with N = 7.

For the case k = 0 and q = 1 the formula cannot be used due to the zero in
denominator, but in this case the result is obvious because all the elements of the
sum are equal. In the problems a different approach to this question is proposed,
equally rigorous and more complicated and detailed (problems 2.5.5, 2.5.6 and 2.5.7).

Observe that we may use integer coordinates for the sites with values in the
interval [0, N − 1], or any other interval containing N consecutive integers, as well
as in the interval [1, N ], as we have been doing. In addition to this, the exponential
that appears in the sum above is symmetrical by the exchange of n e k, so that it is
equally true that

N−1∑

k=0

eı2πkn/N = Nδ(n,N).

One can also see that the modes k = 0 e k = N are in reality the same mode, in
fact k and k+N always represent the same mode (problem 2.5.2). Thus, in the case
of the k coordinates we may also choose the extremes of the interval of variation
arbitrarily, so long as we always take N consecutive values. For reasons associated
to the physical interpretation of these modes, it will be convenient that we take the
intervals of variation of k in a way as symmetrical as possible around 0. For this
reason we will adopt the following standard intervals, one for odd N ,

k = −N − 1

2
, . . . , 0, . . . ,

N − 1

2
,

and another for even N ,

k = −
(
N

2
− 1

)
, . . . , 0, . . . ,

(
N

2
− 1

)
,
N

2
.
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We may now write the relations above in a slightly different form, that we will
name relation of orthogonality,

N∑

n=1

eı
2π
N

n(k−k′) = Nδk,k′, (2.5.1)

and relation of completeness,

kM∑

k=km

eı
2π
N

k(n−n′) = Nδn,n′ , (2.5.2)

where km and kM are the minimum and maximum limits of the interval of values
of k in each case. Once these relations are established for the one-dimensional case
as we have done here, their extensions to higher dimensions is immediate, achieved
by means of the use of the properties of the exponential function (problem 2.5.3).
Hence in d dimensions we have the relations

N∑

n1=1

. . .
N∑

nd=1

eı
2π
N

~n·(~k−~k′) = Ndδk1,k′1 . . . δkd,k′d,

kM∑

k1=km

. . .

kM∑

kd=km

eı
2π
N

~k·(~n−~n′) = Ndδn1,n′
1
. . . δnd,n

′
d
.

The first relation establishes a definition of scalar product between modes, ac-
cording to which they are all orthogonal to one another. The exponential functions
exp(ı2π~k · ~n/N) are called the mode functions of these Fourier modes. This scalar
product is defined as a sum over position space of products of two mode functions,
which are characterized by ~k and ~k′. The second relations involves a sum over mo-
mentum space and establishes that any function of the sites on the lattice can be
written as a linear superposition of these mode functions, which therefore constitute
a complete set of functions on the lattice (problem 2.5.4).

Problems

2.5.1. Derive algebraically the expression for the sum of a geometrical progression of
N terms with q 6= 1 and show that the result is valid independently of q and
the first term a1 being real or complex.

2.5.2. Show that the modes corresponding to k1 and k1 + N are in fact the same
mode, that is, that the corresponding mode functions, exp(ı2πkn/N), have
the same values at all the lattice sites.

2.5.3. Using the properties of the exponential function, derive the orthogonality
and completeness relations in d dimensions from the one-dimensional relations
given in equations (2.5.1) and (2.5.2).
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2.5.4. Show that any function f(~n) on the torus can be written as a linear combina-

tion of the collection of Nd functions exp(ı2π~k · ~n/N) and give explicitly the
coefficients of the expansion.

2.5.5. In this problem, for simplicity, we will number the sites from 0 to N − 1.
Given a certain N in d = 1 and a certain value of k, show that the set of
phases defined by

{
eı

2π
N

nk / n = 0, . . . , N − 1
}

is contained within the set of phases given by

{
eı

2π
N

m / m = 0, . . . , N − 1
}

where the integer m is given in terms of n by

m = nk − pN

where p is some integer. We say that n is equal to m module N . In this way
we succeed to map the phases generated by any given k back to the interval
described by an integer from 0 to N − 1.

2.5.6. Show that if N is not divisible by k in problem 2.5.5 then the two sets of
phases are identical, that is, the relation between them is a bijection or one-
to-one. Use this fact to establish that the sum of the phases for k 6= 0 is
zero in this case. Hint: show that, if n1 is mapped to m1 and n2 to m2, then
m1 = m2 ⇒ n1 = n2.

2.5.7. If N is divisible by k in problem 2.5.5, that is, if N = N ′k for some N ′, then
show that only the phases corresponding to the lattice of size N ′ appear in the
first set. Show that each one of them appears exactly k times. Use these facts
to establish that the sum of the phases for k 6= 0 is zero in this case, effectively
reducing the problem of the N -lattice to the problem of the N ′-lattice.

2.5.8. Write a program to verify the orthogonality relation of the momentum-space
mode-functions in d = 1, for a given fixed N and any given k.
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2.6 Finite Fourier Transforms

We are now in a position to define the finite Fourier transform of our field, as well
as its inverse. As we shall see, the orthogonality of the modes we defined establishes
that this transform will take us to the normal modes of oscillation of the field within
the box. On our cubic N -lattice with periodical boundary conditions we define the
finite Fourier transform of the field ϕ(~n) as

ϕ̃(~k) =
1

Nd

∑

~n

eı
2π
N

~k·~nϕ(~n).

This is a linear transformation of coordinates in the space of field configurations,
taking us from the Nd coordinates ϕ(~n) to the also Nd coordinates ϕ̃(~k). The inverse
transform, taking us back to the coordinates in terms of site positions, is given by

ϕ(~n) =
∑

~k

e−ı 2π
N

~k·~nϕ̃(~k),

where the sum is over all the momenta, that is, an abbreviation such as

∑

~k

≡
kM∑

k1=km

. . .

kM∑

kd=km

.

Note that, as defined here, ϕ and ϕ̃ are both dimensionless. The fact that the two
operations defined above are the inverses of one another is a consequence of the
orthogonality and completeness relations, as you will have a chance to show in one
of the problems (problem 2.6.1). Observe that all these relations are exact on finite
lattices, that they do not involve any kind of approximation. What we have here
is simply a linear transformation in a finite-dimensional vector space. As we shall
see further along, this linear transformation allows us to solve exactly the Gaussian
model, which is the Euclidean version of the theory of the free scalar field.

Let us examine now how these transformations behave in the continuum limit.
As we did before in section 2.1, in order to take this limit we will introduce an
external dimensional scale into our system. Once more we assume that the system
is contained in a cubic box of size L in this external system of units. When we make
N → ∞ with constant L, the lattice spacing a = L/N of the lattice goes to zero
and the sum that defines the Fourier transform approaches a Riemann integral over
the box of volume V = Ld. In this case we may write this relation, in the limit, as

ϕ̃(~p ) =
1

V

∫

V

ddx eı~p·~xϕ(~x),

where ~x = a~n are the coordinates that describe positions within the continuous
box and ~p = 2π~k/L are the discrete momenta associated to the vectors with integer

components ~k. Since we are now within a continuous but still finite box, these modes
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associated to ~p are still discrete, of course, so that the inverse is given by an infinite
series rather than a finite sum, but not by an integral,

ϕ(~x) =

∞∑

~p

e−ı~p·~xϕ̃(~p ).

Note that the factor of 1/Ld in the transform guarantees that ϕ and ϕ̃ still have the
same dimensions. These relations are valid for both the dimensionless field ϕ and
the dimensionfull field φ, because they are homogeneous on the fields, and therefore
we may write

φ̃(~p ) =
1

V

∫

V

ddx eı~p·~xφ(~x),

φ(~x) =

∞∑

~p

e−ı~p·~xφ̃(~p ).

The orthogonality and completeness relations may now be written in the form

1

V

∫

V

ddx eı~x·(~p−~p′) = δd(~p, ~p′),

∞∑

~p

eı~p·(~x−~x′) = V δd (~x− ~x′) ,

where, in the limit, the product Ndδd(~n, ~n′) transforms into the product of the
volume by the Dirac delta function δd (~x− ~x′) (problem 2.6.2). We have here the
usual relations for the case of the Fourier transform within a continuous finite box,
that is, for the Fourier series.

Next we may think about taking the limit L → ∞, increasing the box until it
takes all space, which will lead us to the usual Fourier transforms in infinite space.
Since the moment of the lowest non-zero mode in the box has magnitude (2π/L),
and since they are equally spaced, the volume occupied by each mode in momentum
space is given by (2π/L)d, which goes to zero as L → ∞, so that in this case the
form of the inverse transformation will also approach an integral. Taking a large
but still finite box, the transform and its inverse can be written approximately as

φ̃(~p ) =
1

V

∫

V

ddx eı~p·~xφ(~x),

φ(~x) = V

∫
ddp

(2π)d
e−ı~p·~xφ̃(~p ),

where, strictly speaking, we cannot yet take the limits because of the divergent
factors of V . The orthogonality and completeness relations may now be written as

1

V

∫

V

ddx eı~x·(~p−~p′) =
1

V
δd (~p− ~p′) ,

V

∫
ddp

(2π)d
eı~p·(~x−~x′) = V δd (~x− ~x′) ,
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where we see that, in this case, the divergent factors of V cancel out. It is clear
that the normalization factors involving V are not at all convenient in the case of
the infinite box and, therefore, we will change the normalizations, so that we may in
fact take the limits and obtain the Fourier transforms in their usual form, in which
φ̃∞ and φ have different dimensions,

φ̃∞(~p ) =

∫
ddx eı~p·~xφ(~x),

φ(~x) =

∫
ddp

(2π)d
e−ı~p·~xφ̃∞(~p ),

∫
ddx eı~x·(~p−~p′) = δd (~p− ~p′) ,

∫
ddp

(2π)d
eı~p·(~x−~x′) = δd (~x− ~x′) .

All the relations examined in this section also have their equivalent counterparts
in non-Euclidean space. In particular, the complex exponentials exp(ı~p · ~x) are, in
their non-Euclidean version, plane waves that propagate in infinite space. These
plane waves will have an important role to play also in the quantum theory, where
they will be associated to free particles. We see here that the Fourier transformation
may also be understood as a decomposition of functions of position in terms of plane
waves.

We wrote here the equations relating to infinite space only for reference, since
in these notes we will seldom be working in an infinite box. With few exceptions
it will suffice to consider the definition of quantum field-theoretical models inside
finite boxes. The normalization we chose to adopt for the case of finite lattices
is appropriate for this case. In fact, note that with this normalization the zero-
momentum (~k = ~0 ) transform of the field is its average value inside the box,

ϕ̃(~0 ) =
1

Nd

∑

~n

ϕ(~n) = ϕ.

This average is also called the zero mode of the field and it will play a special role
in the subsequent development of the theory.

Problems

2.6.1. Show, on finite lattices, that the inverse Fourier transform really recovers the
original function from its Fourier components.

2.6.2. Assuming that ~x = a~n, show that the product a−dδd(~n, ~n′), where δd(~n, ~n′) is
the d-dimensional Kronecker delta, transforms into the d-dimensional Dirac
delta function δd(~x− ~x′) in the continuum limit. In order to do this, build on
the lattice expressions that, in the continuum limit, converge to integrals of
δd(~x−~x′) over ~x in domains that may or may not include the point ~x′, showing
that they have the values one would expect of a Dirac delta function.
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2.6.3. Calculate the finite Fourier transform of the field defined, on a one-dimensional
periodical lattice with an even number N = 2M of sites, by ϕ(n) = (−1)n.

2.6.4. Show that, for a real field ϕ, ϕ̃(−~k) = ϕ̃∗(~k). In particular, show that ϕ̃(~0 )
is real. In addition to this, in case we have even N in dimension d = 1, show
that ϕ̃(N/2) is real.

2.7 Eigenvalues and Eigenvectors of the Laplacian

Having discussed before the relevant realizations of the finite-difference operators
∆µ and ∆2, we are now in a position to study their eigenvalues and eigenvectors.
For simplicity, it is more convenient to start the discussion by the eigenvalues of the
symmetrical realization ∆

(c)
µ , but it is also interesting to compare the results for the

various realizations, as we shall do.
The eigenvectors of the finite-difference operators with periodical boundary con-

ditions are the exponential functions exp(ı2π~k · ~n/N) that appear in the Fourier
transformations. We will also refer to these eigenvectors as eigenfunctions. We
have, for example, by the direct application of the definition of eigenvector followed
by a simple calculation (problem 2.7.1), that

∆(c)
µ eı

2π
N

~k·~n = ı sin

(
2π

N
~k · n̂µ

)
eı

2π
N

~k·~n,

where n̂µ = x̂µ is the versor in the direction µ. Observe that the eigenvalue is
complex and that, therefore, the operator is not Hermitian. We may define the
quantity

ρ(c)µ (kµ) = sin

(
2π

N
~k · n̂µ

)
= sin

(
2πkµ
N

)
,

that plays a role similar to that of the linear momentum in the case of the continuum
formalism. For the realization ∆

(+)
µ , with values on links, we have

∆(+)
µ eı

2π
N

~k·~n =
(
eı

2π
N

~k·n̂µ − 1
)
eı

2π
N

~k·~n.

For ∆
(−)
µ we have a similar relation. Note that, as in the case of ∆

(c)
µ , the eigenvalue

of ∆
(+)
µ is also complex. We may write this eigenvalue as

2ıeı
π
N
~k·n̂µ sin

( π

N
~k · n̂µ

)
,

or, defining a new version of the quantity ρµ(kµ), that plays the role of the linear
momentum, by
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ρµ(kµ) = 2 sin
( π

N
~k · n̂µ

)
= 2 sin

(
πkµ
N

)
, (2.7.1)

the remaining factors are simply the imaginary unit ı that comes from the finite
differentiation and a phase

eı
π
N
~k·n̂µ = eı~p·x̂µa/2,

indicating that the natural location of the result is the middle of the link that points
in the positive µ direction starting from the site in question! The dimensionfull
quantity p

(N)
µ = ρµ(kµ)/a is the quantity on the lattice that really corresponds to

the physical linear momentum of the states and particles of the theory. We will
also refer to the quantities ρµ(kµ) as the dimensionless momenta on the lattice. The

lattice momenta p
(N)
µ reduce in the continuum limit to the continuum momenta pµ,

so long as these are finite in the limit, that is, for modes with integer coordinates
kµ that are much smaller than N on large lattices,

p(N)
µ =

2

a
sin

(
πkµ
N

)
≃ 2πkµ

Na
=

2πkµ
L

= pµ, for kµ ≪ N.

In the case of the operator ∆2 (problem 2.7.2) we have for each finite second-
difference ∆2

µ (with no sum over µ),

∆2
µe

ı 2π
N

~k·~n = −
[
2 sin

( π

N
~k · n̂µ

)]2
eı

2π
N

~k·~n.

Hence we see that the eigenvalues of ∆2
µ are −ρ2µ and we have, therefore,

∆2eı
2π
N

~k·~n = −ρ2eı
2π
N

~k·~n, (2.7.2)

where ρ2 is given by

ρ2 =
∑

µ

ρ2µ = 4

[
sin2

(
πk1
N

)
+ . . .+ sin2

(
πkd
N

)]
.

In this case the eigenvalues are real and we have a Hermitian operator. Again, the
eigenvalues are related to the dimensionless versions of the momenta on the lattice,
ρµ(k). All the quantities that we will calculate in the theory will end up written in
terms of these quantities, more often in terms of ρ2.

Note that the fact that the complex exponentials are eigenvectors of the Lapla-
cian implies that some of them are also solutions of the classical theory in its non-
Euclidean version. In order to see this it suffices to directly apply the equation to
the functions, resulting in

(−∆2 + α0)e
ı 2π
N

~k·~n = (ρ2 + α0)e
ı 2π
N

~k·~n,
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thus showing that the equation is solved by modes for which ρ2 = −α0. Since the
parameter α0 is positive, this can only be satisfied in the non-Euclidean version of
the theory, in which the sum ρ2 =

∑
µ ρ

2
µ, which is here manifestly positive, changes

so as to have a negative element,

ρ2 = −ρ20 +
d−1∑

i=1

ρ2i .

It is clear that, on finite lattices and depending on the value of α0, there might be
no mode such that ρ2 = −α0, which just shows the discrete nature of the solutions
within a finite box, even in the non-Euclidean case. However, if we take the so-called
infra-red limit, making the size L of the box tend to infinity, the separations between
consecutive square momenta ρ2 of the modes become infinitesimal and in this case
it is always possible to find a mode with ρ2 arbitrarily close to any given positive
value of α0. The relation ρ2 + α0 = 0 is referred to as the on-shell condition and
is a characteristic of the plane waves that constitute the relativistically invariant
classical solutions of the theory in non-Euclidean space.

Problems

2.7.1. Show, using directly the definition of the finite-difference operators, that the
functions f~k(~n) = exp(ı2π~k · ~n/N) are eigenfunctions of these operators. In
order to do this apply to these functions the definition of the operators at
an arbitrary internal site and remember that the boundary conditions are
periodical.

2.7.2. Show, using the definition of the Laplacian that follows from the definitions of
the finite-difference operators ∆±

µ , that the functions f~k(~n) = exp(ı2π~k · ~n/N)
are eigenfunctions of the finite-difference Laplacian. In order to do this apply
to these functions the definition of the Laplacian at an arbitrary internal site
and remember that the boundary conditions are periodical.

2.8 Eigenvectors for Fixed Boundary Conditions

We examined in sections 2.5, 2.6 and 2.7 the case in which periodical boundary
conditions are adopted and, in that case, the transformations that take us from
position space to momentum space are given by the finite Fourier transforms. When
other types of boundary conditions are adopted in position space we will still have
a momentum space, as well as transformations between it and position space, but
these will no longer be the Fourier transforms, but other type of transform involving
complete sets of orthogonal functions.
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With the use of fixed boundary conditions, in which the values of the field at the
border are given beforehand and kept fixed, the appropriate mode functions for the
transformation to momentum space are no longer the usual complex phases, used
with periodical boundary condition in the Fourier transformations. They are instead
the real eigenfunctions f~k(~n) of the Laplacian operator that satisfy the boundary
conditions imposed on the box. In principle the field can be kept fixed at arbitrary
and independent values at each one of the sites of the external border. This is the
situation which is typically of interest in the classical theory, for example when we
study techniques to determine the electric potential inside a box when its walls are
kept at arbitrarily given values of the potential.

Another type of boundary condition of interest in the classical theory are those
in which, instead of the field itself, it is the derivatives of the field that are kept at
arbitrarily given values at the border. This is relevant, for example, in situations
where the electric field rather than the electric potential is known at the border.
The case in which the derivatives are zero at the border is also known by the name
of “free” boundary conditions, since in this case we may simply eliminate form the
model the values of the field at the border and the links that connect the interior to
the border, which is equivalent to fixing at zero the value of the normal derivative at
the border. This type of boundary condition is often used for models in statistical
mechanics, which is mathematically quite similar to the quantum theory of fields,
as a simpler alternative to periodic boundary conditions.

However, when we study in more detail the question of the boundary conditions
in the quantum theory, later on, we will see that this type of situation is not of much
interest in that case, in which the important aspects of the boundary conditions are
of another nature. Since our study of fixed boundary conditions here is meant mostly
at illustrating how to deal with them, we will limit ourselves here to the case of null
boundary conditions, in which we make ϕ = 0 at all the border sites. This type of
boundary condition will be of some use in the development of the quantum theory,
and it can be easily generalized, in all situations of interest, to the case in which ϕ is
kept constant at some non-zero single value over the whole border. On finite lattices,
for boundary conditions ϕ = 0, it can easily be shown (problems 2.8.1 and 2.8.2)
that the eigenfunctions of the finite-difference Laplacian which vanish at the border
are given by

fN
~k
(~n) = 2d/2 sin

(
πk1n1

N + 1

)
. . . sin

(
πkdnd

N + 1

)
, (2.8.1)

where the integer coordinates kµ = 1, . . . , N , µ = 1, . . . , d are the coordinates that
identify each one of the discrete eigenmodes of the Laplacian in momentum space.

Observe that in this case, unlike the case of periodical boundary conditions,
we cannot make kµ = 0 for any value of µ, since the corresponding eigenfunction
would be identically zero. Besides this, for any µ the change kµ → −kµ will only
change the sign of the eigenfunction and therefore does not produce an independent
eigenfunction. Due to this, we do not have here the freedom we had in the periodical
case, of choosing the range of variation of kµ, which must be as given above. This
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implies that there is no zero mode, because the fixed boundary conditions would force
the corresponding eigenfunction to be identically zero, over the complete extension
of the lattice. In other words, with these boundary conditions the Laplacian has no
normalizable (non-null) eigenvector with a zero eigenvalue.

The eigenfunctions fN
~k
(~n) on finite lattices satisfy the orthogonality and com-

pleteness relations

∑

~n

fN
~k
(~n)fN

~k′
(~n) = (N + 1)dδd(~k,~k′), (2.8.2)

∑

~k

fN
~k
(~n)fN

~k
(~n′) = (N + 1)dδd(~n, ~n′). (2.8.3)

where in this case the Kronecker delta functions and sums are defined by

∑

~n

=
N∑

n1=1

. . .
N∑

nd=1

,

∑

~k

=

N∑

k1=1

. . .

N∑

kd=1

,

δd(~k,~k′) = δ(k1, k
′
1) . . . δ(kd, k

′
d),

δd(~n, ~n′) = δ(n1, n
′
1) . . . δ(nd, n

′
d).

It is not difficult to demonstrate these orthogonality and completeness relations
(problem 2.8.4) by writing the eigenfunctions in terms of complex exponentials,
with the use of

sin

(
πkµnµ

N + 1

)
=

1

2ı

[
eı

πkµnµ
N+1 − e−ı

πkµnµ
N+1

]
,

where there is no sum over µ, and then using the formula for the sum of a geometrical
progression, generalized to the complex context, as we already did in section 2.5.
Note that, since the sine functions are zero for n = 0, n = N + 1, k = 0 and
k = N + 1, it is possible to extend the sums, both those over ~n and those over ~k,
from the interval [1, . . . , N ] to the interval [0, . . . , N+1]. It is important to emphasize
that, just as in the case of periodical boundary conditions, these orthogonality and
completeness relations are exact on each finite lattice.

For fixed null boundary conditions the transformation of the field from position
space to momentum space and its inverse are written as

ϕ̃(~k) =
1

(N + 1)d

∑

~n

fN
~k
(~n)ϕ(~n),

ϕ(~n) =
∑

~k

fN
~k
(~n)ϕ̃(~k).
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It is also not difficult to show (problem 2.8.1) that the eigenvalues of the finite-
difference Laplacian for the base of functions defined in equation (2.8.1) are given
by

ρ2f = 4

{
sin2

[
πk1

2(N + 1)

]
+ . . .+ sin2

[
πkd

2(N + 1)

]}
. (2.8.4)

Observe however that, unlike what happened in the periodical case, the functions
given in (2.8.1) are not eigenfunctions of the finite-difference operator ∆µ (prob-
lem 2.8.3). This is related to the fact that the finite-difference operator acts over
the lattice functions as a generator of translations and, since the boundary con-
ditions are fixed, it is not possible to execute such translations without violating
the boundary conditions. As we shall see in future volumes, just as in the case of
periodical boundary conditions, also in this case all quantities of physical interest
on finite lattices will be functions of ~k only through the combination ρ2f (

~k).
In the limit N → ∞ each one of these quantities approaches the corresponding

continuum-limit quantity. Assuming as always the existence of an external dimen-
sional scale in which the side of the box is given by L, in this limit the eigenfunctions
of the Laplacian are given by

f~k(~x) = 2d/2 sin

(
πk1x1

L

)
. . . sin

(
πkdxd

L

)
, (2.8.5)

where xµ = nµa, a = L/(N+1), nµ = 0, . . . , N+1 define the continuum coordinates
xµ within the box, which in the limit are defined in the interval [0, L]. These
functions satisfy the orthogonality and completeness relations (problem 2.8.5)

∫ L

0

dx1 . . .

∫ L

0

dxd f~k(~x)f~k′(~x) = δd(~k,~k′), (2.8.6)

∑

~k

f~k(~x)f~k(~x
′) = V δd(~x− ~x′), (2.8.7)

where the integer coordinates kµ extend now from 1 to ∞ and δd(~x−~x′) is the Dirac
delta function in d dimensions. The eigenvalues of the Laplacian corresponding to
these eigenfunctions are given (problem 2.8.5) by the limits of the quantities ρ2f/a

2.
In the limit the values of the dimensionfull momenta are given by pµ = πkµ/L and
the eigenvalues of the Laplacian are

p2 =
π2

L2

(
k2
1 + . . .+ k2

d

)
. (2.8.8)

In the continuum the transformation of the field from position space to momentum
space and its inverse are written as

ϕ̃(~k) =
1

V

∫

V

ddxfN
~k
(~x)ϕ(~x),

ϕ(~x) =
∑

~k

fN
~k
(~x)ϕ̃(~k).
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Since the role played by the transformations to momentum space is always the
same and they are always associated to decompositions of the functions of position
in some basis of orthogonal functions, we often will, for simplicity of exposition,
commit the abuse of language of referring to the transformation to momentum space
as Fourier transforms, whatever the boundary conditions in use may actually be.

Problems

2.8.1. Show that, with fixed boundary conditions in which the field is zero at the
border, the functions fN

~k
(~n) given in equation (2.8.1) are eigenfunctions of the

finite-difference Laplacian. Derive also the expression for the corresponding
eigenvalues ρ2f .

2.8.2. Show that the exponential functions exp[ı2π(~k · ~n)/N ], that we used in the
case of periodic boundary conditions, are not eigenfunctions of the Laplacian
with fixed boundary conditions where the field is zero at the border. In order
to see this, examine in detail the situation at the sites next to the border.

2.8.3. Show that, with fixed boundary conditions where the field is zero at the border,
the functions fN

~k
(~n) given in equation (2.8.1) are not eigenfunctions of the

finite-difference operator ∆µ. Examine in detail the situation at the sites next
to the border.

2.8.4. Demonstrate the orthogonality and completeness relations for fixed bound-
ary conditions given in equation (2.8.2), decomposing the sine functions that
appear in the eigenfunctions fN

~k
(~n) into complex exponentials and using the

formula for the sum of a geometrical progression, which can be generalized to
the complex context, as we already saw in section 2.5.

2.8.5. Show that in the continuum limit inside a finite box the eigenfunctions of
the Laplacian are given by the functions f~k(~x) defined in equation (2.8.5).
Starting from the orthogonality and completeness relations on finite lattices
given in equation (2.8.2) demonstrate that the corresponding relations in the
continuum limit are those given in equation (2.8.6). Show also that in this
limit the eigenvalues of the Laplacian are those given in equation (2.8.8).

2.8.6. Show that the functions defined on a one-dimensional lattice with N sites and
fixed boundary conditions, given by

fκ(n) =





κ = 0 : 1,
κ = 1, . . . , N : cos

(
2πnk
N+1

)
, where k = 1, . . . , N,

κ = N + 1, . . . , 2N : sin
(
2πnk
N+1

)
, where k = 1, . . . , N,

where n = 0, . . . , N + 1 and κ = 0, . . . , 2N , are all orthogonal to one another,
so long as the sums over position space are defined by
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1

2
fκ(0)fκ′(0) +

N∑

n=1

fκ(n)fκ′(n) +
1

2
fκ(N + 1)fκ′(N + 1),

reflecting the fact that the sites at the border are associated to integration
elements with half the volume of the integration elements associated to the
internal sites.

2.8.7. (⋆) Find, if at all possible, a subset of N of the functions given in problem 2.8.6
that is complete for the representation of functions ϕ(n) of the N sites in the
interior of the lattice, given two independent fixed values ϕ(0) and ϕ(N + 1)
at the two ends of the lattice2.

2.9 Basis Transformations in Configuration Space

The whole formalism of Fourier transformation can be applied in identical form both
to the dimensionless field ϕ and to the dimensionfull field φ, as well as to any other
quantity of the theory that is a function of position on the lattice, whatever the
boundary conditions may be. In fact, the transformation to momentum space is a
fundamental operation, not only in the classical theory but in the quantum theory as
well, because, as we shall see in more detail later, it corresponds to a transformation
from a representation in terms of point-like quantities, whose quantum expectation
values cannot be observed directly, to a representation in terms of extended quanti-
ties, whole expectation values are associated in a more direct way to the quantities
that are in fact physically observable.

Any operation that is linear on the fields and that involves an integration (in the
continuum case) or sum (in the discrete case) over the whole lattice, as is the case
for the Fourier transforms, may be understood as a matrix multiplication operation
on a vector. This is true both for periodical and for fixed boundary conditions. The
Fourier transformation itself, for periodical boundary conditions, which is given by

ϕ̃(~k) =
1

Nd

∑

~n

eı
2π
N

~k·~nϕ(~n),

may be written as a matrix operation so long as we represent the positions ~n of the
sites by means of the index ι, as discussed in section 2.4, at the same time that we
exchange the integer coordinates ~k of momentum space for another index κ defined
in an analogous way. Once we have “piled up” in this way both the ~n and the ~k
coordinates into indices of vectors of dimension Nd, we may write the transformation
as

2Note: the answer to this problem is currently unknown.
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ϕ̃κ =

Nd∑

ι=1

Fκιϕι = Fκιϕι,

where we will usually omit the explicit sum as we did here, hence adopting the
summation convention for the matrix products. The equation above represents the
matrix product of the matrix F of components Fκι by the vector ϕ of components
ϕι, resulting in another vector ϕ̃ of components ϕ̃κ. In this language the Fourier
transform of the field ϕι is an Nd-vector ϕ̃κ that may be written in matrix notation
as ϕ̃ = Fϕ.

From the point of view of configuration space, Fourier transformation is a simple
change of basis in a vector space. We may consider the set of Nd vectors ϕ̂ι, which
are equal to 1 at a particular site in position space and to 0 at all the others, as
a basis of the space of configurations, since any configuration ϕ may be written
as a linear combination of these basis versors. In the same way, the set of Nd

vectors ̂̃ϕκ, which are equal to 1 at a particular mode in momentum space and to
0 at all the others, also form a basis of the same space. This is so because, since
the Fourier transformation exists for any configuration, is linear and invertible, any
configuration may also be written as a linear combination of this other set of basis
versors.

This represents in fact a simple decomposition of the configuration in terms of
normal modes of oscillation in momentum space. The transformation of basis is
represented by the matrix Fκι, with the sites of coordinates nµ represented by the
index ι and the modes of coordinates kµ by the corresponding index κ. In the case of
periodical boundary conditions, according to the normalization convention defined
before, this matrix is given by

Fκι =
1

Nd
eı

2π
N

~k·~n.

It is easy to represent this explicitly in one dimension, where the index ι is simply
the site coordinate n = n1 and the index κ the momentum coordinate k = k1. In
this case we simply get

Fκι = Fkn =
1

N
eı2πkn/N .

Up to the normalization convention adopted, in any dimension d the Fourier
transformation is an unitary transformation and one can check that the transforma-
tion matrix is unitary, with a constant determinant, independent of the fields. In
other words we have that F† ∼ F−1 up to the normalization convention. For the
normalization that we adopt here we have in fact F−1 = NdF† and one can check
(problem 2.9.2) that

NdF †
ι′κFκι = Iι′ι,
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where Iι′ι = δι′ι is the unit matrix. Again, this is just a consequence of the orthogo-
nality and completeness relations satisfied by the mode functions. One can get the
transformation to become truly unitary with the normalization

F (u)
κι =

1

Nd/2
eı

2π
N

~k·~n.

As we shall see later on, in the quantum theory it will be necessary to consider
the determinant of this transformation. Since the transformation is linear its de-
terminant is a constant, in the sense that it does not depend on the fields. One
can easily show in the one-dimensional case (problem 2.9.3) that, with our usual
normalization, we have

det(F) =

{
N−N/2 ı(N+2)/2 if N is even, and
N−N/2 ı(1−N)/2 if N is odd,

(2.9.1)

while for the inverse transformation we have det(F−1) = 1/ det(F), naturally. For
larger dimensions the calculation is more complex but the result still has the all-
important property that it does not depend on the fields.

Problems

2.9.1. Write explicitly the matrix F in the one-dimensional case d = 1 for the fol-
lowing lattice sizes: N = 2, N = 4 and N = 6. Write also the matrix for the
two-dimensional case d = 2 with N = 2.

2.9.2. If F is the Fourier matrix with our usual normalization and I is the unit matrix,
show that F−1 = NdF†, that is, show that

NdF†F = I.

2.9.3. Calculate the determinant of F in the one-dimensional case, for an arbitrary
N , obtaining the result given in equation (2.9.1).

2.9.4. (⋆) Calculate the determinant of F in the two-dimensional case, for an arbitrary
N .

2.10 External Sources and Green Functions

In this section we will introduce a new fundamental element, still in the context of
the classical theory. This is the concept of an external source for the field. This new
object will have great importance also in the quantum theory. In our paradigmatic
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model, the theory of the free scalar field, the introduction of a dimensionless external
source j is implemented by the addition of a new term to the action, which becomes

S0[ϕ] =
1

2

∑

ℓ

(∆ℓϕ)
2 +

α0

2

∑

s

ϕ2(s)−
∑

s

j(s)ϕ(s). (2.10.1)

The external source is a given function of the sites, over which we make no restric-
tions except that it have finite values on finite lattices. Our objective here is to
determine how the introduction of this new term affects the classical solutions of
the theory.

First of all, it is necessary to note that the introduction of this term, which is
not necessarily positive, changes the local minima of the action without, however,
causing it to become unbounded from below. It is easy to see that the action
still has a global lower bound in the case in which j is a constant over the whole
lattice and we adopt periodical boundary conditions, because in this case we have
discrete translation invariance in the model. Under these conditions one can show
(problem 2.10.1) that the minimum of the action must be achieved for a constant
field. In this case the derivatives of the field, which can only contribute positively
for S0, are zero and the corresponding term of S0 assumes its minimum. So long as
α0 is positive, the second-degree polynomial that remains in the actions certainly
has a lower bound, which is located at ϕ = j/α0. Note that, due to the adoption of
periodical boundary conditions, it is essential that α0 be strictly positive, for in the
case α0 = 0 there is no lower bound for S0. In this case we may make S0 → −∞
taking a constant ϕ over the whole lattice and making its value go to ±∞, depending
on the sign of

∑
s j(s). This is just another consequence of the fact that the α0 = 0

model has a zero mode on the torus.

Even for an arbitrary function j(s), so long as it is finite, it is still true that there
is a global minimum of the action, although in this case it is not so immediate to
find it. This is due to the fact that, in order to make infinitely negative the only
term of the action that can be negative, it is necessary to make ϕ tend to ±∞ at one
or more points. However, in this case the quadratic terms at each site will always
tend to +∞ faster than the corresponding linear terms can tend to −∞. Due to
this it is not possible to make S0 tend to −∞ by any changes of the fields, but
only to +∞, which implies that S0 has a lower bound. It is, however, possible to
show rigorously that the action has a lower bound so long as α0 > 0, rewriting it in
momentum space and completing a square (problem 2.10.2).

We can find the classical solution in the presence of the external source using the
principle of minimum action, as we already did before for the free theory without
external source. If we make an infinitesimal variation δϕ(s) of the fields, possibly
different at each site, the corresponding variation of the action will be given by

δS0 = δ

[
1

2

∑

ℓ

(∆ℓϕ)
2 +

α0

2

∑

s

ϕ2(s)−
∑

s

j(s)ϕ(s)

]
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=

[
∑

ℓ

(∆ℓϕ)δ(∆ℓϕ) + α0

∑

s

ϕ(s)δϕ(s)−
∑

s

j(s)δϕ(s)

]

=
∑

s

[
∑

µ

(∆µϕ)∆µ(δϕ) + α0ϕ(s)δϕ(s)− j(s)δϕ(s)

]

=
∑

s

{
−
[
∆2ϕ(s)

]
δϕ(s) + α0ϕ(s)δϕ(s)− j(s)δϕ(s)

}

=
∑

s

δϕ(s)
[
−∆2ϕ(s) + α0ϕ(s)− j(s)

]
,

were we made the “integration by parts” for periodical boundary conditions as was
already explained before in section 2.1. If we now impose that δS0 = 0 for any

δϕ(s), we obtain the equation of motion

−∆2ϕ(s) + α0ϕ(s)− j(s) = 0 ⇒[
−∆2 + α0

]
ϕ(s) = j(s).

This is the non-homogeneous version of the equation of motion obtained before
for this same model, where the non-homogeneous term is the external source. We
can find the general solution of this equation using the usual techniques of the theory
of linear differential equations. The general solution of a non-homogeneous linear
equation is always obtained as the sum of the general solution of the homogeneous
equation with a particular solution of the non-homogeneous equation. However, we
are not interested here in writing explicitly the general solution, but rather in finding
the solution for the particular type of boundary condition that we adopted. This
solution can be obtained by the use of the finite Fourier transforms. In order to do
this, we write the field and the external source in terms of their Fourier transforms
as

ϕ(~n) =
∑

~k

e−ı 2π
N

~k·~nϕ̃(~k),

j(~n) =
∑

~k

e−ı 2π
N

~k·~n ̃(~k).

The substitution of these expressions in the equation of motion (2.1.3) result in

∑

~k

ϕ̃(~k)(−∆2 + α0)e
−ı 2π

N
~k·~n =

∑

~k

e−ı 2π
N

~k·~n ̃(~k).

Since the exponentials are eigenfunctions of the Laplacian with eigenvalues given by
−ρ2(~k), as we saw in equation (2.7.2), we obtain

∑

~k

e−ı 2π
N

~k·~n
{
ϕ̃(~k)

[
ρ2(~k) + α0

]
− ̃(~k)

}
= 0.
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Since the exponentials form a complete set of functions, in order for the linear
superposition to be zero it is necessary that all the coefficients be zero, and from
this we conclude that, for all ~k,

ϕ̃(~k)
[
ρ2(~k) + α0

]
= ̃(~k).

In this way the differential equation reduces to an algebraic equation for the Fourier
components of the field. The solution may now be written explicitly both in momen-
tum space and in position space, in this second case by means of a simple inverse
transformation,

ϕ̃(~k) =
̃(~k)

ρ2(~k) + α0

,

ϕ(~n) =
∑

~k

e−ı 2π
N

~k·~n ̃(~k)

ρ2(~k) + α0

.

We see in this way that it is possible to find the exact form of the classical
solutions of the free theory in the presence of arbitrary external sources. The form
of the solutions in momentum space is very simple, but it is not so easy to visualize
the solutions in position space, because in this case the solutions are written as
superpositions of all the Fourier modes. In order to be able to visualize the solutions
in position space, we will examine a particularly simple case which is, however, of
extreme importance. This is the case of an external source which is zero at all sites
except one. We refer to this external source as a point source or as a point charge, a
reference to its analogy with the familiar case of electrostatics. We write the point
source of magnitude j0 located at the site ~n′ in the form

j(~n) = j0δ
d(~n, ~n′),

where a Kronecker delta function appears. The finite Fourier transform of this point
source is given by

̃(~k) =
1

Nd

∑

~n

eı
2π
N

~k·~nj0δ(~n, ~n
′)

=
j0
Nd

eı
2π
N

~k·~n′

.

The solution of the classical theory in momentum space may now be written as

ϕ̃(~k) = j0
1

Nd
[
ρ2(~k) + α0

]eı 2πN ~k·~n′

,

and the solution in position space reduces to

ϕ(~n) = j0
∑

~k

1

Nd
[
ρ2(~k) + α0

]e−ı 2π
N

~k·(~n−~n′).
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We may simplify a little these expressions by choosing the position ~n′ = ~0 for
the point source, which can always be done by means of an adequate choice of the
intervals of variation of the integer coordinates of the sites. These solutions represent
the response of the system to the presence of a point source. The function of the
momenta that appears in these solutions,

g̃(~k) ≡ 1

Nd
[
ρ2(~k) + α0

] ,

is called the propagator or the Green function of the system, written in momentum
space. Its finite inverse Fourier transform, which can be written as

g(~n− ~n′) =
∑

~k

1

Nd
[
ρ2(~k) + α0

]e−ı 2π
N

~k·(~n−~n′),

is the Green function in position space, the response of the theory to the presence
of a unit point source, with j0 = 1. Observe that this is a kind of double inverse
transform, where the two factors exp(−ı2π~k · ~n/N) and exp(ı2π~k · ~n′/N) appear,
since in general the function g is a function of two points, g(~n, ~n′). The fact that
g is a function only of the difference ~n − ~n′ is a specific property of the periodical
boundary conditions, for which we have discrete translation invariance on the lattice.
These lattice versions of the Green functions are both dimensionless. Our solutions
for the point charge may now be written as

ϕ̃(~k) = j0g̃(~k)e
ı 2π
N

~k·~n′

,

ϕ(~n) = j0g(~n− ~n′),

which, for ~n′ = ~0, simplify to

ϕ̃(~k) = j0g̃(~k),

ϕ(~n) = j0g(~n).

In addition to this, the solution for an arbitrary external source in momentum space
may now be written as

ϕ̃(~k) = Nd̃(~k)g̃(~k), (2.10.2)

and the corresponding solution in position space, with a little more work (prob-
lem 2.10.3) and the use of the orthogonality and completeness relations, as

ϕ(~n) =
∑

~n′

j(~n′)g(~n− ~n′). (2.10.3)

Let us consider quickly the continuum limit of this expression. It is easy to verify
(problem 2.10.4) that, in order for the complete action in the continuum limit to be
written as
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Figure 2.10.1: Periodical Green function in the case d = 1.

S0[φ] =

∫
ddx

{
1

2

∑

µ

[∂µφ(~x)]
2 +

m2
0

2
φ2(~x)− J(~x)φ(~x)

}
(2.10.4)

it is necessary that the dimensionfull version of j be defined as J = a−(d+2)/2j. On
the other hand, we may define the dimensionfull version of g as G = a2−dg and,
since with our normalization the functions and their Fourier transforms have the
same dimensions, G̃ = a2−dg̃. With these definitions we have that

G̃(~k) =
1

Ld
[
ρ2(~k)/a2 + α0/a2

] ,

so that, in the continuum limit, the expression for the Green function is

G̃(~p ) =
1

V (p2 +m2
0)
,

where, as we already saw in section 2.7, ρ2(~k)/a2 → p2, with ~p = 2π~k/L, and
α0/a

2 → m2
0. In this way one can verify (problem 2.10.5) that our expression for
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Figure 2.10.2: Periodical Green function in the case d = 2.

the solution in the presence of an arbitrary external source in terms of the Green
function becomes, in the continuum limit,

φ(~x) =

∫
ddx J(~x′)G(~x− ~x′). (2.10.5)

We see therefore that G is in fact the Green function of the non-homogeneous equa-
tion of motion in the usual sense in which the term is used in the theory of linear
differential equations. Note that, due to the existence of a zero mode on the torus,
for which ρ2 = 0, this Green function is well defined only if α0 > 0.

We may acquire an intuitive idea of how the response of the system to the
presence of a point source looks, in position space, drawing a few graphs of this
function around the point where the external point source is located. Figure 2.10.1
shows the function g for dimension d = 1, mass parameter α0 = 3 and external
source j0 = 1 on a lattice with N = 25. We see here that the field assumes non-zero
values along all the lattice, with a maximum at the position of the source. This is
the solution which we denominate qualitatively as the “circus tent”, given its form.
The same happens in larger dimensions. A similar example for d = 2 can be found
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Figure 2.10.3: Periodical Green function in the case d = 3.

in figure 2.10.2, for the same values of α0, N and j0. In this case the functions falls
off in a somewhat more pronounced way when we go away form the position of the
point source. This is due to the larger number of neighbor sites that are connected
by links to the site there the point source is located. This effect becomes more even
pronounced in larger dimensions. In the graphs contained in figures 2.10.3 and 2.10.4
one can see similar examples for d = 3 and d = 4, still with the same values of α0,
N and j0.

Note that the response of the system to an external point source is progressively
more localized in the immediacy of the position of the source, as the dimension
of space-time increases. For d = 3 in the continuum limit in infinite space, with
appropriate boundary conditions and m0 = 0, which is possible in this case due
to the different boundary conditions, the solution becomes the Coulomb solution,
the electrostatic potential of a point charge. In all cases the maximum value of
the solution is proportional to j0 and, in the limit in which j0 goes to zero, the
solution becomes identically zero, which is the solution that we discussed before for
the theory without external sources. We see that the response of the system consists
of a deformation of the field centered at the position of the charge, with an intensity
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Figure 2.10.4: Periodical Green function in the case d = 4.

proportional to its magnitude and, in general, a finite range. This range depends
on α0, as one can verify by drawing other graphs of the functions (problem 2.10.6),
a fact that will be of great importance in the quantum theory.

Problems

2.10.1. Show that, on a finite lattice with periodical boundary conditions and a con-
stant external source j0, the minimum value of the action S0[ϕ] is achieved for
a field ϕ(s) = ϕ0, which is constant over the whole lattice.

2.10.2. (⋆) Show that the action S0[ϕ] given in equation (2.10.1) has a lower bound,
for any finite external source j, so long as α0 > 0. In order to do this, write
the action in terms of the Fourier transforms ϕ̃(~k) of the field and ̃(~k) of the
external source, then complete a square in order to show that the dependence
on the field is contained solely within a manifestly positive term of the resulting
expression for the action. Determine also the value of the lower bound as a
function of the external source.
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2.10.3. Show, starting from the general solution in momentum space given in equa-
tion (2.10.2), using the expressions for the direct and inverse Fourier trans-
forms, and using the orthogonality and completeness relations, that the general
solution in position space is the one given in equation (2.10.3).

2.10.4. Show, using the definition of the dimensionfull field in terms of the dimension-
less one, as well as the other scaling relations, that the dimensionfull external
source must be given by J = a−(d+2)/2j so that the action in the continuum
limit may be written as shown in equation (2.10.4).

2.10.5. Starting from equation (2.10.3), and using the necessary scaling relations, show
that the general solution in position space in the continuum limit is indeed the
one given by equation (2.10.5).

2.10.6. (⋆) Write a program to calculate the Green function g(n) in position space in
one dimension. Use it to plot a series of graphs of g like the one in the text,
with N = 25, but using various values of α0 between 1 and 10, so as to verify
in a quantitative way how the range of the deformation of the field due to the
presence of the external source varies as a function of this parameter.

2.11 Sources and Fixed Boundary Conditions

We may introduce external sources in systems with fixed boundary conditions, in the
same way as we did for periodical boundary conditions. The form of the action of
the free theory in this case is the same as before, as well as the form of the equation
of motion,

(−∆2 + α0)ϕ(~n) = j(~n). (2.11.1)

The difference is that, in order to solve the equation in this case, we should use
the basis of eigenfunctions fN

~k
(~n) which is appropriate to this type of boundary

conditions,

fN
~k
(~n) = 2d/2 sin

(
πk1n1

N + 1

)
. . . sin

(
πkdnd

N + 1

)
,

which satisfy the orthogonality and completeness relations

∑

~n

fN
~k
(~n)fN

~k′
(~n) = (N + 1)dδd(~k,~k′),

∑

~k

fN
~k
(~n)fN

~k
(~n′) = (N + 1)dδd(~n, ~n′).

The functions ϕ(~n) and j(~n) may be written in terms of their transforms as
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ϕ(~n) =
∑

~k

fN
~k
(~n)ϕ̃(~k),

j(~n) =
∑

~k

fN
~k
(~n)̃(~k).

Substituting these expressions in (2.11.1) we have

(−∆2 + α0)
∑

~k

fN
~k
(~n)ϕ̃(~k) =

∑

~k

fN
~k
(~n)̃(~k).

Since the functions fN
~k
(~n) are eigenvectors of the Laplacian with eigenvalues −ρ2f ,

we have
∑

~k

fN
~k
(~n)
[
ϕ̃(~k)(ρ2f + α0)− ̃(~k)

]
= 0.

We see therefore that, once more, the differential equation reduces to an algebraic
equation for the components of the field in momentum space, in fact, the very same

equation we had before,

ϕ̃(~k)
[
ρ2f (

~k) + α0

]
= ̃(~k),

the sole difference being that both the transforms and the eigenvalues ρ2f relate now
to the eigenfunctions of the Laplacian with fixed boundary condition. We have now
solutions that are similar to the ones we had before,

ϕ̃(~k) =
̃(~k)

ρ2f (
~k) + α0

,

ϕ(~n) =
∑

~k

fN
~k
(~n)

̃(~k)

ρ2f(
~k) + α0

.

For the case of the point source we have for the external source and its transform

j(~n) = j0δ
d(~n, ~n′),

̃(~k) =
1

(N + 1)d

∑

~n

fN
~k
(~n)j0δ

d(~n, ~n′)

=
j0

(N + 1)d
fN
~k
(~n′),

which implies that the solutions of the classical theory may be written as

ϕ̃(~k) = j0g̃f(~k)f
N
~k
(~n′),

ϕ(~n) = j0
∑

~k

g̃f(~k)f
N
~k
(~n′)fN

~k
(~n),
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Figure 2.11.1: Green function with fixed boundary conditions for d = 1.

and the quantity that we will call the propagator or the Green function, in momen-
tum space, is given by

g̃f(~k) =
1

(N + 1)d
[
ρ2f (

~k) + α0

] ,

while the Green function in position space is, as in the periodical case, defined as a
double inverse transform of this function, involving the points ~n e ~n′,

gf(~n, ~n
′) =

∑

~k

fN
~k
(~n′)fN

~k
(~n)

(N + 1)d
[
ρ2f (

~k) + α0

] .

Just as in the periodical case, this function represents the response of the system to
the presence of a unit external source, with j0 = 1. Note that in this case gf is not a
function only of the difference ~n−~n′ but rather of ~n and ~n′ separately, because with
fixed boundary conditions there is no discrete translation invariance on the lattice.
We may also, just as in the periodical case, write the general solution for ϕ(~n) in
terms of the Green function,
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Figure 2.11.2: Green function with fixed boundary conditions for d = 2.

ϕ(~n) =
∑

~n′

j(~n′)gf(~n, ~n
′).

The expression for the Green function in position space may be somewhat sim-
plified if we choose the position of the source right in the middle of the lattice, so
that n′ = (N +1)/2, which can be done without difficulty for the case of odd N . In
figures from 2.11.1 to 2.11.4 we show the Green function on a lattice with N = 23
and this value of n′, in dimensions from 1 to 4. As one can see, the behavior is
similar to that of the case of periodical boundary conditions, with the exception
that in our case here the functions are always zero at the boundary.

Using the usual rescalings of all quantities in terms of the lattice spacing a, we
may write dimensionfull versions of all these quantities. As before, we define the
dimensionfull version G̃f in momentum space as G̃f = a2−dg̃f , resulting in

G̃f (~k) =
1

Ld
[
ρ2f (

~k)/a2 + α0/a2
] ,
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Figure 2.11.3: Green function with fixed boundary conditions for d = 3.

so that in the continuum limit we obtain once more

G̃f (~pf) =
1

V
(
p2f +m2

0

) ,

where in this case we have ~pf = π~k/L.
Note that in this case, just as in the case of periodical boundary conditions, the

Green function in momentum space always has the same form when written in terms
of the eigenvalues of the Laplacian, be it on finite lattices, in the continuum inside
a finite box or in infinite space. What changes is the number and character of these
eigenvalues, of which there is a finite number on finite lattices, a discrete infinity in
the continuum inside a finite box, and an uncountable, continuous infinity in infinite
space. On the other hand, the Green functions in position space change significantly
when one passes from one case to the other. Hence, we see that the transformation
by the eigenfunctions of the Laplacian effectively filters out the detailed effect of the
boundary conditions and of the finite volume of the box over the physically relevant
results of the theory, and that these effects remain manifested in momentum space
only by the existence of an infrared cutoff in finite boxes, which is removed when
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Figure 2.11.4: Green function with fixed boundary conditions for d = 4.

we go to infinite space. This fact will be of particular importance for the correlation
functions to be defined in the quantum theory, of which the Green function discussed
here is an example.

Clearly, despite the fact that the imposition of the condition ϕ = 0 at the border
changes the detailed form of the results of the theory in position space, both on
finite lattices and in the continuum limit inside a finite box, it does not prevent us
from seeing the basic structure of the continuum theory in infinite space, so long
as we use the representation of the theory in momentum space, when we deal with
the theory on finite lattices. In addition to this, the fact that the Green function
is a function of the coordinates kµ only through the combination ρ2f (

~k) is clearly
related to the underlying rotational invariance of the Euclidean theory in infinite
space which, in this form, may be indirectly detected from within a finite continuous
box or even from within the confines of a discrete lattice. These two properties allow
us to treat models in a very specific and practical way, in any particular set of boxes
and lattices that we may be using, without loosing sight of the invariances that the
theory should have when one goes to infinite continuous space.
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Chapter 3

Quantum Field Theory

In this chapter the basic definition of the quantum theory of fields will be presented,
following what are essentially traditional lines. The point of view adopted here
regarding the nature of the quantum theory is essentially the traditional one, on
a conceptual level, although the mathematical tools used are not those commonly
employed in the usual presentation of the subject. It is important to point out that
this point of view is provisional, and will have to be changed, to some extent, later
on.

Later analysis will show that this definition is not complete, due to the funda-
mental difficulties in dealing with the concepts of the physical observables and of
the process of measurement, within the structure of the theory. Due to this some
of the statements made here are provisional and will have to be somewhat changed
later, such as the statement that the set of n-point correlation functions of a model
determine all the physics of the model, which is a standard point of view of the
traditional approach to the subject.

The formal relation of the theory with the mathematical structure of the sta-
tistical mechanics of lattice systems will be pointed out. A detailed mathematical
development leading to the tools needed for the solution of the Gaussian model
will be presented. This simple model will be solved in detail, including a complete
discussion of its correlation functions. The same tools and ideas used here in the
solution of this model will also be of much use in the future, for dealing with more
complex models by means of approximative schemes such as perturbation theory,
the mean-field method and the Gaussian approximation.

The introduction of external sources in the quantum theory will also be discussed
in detail. These sources are interpreted as representations of classical objects within
the theory, and will lead to the concept of the functional generators of the correlation
functions, and ultimately to the important concept of the effective action. Unlike the
usual treatment, all these objects will be defined directly on the Euclidean lattice.
The physical interpretation of the effective action, as well as its relation to the
classical limit of the theory, will be discussed in detail.

The main objective of this chapter is to establish that the quantum theory of
fields can be defined and analyzed on the Euclidean lattice on essentially traditional

71
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lines, but in a way that is mathematically more solid, constructive and precise than
the traditional approach. We will see that using this formalism one can recover
all the results of the traditional formalism, in all that concerns the definition and
calculation of the set of correlation functions of a given model.

The first two sections of this chapter are of a rather qualitative character, and
constitute a survey of the important definitions and known phenomenological facts
about the mathematical structure of the theory. The subsequent sections turn to
a solid technical approach leading to the solution of the Gaussian model. Unlike
the rest of this book, the last two sections of this chapter are developed in quite a
general way, with applicability by no means limited to the Gaussian model.

3.1 Definition of the Quantum Theory

In this section we will define the mathematical object which we will denominate
quantum field theory and enumerate some of its most important properties in a purely
descriptive way. We will also mention a few points of fundamental importance for
the physical interpretation of the theory. We will not make in this section any effort
to justify these points of physical interpretation or to derive the properties of the
theory from its definition. Essentially, all the rest of this book will be dedicated to
such activities, and in future volumes we intend to explore other specific models and
examples that may serve as illustration, with the objective of clarifying progressively
the structure of the theory. With regard to this section, we will consider its objectives
achieved if it becomes clear along it that a complete definition exists and that this
definition is constructive, being given very explicitly by means of an algorithm,
which specifies rules of procedures that, at least in principle, allow us to answer any
questions formulated within the structure of the theory.

For the definition of the quantum theory of fields, we start from the same dis-
crete mathematical structure in which we obtained the classical theory. Once again
we will use the action S0 to illustrate the definition. Is a way similar to that used
to define the classical theory, we will first define a finite quantum theory on each
finite lattice, and only after that consider the limit N → ∞. As we shall see, a
very important point is that, unlike the case of the classical theory, in this case it
will not be necessary to introduce a dimensional scale, external to the model, when
we take the continuum limit. We will define the quantum theory on each finite
lattice of size N as a finite statistical model on that lattice. The quantities of more
immediate physical interest, the observables of the theory, will be defined as statis-
tical averages of functionals of the field within this statistical model. The statistical
model establishes that all the possible configurations of the fields contribute to the
statistical averages, with relative probabilities defined by the action functional of
the model. These configurations of the fields are simply all possible field-functions
that we can define on the lattice, which can be described either directly in position
space or by means of their Fourier components in momentum space. The relative
statistical weights are given by a Boltzmann factor involving the action functional.
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For example, in the case of the free scalar field we have for these factors

e−S0[ϕ].

The set of field configurations with these associated probabilities is referred to as
the ensemble of configurations or as the distribution of configurations of the model.
The definition would be the same for any other model, with any number and types
of fields, defined by some action functional S. Given a certain functional O[ϕ] of
the field, the expectation value of the observable associated to it on a lattice of size
N is defined as the average

〈O〉N =

∫ ∞

−∞

∏

s

dϕ(s) O[ϕ] e−S0[ϕ]

∫ ∞

−∞

∏

s

dϕ(s) e−S0[ϕ]

, (3.1.1)

where the integration element is

∏

s

dϕ(s) =
N∏

n1=1

. . .
N∏

nd=1

dϕ(~n)

and the integral extends over all possible values of the field, on all the sites. In our
case here, the value of the field at each site ranges over the whole real line. This
is a ratio of two multiple integrals of large but finite dimension, being therefore a
well-defined and familiar mathematical object. The conditions imposed before on the
action and the fact that it appears as the argument of a decreasing exponential imply
that, for all reasonably well-behaved functionals O, we do not need to worry about
the convergence of such integrals on finite lattices. We see now that the conditions
imposed on S[ϕ] so that it may be used in the role of an action functional have
the objective of making sure that these integral exist for a large set of observables,
including those of physical interest for the theory of fields. From now on we will
simplify a little the notation of these integrals, denoting

∏
s dϕ(s) simply by [dϕ].

In more general cases, in which the field may have several components, this notation
will refer to the integration over all independent field components at all the sites.
For example, if we have a field ~ϕ with several components ϕi, the complete definition
would be

[dϕ] ≡
∏

s

∏

i

dϕi(s).

Usually we will also omit the extremes of integration, since it is always understood
that the integrals extend over the full image of the field functions. The structure in-
cluding the functional integration element and the distribution of statistical weights,
in which the observable is integrated in order to produce the expectation value,
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[dϕ] e−S0[ϕ]

∫
[dϕ] e−S0[ϕ]

,

defines a kind of measure over the space of configurations and is usually referred
to as the measure of the model defined by the action S0, or as the measure of S0.
As we will see later, this statistical structure, be it described as an ensemble, as a
distribution or as a measure, constitutes in fact a representation of the vacuum state

of the model in the context of the quantum theory.
Trivial examples of this kind of integration include the observation that the

denominator of our definition in equation (3.1.1) guarantees that, if O[ϕ] ≡ 1, then

〈O〉N =

∫
[dϕ] 1 e−S0[ϕ]

∫
[dϕ] e−S0[ϕ]

= 1,

for all values of N , which establishes the normalization of the expectation values.
We also have, in the free theory defined by S0, that if O[ϕ] = ϕ(s0) for a certain
given site s0, then

〈O〉N =

∫
[dϕ] ϕ e−S0[ϕ]

∫
[dϕ] e−S0[ϕ]

= 0,

also for all values of N , as can be easily verified (problem 3.1.1). Another example,
and a far less trivial one, which is of great interest, would be the expectation value for
the choice O[ϕ] = S0[ϕ], which we will calculate in detail later on. The observables
of greater interest to us will be those defined as the product of a finite number of
values of the field at different sites,

O[ϕ] = ϕ(~n1) . . . ϕ(~nn).

The expectation values of these observables will be refereed to as the n-point func-
tions or as the correlation functions, which we shall denote by

gN(~n1, . . . , ~nn) = 〈ϕ(~n1) . . . ϕ(~nn)〉.

Their values define completely most of the physical characteristics of the models
defined by each action functional. In the most general case we will be interested
in functionals O[ϕ] that will be finite-order polynomials on the fields. One of the
examples that we gave above, O[ϕ] = ϕ(s), is the one-point function and its expec-
tation value 〈ϕ〉 is the expectation value of the field, which will have an important
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Figure 3.1.1: Periodical two-point correlation functions for d = 1.

role to play in a future volume, when we discuss the phenomenon of spontaneous
symmetry breaking.

The two-point function 〈ϕ(s1)ϕ(s2)〉, which we will also call the propagator of
the theory, has a particularly important role to play. It is the simplest observable
that gives us relations between different sites of the lattice, which may be arbitrarily
distant from one another. Hence, it is the simplest observable by means of which
we may look at propagation phenomena along the lattice. As we shall see later on in
specific examples, in general this function decreases when we increase the distance
between the two sites involved, measured in discrete terms, that is, in terms of the
minimum number of links that it is necessary to cross in order to go from one site
to the other. We say that the two-point function measures the correlations between
the values of the field associated to the two sites, and that these correlations decay
with the distance along the lattice.

This decaying behavior of the two-point function may be, in general, of one of
two different types, polynomial or exponential. If the decay is polynomial we say
that there are in the model correlations with an infinite range, and that it does not
establish a scale of distances. However, if the decay is exponential, then the rate of
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Figure 3.1.2: Periodical two-point correlation functions for d = 2.

decay of the two-point function does establish a scale of distances that is intrinsic to
the model. In this case the sites which are the immediate neighbors of a given site are
significantly correlated to it but, since the value of the function decays very fast for
large distances, beyond a certain distance the sites become completely uncorrelated
with the given site. Hence, this two-point correlation function establishes an intrinsic
scale in the theory, given by the discrete distance within which the values of the fields
at two different sites are appreciably correlated.

On a finite periodical lattice one can easily see this, because in this case the
finite volume of the box causes the polynomial-decay cases not to decay at all over
the finite extent of the lattice. For example, figure 3.1.1 shows two propagators of
the free theory defined by S0 in dimension d = 1 on a lattice with N = 25, one
with infinite-range correlations, for which the correlations do not decay at all, and
another one with finite-range correlations that clearly establishes a region of strong
correlations of a given site with other sites which are close to it in terms of number
of links. In these graphs the correlation functions have been normalized so as to
be equal to one at the origin. The graphs were obtained calculating the correlation
function in the case α0 = 5 to illustrate the exponential decay, and in the case
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Figure 3.1.3: Periodical two-point correlation functions for d = 3.

α0 = 10−66 to illustrate the polynomial decay because, due to the existence of a zero
mode on the torus, we cannot use the value zero for α0. Later on we will discuss
how to make such calculations.

One can show that in d = 1 the quantum theory of fields defined by S0 is for-
mally identical to the quantum mechanics of the harmonic oscillator (problem 3.1.2).
However, the situation with the correlations in larger dimensions is similar to this
one. A similar example with d = 2 can be found in figure 3.1.2, for the same value
of N , where the same values of the parameter α0, and hence of the range of the
correlations, were used. The difference between the two correlation functions is a
bit more pronounced in this case, and it becomes even bigger in larger dimensions.
In the graphs contained in figures 3.1.3 and 3.1.4 one can see similar examples for
d = 3 and d = 4. Note the clear similarity of these graphs with the graphs of the
Green functions of the classical theory, which were examined in section 2.10. In
fact, as we shall see later on, in the free theory the two-point correlation function is
always equal to the Green function of the classical theory, in any dimension.

We will refer to this distance, within which the correlations are appreciable, as
the range of the correlations or as the correlation length. If the decay of the two-
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Figure 3.1.4: Periodical two-point correlation functions for d = 4.

point function is polynomial and not exponential, we say that the correlations have
an infinite range or that the model has long-range correlations. In this case no
length scale intrinsic to the theory is established. This is only the case, of course,
if the correlations are long-range for all the different fields that are part of a given
model. It suffices that one of the fields display an exponential decay of its two-point
correlations for an intrinsic length scale to be defined in the model. Usually we will
always have at least one field with finite-range correlations, thus providing the model
with an intrinsic scale. Observe that in this case we may use the correlation length
of this field as the physical unit of length, measuring in terms of it, for example, the
size L of the lattice and the lattice spacing a. In this way we can define a system of
physical units that is intrinsic to the model and not external to it.

As we will discuss in more detail later, most of the physical content of the theory
will be encoded into the nature of the fields included in the models and in the nature
and behavior of the set of n-point correlation functions among these fields. They
will determine whether or not we have particles that in fact propagate dynamically,
whether or not these particles have non-zero masses, whether or not these particles
interact with each other in scattering processes, whether or not there are bound
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states and what are their properties, in short, all the elements needed to determine
both the nature of the structure of matter and the nature of the physical interactions
among the elementary entities of which it is composed. Another correlation function
of particular importance, besides the propagator, is the four-point function, because
it will be related to the existence or not of interactions among particles within the
theory. For the time being we cannot give examples of this, because the free theory
we are using as an example, exactly because it is a theory of free fields, does not
contain interactions between particles. This means that we may calculate the four-
point function in this model, but it will decompose into sums of products of pairs of
two-point functions. Later on we will present a complete analysis of the structure
of the correlation functions in the free theory.

Having defined the quantum theory of our model on each finite lattice, we are
now in a position to define completely the quantum field theory associated to this
action, in the continuum limit. Since it is the n-point functions that define the
physics of the model, it would suffice to define them in this limit, but we can do this
in a somewhat more general form, for an arbitrary observable. We say then that the
values of all observables of the quantum field theory in the continuum limit are the
values obtained by means of the limits

〈O[ϕ]〉 = lim
N→∞

〈O[ϕ]〉N .

To solve exactly a quantum field theory means to manage to calculate exactly these
limits for all observables of physical interest. The quantum theory of the model
in question will be well-defined if these limits exist and are finite. Note that it is
not necessary that the limits be finite for all possible observables, but only for that
set, say the n-point functions, that define completely the physics of the model. In
addition to this, we will see later on that, in order for these limits to exist and
have acceptable physical properties, in general it is necessary to impose additional
conditions on the dimensionless parameters that appear in the model, regarding
their behavior in the limit.

One of the especially important conditions to satisfy in the continuum limit is
that the correlation length of the model have a non-zero limit, because otherwise we
would have no correlations at all left in the theory after the limit, which would thus
become physically meaningless. A zero correlation length in the limit corresponds to
the existence of particles with infinite physical mass m, a case in which there is no
possibility of propagation in the theory, since the movement of such particles would
require infinite energy. Usually we will impose that at least one of the correlation
lengths of the model have a finite and non-zero limit, since it should define in the
limit the physical scale associated to the intrinsic system of physical units on the
theory. All other correlation lengths must be non-zero (but possibly infinite) in the
limit. In order to put it in a more precise way, if ξ is the dimensionless correlation
length and χ = aξ = 1/m the corresponding dimensionfull correlation length, in
general we will impose that, in the limit, the ratio χ/L have a finite and non-zero
limit, or at least that the ratio a/χ go to zero in the limit, characterizing it as a
continuum limit.
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χ

Figure 3.1.5: A sequence of lattices with decreasing lattice spacing.

Since χ defines the unit of length, it makes no sense to impose any conditions on
its value, but only on ratios between it and other lengths. The condition with the
most direct physical meaning would be that, if there is more than one parameter
with dimensions of mass in a particular model, then the ratios between these should
have finite and non-zero limits. In this way it would also be simpler to conceive
limits in which the product of L by any of these parameters would go to infinity,
corresponding to models defined in infinite, limitless space. In the simpler models,
with only a single massive field, we have only the mass of the field and the size of
the lattice to consider, of course, but conceptually the situation does not change.
In figure 3.1.5 we show a sequence of superimposed lattices, with decreasing lattice
spacings, together with a correlation length which is kept constant, hoping that this
illustration will help the reader to visualize what should happen with the relation
between the lattice spacing and the correlation length in the continuum limit.

The calculation of these continuum limits, which are always constrained by one
or more conditions over the existing parameters, consists of two steps: first the
calculation of the integrals on finite lattices of arbitrary size, and then the calculation
of the limits for N → ∞ under the required constraints. Although these are clearly
defined mathematical operations, we will see that usually neither of them is easy to
realize. As we shall see, we are able neither to calculate the integrals in exact form
nor to take the limits in exact form except in the simplest model, the free theory,
which we use here as an example. As we shall show in detail, the theory of the
free scalar field can be solved exactly by the use of Fourier transforms. While the
calculation of these high-dimensional integrals is simply a task of great complexity,
which very quickly goes beyond our analytical possibilities, the calculation of the
continuum limits is a mathematical operation full of subtleties and surprises.

It is important to observe here that not all elements that appear in the math-
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ematical structure of the theory correspond to observables. In fact, the definition
of physical observable as statistical averages given here should be understood as a
provisional definition. While all physical observables must be statistical averages of
functionals of the fields as defined here, not all the possible statistical averages of
functionals of the fields will be interpretable as physical observables. For example,
although statistical averages of functionals of the field, 〈O[ϕ]〉, may be observables
according to our provisional definition, the field ϕ itself is not an observable. The
field is a random variable whose fluctuations constitute a representation within the
theory of the uncertainty principle or, to put it in a more general form, of the
observability limits of nature.

These fluctuations behave exactly like thermal fluctuations in statistical me-
chanics, but their physical interpretation is completely different. The real quantum
fluctuations of the theory are those that can be observed on the expectation values
of superpositions of the fields within finite boxes with non-zero extension in all di-
mensions of space-time, measured in successive times. These block variables are very
important for the physical interpretation of the theory, as we shall see in the next
chapter. They are related to additional restrictions on the nature of the quantities
that can be associated to observables of the theory. As we shall see later on, only
variables associated to superpositions within these blocks can in fact be observed.
Note that the Fourier transforms may be understood as a kind of weighted average
over the whole lattice, hence characterizing them as a certain type of block variable.
Therefore, the Fourier components of the fields are related in a more direct way with
the physical observables of the theory.

The content of the remaining part of this book may be classified in a rough way
as composed of two main parts. From the mathematical point of view it consists of
the discussion and development of methods and means of calculation of these ratios
between multiple integrals. From the physical point of view it consists of the devel-
opment of the physical interpretation of the elements of this mathematical structure.
In the remainder of this chapter the mathematical aspects will be addressed, which
will enable us to review the interpretation of the structure on the next chapter. In
future volumes we intend to consider the extension of these ideas to other types of
fields and will examine other quantum-field-theoretical models.

Problems

3.1.1. Show that in the theory of the free scalar field defined by S0 the expectation
value of the field ϕ(s0) at an arbitrary site s0 is zero. Use symmetry and parity
arguments to evaluate the necessary functional integrals, in particular the fact
that the action S0 is invariant by changes of sign of the field, ϕ → −ϕ, when
these are made in an homogeneous way over the whole lattice.

3.1.2. Starting from the action S0 for the free scalar field in one dimension in the
continuum limit,
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S0[φ] =

∫
dt

[
1

2
(∂tφ)

2 +
m2

0

2
φ2(t)

]
,

show that it is formally identical to the Euclidean action of the one-dimensional
harmonic oscillator of mass M and elastic constant K, described by a coordi-
nate X ,

S[X ] =

∫
dt

[
M

2
(∂tX)2 +

K

2
X2(t)

]
,

mapping the variables and parameters of one model on those of the other.
Show from this fact that the quantum theory of the free scalar field is formally
identical to the quantum mechanics of the one-dimensional harmonic oscillator,
that is, that one can map all the observables of one of these theories onto the
observables of the other.

3.1.3. Recalling problem 1.3.1, where one considers making α0 < 0, show that in this
case the integral

∫
[dϕ] e−S0

does not exist even on finite lattices, where it is just a finite-dimensional inte-
gral.

3.1.4. Show that, for ultra-local actions S, that is, actions that do not depend on
products of the fields at different sites, the correlation functions always factor
out in terms of the expectation values of the fields at single sites,

gN(~n1, . . . , ~nn) = 〈ϕ(~n1) . . . ϕ(~nn)〉 = 〈ϕ(~n1)〉 . . . 〈ϕ(~nn)〉.

3.2 Relation with Statistical Mechanics

The mathematical structure of quantum field theory, in the form in which it was
defined in section 3.1, is formally identical to the mathematical formalism used in
statistical mechanics for lattice systems. The mathematical difficulties that must be
faced in the calculation of the averages are the same in either case and, in fact, the
case d = 3 coincides completely with the formalism of the micro-canonical ensemble
of statistical mechanics. In the case d = 4, particularly because there is then the
additional issue of changing from Euclidean space to Minkowski space, we have only
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an analogy with respect to the physical aspects of the theory, however this analogy
is extremely useful as a guide for our physical intuition within quantum field theory.
Often concepts of statistical mechanics find use in quantum field theory and their
nomenclature is used for the corresponding mathematical elements in that theory,
but we should not loose sight of the great differences of physical interpretation that
exist between the two theories.

We will make here a few comparisons between terms and concepts of each theory,
relating each element of our structure to the corresponding elements of statistical
mechanics. We will also point out the main differences of interpretation between the
two theories, in addition to introducing some concepts that are of great importance
and usefulness. Without intending to develop the subject in detail or to show
objective evidences of the facts mentioned, we will try to describe the main facts
relating to the aspects of statistical mechanics that are most important for quantum
field theory, specially those related to the phenomenology of systems that display
phase transitions and critical behavior.

In statistical mechanics the lattice usually represents some real crystalline struc-
ture, which implies, in particular, that in this case there is a natural length scale in
the system, defined by the lattice spacing of this crystalline structure as measured
in terms of the atomic and molecular parameters of matter. The paradigmatic topic
for the use of the lattice in statistical mechanics is the study of crystalline sub-
stances with magnetic properties. In this case the fields ϕ(s) associated to each site
are representations of the spins of the components of matter, and of their magnetic
moments. In this context the quantity that plays the role of the action is the en-
ergy, represented by the Hamiltonian function H of the system of spins, the relative
statistical weights being given by the usual Boltzmann distribution exp(−βH [ϕ]),
where β = 1/(kT ) is the usual factor involving the temperature T of the system. A
simple model that is very popular for this type of study is the Ising model, in which
we have at each site a one-dimensional spin ϕ that can assume only two discrete
values, 1 and −1. The energy of the system is given by

H [ϕ] = −
∑

ℓ

ϕ(−)ϕ(+) − j
∑

s

ϕ(s).

In future volumes we will see that there are indeed close relations between this
model and the models of scalar fields in quantum field theory. Observe that this
Hamiltonian causes it to be energetically favorable for neighboring spins to have the
same sign, that is, for them to align with each other. The denominator that appears
in (3.1.1) corresponds in this case to the partition function of the statistical model,

Z =
∑

C

e−βH[ϕ],

where the indicated sum is over all the configurations C of the system, that is, all
possible combinations of 1 or−1 at all the sites of the lattice. This model was created
and is widely used for the study of critical phenomena in statistical mechanics, which
are associated to phase transitions in the materials. Processes such as the boiling
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of liquids and the spontaneous magnetization of certain metals and other materials
are examples of phase transitions. The Ising model can be solved without too much
difficulty in the case d = 1, but in this case it does not display critical behavior.
On the other hand, in any dimension equal to or greater than d = 2 it does display
critical behavior, but the exact solution of the model is unknown in the majority
of these cases. The case d = 2 is extremely special because it is one of the very
few models with critical behavior between two distinct phases that can be solved
exactly, under certain conditions. It is necessary to emphasize here that all these
models only display critical behavior in the N → ∞ limit, that is, when we have
extremely large lattices, as is the case for the real crystalline lattices of macroscopic
quantities of materials.

Models like these, that display critical behavior, will be of extreme interest for
quantum field theory. In the case of the Ising model the spins are discrete variables,
but it is also possible to define similar models with continuous variables, which will
be of even greater interest. One such example is the Heisenberg model, in which
we consider that there exists at each site a three-dimensional classical spin, that is,
a vector ~ϕ with three components and fixed modulus ϕ = 1. These are continuous
variables that span the two-dimensional sphere S(2), rather than discrete variables
as in the Ising model. In this case the Hamiltonian is given by

H [~ϕ] = −
∑

ℓ

~ϕ(−) · ~ϕ(+) − ~ ·
∑

s

~ϕ(s),

where the dot denotes the scalar product of vectors. As we shall see in future vol-
umes, this model also has close relations with the models of scalar fields of quantum
field theory. An important difference between this type of model and the Ising model
is that in this case H is invariant by a continuous set of symmetry transformations,
the set of three-dimensional rotations, while in the discrete Ising model H is invari-
ant by a discrete set of transformations, the sign reflections of the spins. In this
continuous case the partition function is not given by a discrete sum, but rather by
a functional integral

Z =

∫

S(2)

[dσ] e−βH[~ϕ],

where dσ is the area element of S(2). These models only display critical behavior
for d > 2, not for d = 2 or d = 1. In fact, it is a fairly well-established fact that in
d = 1 there are no models with couplings only between next neighbors that display
the long-range order which is characteristic of the type of critical behavior that is of
interest for us in quantum field theory. The same is true in d = 2 for models which are
invariant by continuous symmetry transformations, as is the case for the Heisenberg
model. The particular case of the Ising model in d = 2 is not an exception to this
rule, because in this very special case the invariance transformations are discrete,
not continuous.

The behavior of the Heisenberg models for d > 2 may be described in a qualitative
way as follows. The case of the Ising models is a little different due to the fact that
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Figure 3.2.1: Qualitative diagram of the magnetization as a function of β.

the variables are discrete, but all the fundamental facts relative to the behavior close
to the critical point are similar. First, we define a quantity ~M , which we refer to
here as the magnetization, which is simply the sum of all spins,

~M =
∑

s

~ϕ(s).

In the case of the quantum theory of fields, we would be more interested in the
average value of the fields over the lattice,

~ϕ =
1

Nd

∑

s

~ϕ(s),

which is basically the same quantity with a different normalization. We say that the
modulus of the average value of ~M is the order parameter of the system, because
its behavior characterizes the two phases in which the system can exist. For high
temperatures T , that is, for small β, the model has a phase that is denominated
symmetrical or disordered and that is characterized by the value

M = |〈 ~M〉| = 0

for the quantity shown, which we name the scalar magnetization M , where the
statistical average is defined by

〈 ~M〉 =

∫

S(2)

[dσ] ~M e−βH[~ϕ]

∫

S(2)

[dσ] e−βH[~ϕ]
.

For low temperatures T and hence large β the model has an ordered or broken-

symmetrical phase, in which M 6= 0. These two regions of values of T are separated
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by a certain value Tc, the critical temperature, which is finite and non-zero for
d > 2. The two phases have very different thermodynamical characteristics, which
change abruptly at Tc. For example, the typical qualitative behavior of the scalar
magnetization is given in the graph of figure 3.2.1, where βc = 1/(kTc).

In the symmetrical phase the spins are distributed in a very random way across
the lattice and the correlations between a site and its neighbors are weak, that is, if
the spin at a certain site points in one direction the probabilities that the spin of one
of its neighbors point in the same direction or in the inverse direction are practically
the same. Sites which are more distant from one another than next neighbors are
even less correlated. Clearly, this tends to make the average of ~M go to zero. We
say that this phase is highly uncorrelated or that is has a short correlation length.
In the broken-symmetrical phase the situation is the opposite of this one, the spins
tend to be all aligned with each other, causing the average of ~M to be different
from zero. In this phase there are long-range correlations in the system, that appear
dynamically as spin waves that propagate along the crystalline lattice. If disturbed,
the spins oscillate is a coordinated way, each one affecting significantly its neighbors
and giving origin to perturbations that propagate like waves for long distances. Se
say that in this case the system is highly correlated or that it has a long correlation
length. The point T = Tc is very special because this is the only point where we
have at the same time M = 0 and long-range correlations.

As one can see in the graph of the scalar magnetization given in figure 3.2.1, at
the critical point the magnetization has a singular behavior, and is not differentiable
as a function of β. In general the systems that display phase transitions are charac-
terized by some form of singular behavior at the critical point that separates the two
phases. We may classify the critical systems according to the degree of singularity
that they display at the transition point. The first order critical systems, of which
boiling liquids are an example, are systems in which the order parameter, for ex-
ample the density of the fluid, has itself a discontinuous behavior at the transition.
Systems like the spontaneous magnetization models that we discuss here, in which
the order parameter is continuous but not differentiable at the transition point, are
denominated second order critical systems, and are the only ones of real interest for
the quantum theory of fields. This is due to the fact that the first order systems,
unlike the second order ones, do not have long range correlations at the critical
point Tc. The existence of these long range correlations is essential for the very
existence of the quantum field theories in the continuum limit. Due to this, only
the immediacy of the critical points of models with second-order phase transitions
are of interest for the quantum theory of fields, unlike what happens in statistical
mechanics, where all the other regions of the space of parameters of the models also
correspond to situations of physical interest.

In the classical theory of the free scalar field we saw that in order to obtain a
finite mass m0 in the continuum limit it is necessary to make the parameter α0 go
to zero in the limit. It was mentioned then that this was a special value of this
parameter, the critical value. We will see that in the quantum theory this is in fact
a critical point of the model. In this case there is no phase transition, properly
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Figure 3.2.2: Critical diagram for the theory of the free field.

speaking, because the model only exists at all in one of the two regions of the α0

real line separated by the critical value, the half-axis in which α0 > 0. In the other
half-axis the model is unstable, in the sense that in this region it is not possible to
define it by means of the Euclidean lattice as we did here. We may denominate this
region as the unstable “phase”, a name that comes from the fact that the computer
simulations, that one may try to execute in this region, are in fact unstable, making
the dimensionless fields ϕ diverge randomly to infinity. The phase that does exist
is denominated “symmetrical phase” for reasons the will become clear in future
volumes when we examine the polynomial models of scalar fields. We can represent
all this situation by means of a critical diagram like the one in figure 3.2.2, as we will
do in future volumes for less trivial models than this one. In statistical mechanics
the free theory is called the Gaussian model and the critical point α0 = 0 is called
the Gaussian critical point.

One of the most fundamental differences between statistical mechanics and quan-
tum field theory relates to the types of limits that are of interest in each case. In
both cases we are interested in the limit N → ∞, but in statistical mechanics this
limit is taken in a way that does not characterize it as a continuum limit, but rather
as the thermodynamical limit in which we make the volume of the system tend to
infinity. This is due to the fact that in this case the lattice spacing a does not go to
zero, but instead of this is kept constant, which implies that the size L of the box
must become infinite in the limit. This is the limit that corresponds to the study
of macroscopic samples of materials whose structure is a lattice at the atomic level,
where the lattice spacing a establishes the physically relevant scale. In the case of
quantum field theory we may either make the volume tend to infinity or keep it
finite, but what is important is that in either case the lattice spacing a be made
to go to zero in comparison to the length scales that are relevant to the physics of
the model. Hence, when we consider some finite and non-zero length in the case
of statistical mechanics, it will always correspond to a finite number of consecutive
links. In quantum field theory a finite and non-zero length will always correspond
to an infinite number of consecutive links. This difference regarding the nature of
the limits is one of the main conceptual differences between statistical mechanics
and quantum field theory.

In these statistical systems we may define a function, which we will call the
correlation function, that measures the range of the correlations among the spins
at the various sites, as a function of the distances among them. Assuming that the
model is such that the averages of the variables ϕ at the sites are zero, 〈ϕ〉 = 0, while
the variables undergo statistical fluctuations with a certain characteristic magnitude
around this value, we may define this function, relating two sites s1 e s2, as
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g(s1, s2) = 〈ϕ(s1)ϕ(s2)〉.

It has the property that follows: if, when ϕ(s1) has a positive value of typical
magnitude, the probabilities that ϕ(s2) be positive or negative are similar, then the
average value of the product tends to go to zero, resulting in a small or zero g(s1, s2);
on the other hand, if the fact that ϕ(s1) has a positive value of typical magnitude
implies that the probability that ϕ(s2) is aligned with it is significantly larger than
the probability that is has the opposite sign, then the average value tends to be
positive and non-zero, resulting in a non-zero g(s1, s2), with a magnitude related to
the typical value of the fluctuations of the variables at the sites. Hence, the fact that
this function is either large or small compared to the typical size of the fluctuations
measures the level of statistical correlation between the variables associated to the
sites s1 and s2. If s1 and s2 are the same site s, then g(s, s) = σ2 is the square of
the average magnitude of the fluctuations of the variables, a positive and non-zero
number. Since we are not interested here in the absolute values of the fluctuations
of these variables but rather in the correlations between two of them, it is natural
to normalize the correlation function so that it is unity at the origin. In addition to
this, in case the variables ϕ do not have zero averages, we can always calculate this
average value ϕ̄ and then describe the model in terms of new variables ϕ′ = ϕ− ϕ̄,
that do have zero averages. With all these considerations we arrive at the final
definition of the statistical correlation function. Given statistical variables ϕ(s), we
define the corresponding two-point correlation function as

f(s1, s2) =
〈ϕ′(s1)ϕ

′(s2)〉
〈[ϕ′(s)]2〉 ,

where

ϕ′(s) = ϕ(s)− 〈ϕ(s)〉.

The function f(s1, s2) has the property that f(s, s) = 1, which represents the trivial
fact that the variable at a certain site is always completely correlated to itself. In
homogeneous systems, that have discrete translational invariance on the lattice, f is
in fact a function only of the distance r between the sites, measured in terms of the
number of links crossed in order to go from one site to the other. Besides, f(r) is
never an increasing function of the distance, usually it decreases or at most remains
constant. In the great majority of systems f(r) displays one of two general classes of
behavior: it can display a decay with distance according to some inverse power of r,
a situation which we denominate polynomial decay; or it can display an exponential
decay with r, always much faster than any polynomial decay. In this case, for large
distances r, we have that f(r) assumes the general form

f(r) ∼ f0
e
− r

r0

rp
,
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where f0 and r0 are positive constants and p is a positive integer or half-integer
power. The constant r0 defines the range of the correlations, since for r < r0 there
will be appreciable correlations, while for r > r0 the correlations vanish very quickly.
We call r0 the correlation length of the statistical system. As measured here, in terms
of number of links and therefore using as the unit of length the lattice spacing a, this
is the correlation length of interest for statistical mechanics. The statistical systems
that display second-order critical behavior are characterized by the fact that the
correlation length r0 goes to infinity when we approach the critical point, which
means that f(r) ceases to display an exponential decay and acquires a polynomial
decay at this point. We say then that the system has acquired long-range order.
In these systems the exponential decay of f(r) is characteristic of the symmetrical
or disordered phases, while the polynomial decay is characteristic of the broken-
symmetrical or ordered phases. In the context of quantum field theory, on the other
hand, a r0 that is a finite multiple of the lattice spacing a represents a correlation
length that goes to zero in the continuum limit, because by definition a goes to zero
in this limit. Hence, in the quantum theory only the situation in which r0 tends to
infinity in terms of a are of any interest. It is due to this that in the quantum theory
of fields we are interested only in the critical points, which are the points where r0
behaves in this way.

We close with an observation regarding the concept of temperature in the con-
text of quantum field theory. Observe that the statistical-mechanic quantity that
really corresponds to the action S of quantum field theory is the product βH . In
many important models such as, for example, the gauge theories, it is possible to
change variables in the action so that it ends up multiplied by a parameter such
as this β. In these models we tend to refer to this parameter as the inverse of a
temperature, since the analogy with the temperature of statistical mechanics is very
useful to guide our intuition regarding the statistical inner workings of the model.
However, it is necessary to emphasize that this parameter is in no way related to
the thermodynamical temperature of the physical system described by the model
defined by S. Usually the parameter is related to what we call the non-renormalized
or bare coupling constant of the theory, and not to the true physical temperature.
Of course there is a concept of thermodynamical temperature that can be defined
as part of our models of quantum field theory, but it is not related to this parameter
and it is important to keep in mind a clear distinction between the two concepts,
since one involves the real thermodynamical temperature and the other is only a
very useful mathematical analogy.

Problems

3.2.1. Consider the Ising model in one dimension, as defined in the text, on finite
lattices of size N . Write a program to calculate directly, summing over all
possible configurations, the quantities M = |〈 ~M〉| and M ′ = 〈| ~M |〉, given a
value of β. Plot M and M ′ as functions of β for a few values of N , up to the
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largest lattice for which it is still possible to run the program in a few minutes
or less, for each value of β. How can you understand the results that you got?

3.2.2. Repeat the previous problem for the Ising model in two dimensions.

3.3 Gaussian Integration

The functional integral is a mathematical object whose complete analytical calcula-
tion is usually extremely difficult. There is a single case in which we can calculate
the necessary integrals analytically on lattices of arbitrary size and dimension, and
in fact take the continuum limit explicitly. This is the case in which the function to
be integrated is the exponential of a quadratic form on the fields, that is, the case
in which the action is quadratic on the fields. Such an exponential of a quadratic
form is called a Gaussian function. Let us start by recalling how to calculate the
integral of a Gaussian function in a single dimension, given by

g(x) = e−αx2

,

where α is some positive real number. We want to calculate the integral

I0(α) =

∫ ∞

−∞

dx g(x),

as a function of the parameter α. Curiously, it is easier to calculate the square of I0
than I0 directly! We can write I20 as

I20 (α) =

[∫ ∞

−∞

dx g(x)

][∫ ∞

−∞

dy g(y)

]
.

This integral extends over the two-dimensional plane R2. Next, we make a change
of variables in this plane, from the Cartesian coordinates (x, y) to polar coordinates
(r, θ), where

x = r cos(θ), y = r sin(θ), g(x)g(y) = e−αr2 ,

obtaining for the square of the integral

I20 (α) =

∫ ∞

0

dr

∫ 2π

0

dθ r e−αr2 .

This integral can be done immediately, due to the factor of r that appears from the
integration element. Doing the integration we obtain
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I20 (α) = 2π

∫ ∞

0

dr r e−αr2

= 2π

(−1

2α

)
e−αr2

[∞

0

= π
1

α
,

so that the original integral is

I0(α) =

√
π

α
.

This result can be generalized to integral of products of polynomials with the
Gaussian exponential. First of all, one can see that integrals involving odd powers
of x are zero by means of symmetry arguments, because in this case the integrand
is an odd function and the domain of integration is symmetrical. If i ≥ 0 is a
non-negative integer,

I2i+1(α) =

∫ ∞

−∞

dx x2i+1g(x) ≡ 0.

If we have even powers of x, we can derive the integrals I2i successively starting
from our result for I0. For example we have, differentiating the original expression
for I0 with respect to α,

∂αI0(α) =

∫ ∞

−∞

dx ∂αe
−αx2

= −
∫ ∞

−∞

dx x2 e−αx2

= −I2(α),

while, differentiating in the same way the explicit result that we obtained, we have

∂αI0(α) =
√
π

(
−1

2

)√
1

α

3

.

Comparing these two expressions we obtain the result for I2,

I2(α) =

√
π

2

√
1

α

3

.

This procedure can now be iterated in order to obtain the general result for I2i,

I2i =
√
π
(2i− 1)!!

2i

√
1

α

(2i+1)

.

Another kind of generalization in which we are interested is the one for integrals
in larger dimensions. Assuming that we have n real variables xi with i = 1, . . . , n,
in this case the form of the argument of the exponential will be that of a quadratic
form Q with coefficients Qij , and the integral will be written as
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I[Q] =

∫ ∞

−∞

dx1 . . .

∫ ∞

−∞

dxn e−
∑

i

∑
j xiQijxj .

Observe that this integral is a functional of Q. It is necessary to assume that the
quadratic form is not degenerate, that is, that it does not have any zero or negative
eigenvalues, because in this case the integral does not exist due to the existence
of a direction in the space of the variables xi in which the exponential does not
decay, causing the integral to diverge. If all the eigenvalues are positive it follows
that the quadratic form can be diagonalized by an orthogonal transformation of
the variables xi into another set of coordinates yi = Tijxj or, in matrix language,
~y = T~x. This transformation involves the introduction of a Jacobian determinant for
the transformation of the integration volume but, since the transformation is linear,
the Jacobian is constant, independent of the coordinates, so that it will always cancel
out in the ratios of integrals that we are interested in. Hence, what matters is that
in all cases of interest it is possible to reduce the integral, up to a normalization
factor that it is not necessary to calculate, to the form

I[Q] =
1

det(T)

∫ ∞

−∞

dy1 . . .

∫ ∞

−∞

dyn e−
∑

i qiy
2
i ,

where qi are the eigenvalues of Q and we see here why none of them can be negative
or zero, since in that case one or more integrals would not exist. This multiple
integral may now be written as the product of n one-dimensional integrals, one for
each variable, so that the application of our previous result takes us immediately to
the answer

I[Q] =
1

det(T)

n∏

i=1

√
π

qi
.

We see here, once more, why we cannot have zero eigenvalues. Since the determinant
of a matrix is equal to the product of its eigenvalues, we may write this result in
terms of the determinant of the quadratic form Q, as

I[Q] =
πn/2

det(T)

√
1

det(Q)
. (3.3.1)

We see, therefore, that we can calculate the integral of the product of any finite-
order polynomial with the Gaussian exponential, for any dimension of the space over
which we are integrating. We will now use these results in the quantum theory of
the free field. The first thing to do is to write the action S0 in terms of the Fourier
transform of the field. We will see that in this way we will succeed in decoupling the
degrees of freedom of the field, because in momentum space they consist of normal
modes of oscillation that do not interact with each other. We start with the action
in its usual form
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S0[ϕ] =
1

2

∑

~n

{
∑

µ

[∆µϕ(~n)]
2 + α0ϕ

2(~n)

}
.

Writing the field in terms of its Fourier transform, using two different momenta ~k
and ~k′, because all the terms are quadratic in the field, we obtain

S0[ϕ̃] =
1

2

∑

~n


∑

µ

∑

~k

∑

~k′

ϕ̃(~k)ϕ̃(~k′)(∆µe
ı 2π
N

~k·~n)(∆µe
ı 2π
N

~k′·~n)

+ α0

∑

~k

∑

~k′

ϕ̃(~k)ϕ̃(~k′)eı
2π
N

~k·~neı
2π
N

~k′·~n


 .

Since the complex exponentials are eigenvectors of the finite-difference operator, we
obtain

S0[ϕ̃] =
1

2

∑

~k

∑

~k′

(
∑

~n

eı
2π
N

~k·~neı
2π
N

~k′·~n

)
ϕ̃(~k)ϕ̃(~k′)

×
[
∑

µ

ıρµ(~k)e
ı π
N
kµıρµ(~k

′)eı
π
N
k′µ + α0

]
.

As one can see, we may now execute the sum over the positions ~n using the orthog-
onality and completeness relations, obtaining

S0[ϕ̃] =
1

2

∑

~k

∑

~k′

Ndδd~k,−~k′
ϕ̃(~k)ϕ̃(~k′)

[
−
∑

µ

ρµ(~k)e
ı π
N
kµρµ(~k

′)eı
π
N
k′µ + α0

]
.

Using now the delta function to execute the sum over the momenta ~k′ the expression
simplifies considerably and we obtain

S0[ϕ̃] =
Nd

2

∑

~k

[
−
∑

µ

ρµ(~k)ρµ(−~k) + α0

]
ϕ̃(~k)ϕ̃(−~k).

Finally, we have that ρµ(−~k) = −ρµ(~k) and, since the field is real, that ϕ̃(−~k) =

ϕ̃∗(~k), so that we obtain the final result

S0[ϕ̃] =
Nd

2

∑

~k

[
ρ2(~k) + α0

]
|ϕ̃(~k)|2. (3.3.2)

In this expression the degrees of freedom are indexed by the coordinates ~k in mo-
mentum space. As one can see, there are no terms that contain products of fields
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related to two independent vectors, thus characterizing the fact that the normal
modes are decoupled from each other. We might say that the action is diagonalized
in this system of coordinates of the configuration space, but this would not really
be a correct statement. In fact each field ϕ̃(~k) is multiplied by its complex con-

jugate ϕ̃∗(~k) = ϕ̃(−~k), that is, the momenta are paired in the form (~k,−~k). We
should say instead that the action has been anti-diagonalized by the transformation
of coordinates. If we represent the fields by vectors in configuration space as we did
before, using this time the basis formed by the Fourier modes (problem 3.3.3), the
quadratic form of the action would be represented by a matrix that, rather than
containing only diagonal terms, that relate each ~k with itself, would contain only
anti-diagonal terms, that relate ~k with −~k. The diagonal and the anti-diagonal cross
at the position of the zero mode ~k = ~0.

This is not really a problem, because the integral of a multi-dimensional Gaussian
is related to the determinant of the operator that appears in the quadratic form,
as we saw above. Up to a sign, this determinant may be written as either the
product of the diagonal elements or as the product of the anti-diagonal elements of
the matrix, as one can easily verify using the Laplace expansion for the determinant.
The sign that remains undetermined depends only on the dimension of the matrix
and is not important since it always cancels out in the ratios of two integrals that
define the expectation values of the observables of the theory. However, since this
is a very basic and important result, we will do in what follows a direct verification
of this fact, calculating explicitly an integral of this type. We want to learn here
how to deal with a functional integral written in momentum space, for example the
following one1,

I =

∫ ∏

~k

dϕ̃(~k) ϕ̃(~k′)ϕ̃(~k′′) e−S0[ϕ̃].

Let us recall that there are always Nd independent field values, either with the
field expressed in terms of ϕ(~n) or in terms of ϕ̃(~k), since there are always exactly

Nd possible values for either ~n or ~k. However, the ϕ̃ are complex, unlike the ϕ,
which are real and, therefore, there are twice as many real parameters in the set of
the ϕ̃, since for each one of them we have

ϕ̃(~k) = R(~k) + ıI(~k).

On the other hand, these parameters R are I not all independent because, since
ϕ is real, there are among them the constraints

ϕ̃(−~k) = ϕ̃∗(~k),

that is,

R(−~k) = R(~k) and I(−~k) = −I(~k).

1This calculation was developed originally in collaboration with Dr. Timothy Edward Gallivan.
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While the domain of integration is clear in the space of the ϕ, where each ϕ(~n)
goes from −∞ to ∞, the same is not true in the space of the ϕ̃, because it is
necessary to find a path in the complex plane of each ϕ̃ such that these constraints
are satisfied. The integral that we want to calculate may be understood as an integral
over a Nd-dimensional surface embedded in the 2Nd-dimensional space generated by
the set of all the R and I variables. We may calculate the integral over the surface
by integrating over the whole space an expression involving Dirac delta functions
that have support over the surface. In this way we will be explicitly implementing
the constraints by means of the Dirac delta functions and we may then extend
the integration to all variables R and I, each one of them going from −∞ to ∞,
which makes much clearer the treatment of the limits of integration. A simple
example of this kind of operation can be found in problem 3.3.4. Using these ideas
and performing a careful counting of the modes in momentum space, in order to
build a consistent pairing of those that have their real and imaginary part related
(problem 3.3.5), we may write the integral in the form

I =

∫ 
∏

~k

dR(~k)dI(~k)






∏

~k=P(~k)

δ
[
I(~k)

]




×





∏

(~k,P(~k)),~k 6=P(~k)

δ

[
R(~k)−R(−~k)√

2

]
δ

[
I(~k) + I(−~k)√

2

]


×[R(~k′) + ıI(~k′)][R(~k′′) + ıI(~k′′)]e−S0[R,I],

where
∏

~k=P(~k) is a product that runs over the real modes,
∏

(~k,P(~k)),~k 6=P(~k) is a product
that runs over one half of the complex modes existing in momentum space, that is,
over pairs of complex modes which are paired up by the pairing operator P, and this
pairing operator is such that P(~k) = −~k unless one or more of the components of

−~k are outside their standard range of variation, in which case one must add N to
them in order to bring them back into the correct range. When this happens P(~k)

is not equal to −~k, since only some of its components change sign. For odd N the
only mode for which ~k = P(~k) is the zero mode ~k = ~0, but for even N there are 2d

such modes. In addition to this, S0 may be written in a simple form in terms of the
R’s and I’s,

S0[R, I] =
Nd

2

∑

~k

[ρ2(~k) + α0][R
2(~k) + I2(~k)],

where, naturally, I = 0 for the real modes. In this way it becomes much simpler to
deal with these integrals, because now we may treat all the variables as independent.

In order to verify in which cases our integral is equal to zero or not, let us start
by the case in which we have

~k′ 6= ~k′′ and ~k′ 6= −~k′′,
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since in this case we can factor out the terms involving the four modes −~k′, ~k′, −~k′′

and ~k′′. Since we now have two independent variables per mode, we end up writing
eight integrals in explicit form,

I = I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)

∫ ∞

−∞

dR(−~k′)

∫ ∞

−∞

dI(−~k′)

×
∫ ∞

−∞

dR(~k′′)

∫ ∞

−∞

dI(~k′′)

∫ ∞

−∞

dR(−~k′′)

∫ ∞

−∞

dI(−~k′′)

×δ

[
R(~k′)−R(−~k′)√

2

]
δ

[
I(~k′) + I(−~k′)√

2

]

×δ

[
R(~k′′)−R(−~k′′)√

2

]
δ

[
I(~k′′) + I(−~k′′)√

2

]

×
[
R(~k′)R(~k′′)− I(~k′)I(~k′′) + ıR(~k′)I(~k′′) + ıR(~k′′)I(~k′)

]

×e−
Nd

2
[ρ2(~k′)+α0][R2(~k′)+I2(~k′)] e−

Nd

2
[ρ2(−~k′)+α0][R2(−~k′)+I2(−~k′)]

×e−
Nd

2
[ρ2(~k′′)+α0][R2(~k′′)+I2(~k′′)] e−

Nd

2
[ρ2(−~k′′)+α0][R2(−~k′′)+I2(−~k′′)],

where I ′ contains the integrals over all the other modes. We are assuming here that
the modes indexed by ~k′ and ~k′′ are complex and not real. We invite the reader
to complete the deduction, taking into account explicitly the real modes and thus
verifying that the results are correct in all cases. We may now use the four delta
functions to do the integrals over the four variables R(−~k′), I(−~k′), R(−~k′′) and

I(−~k′′), which appear only in the corresponding exponentials, obtaining

I = 4I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)

∫ ∞

−∞

dR(~k′′)

∫ ∞

−∞

dI(~k′′)

×
[
R(~k′)R(~k′′)− I(~k′)I(~k′′) + ıR(~k′)I(~k′′) + ıR(~k′′)I(~k′)

]

×e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)] e−Nd[ρ2(~k′′)+α0][R2(~k′′)+I2(~k′′)].

We observe now that the remaining integrals may be decomposed in terms of factors
that are integrals of odd functions over symmetrical domains of integration, being
therefore zero. It follows that, for ~k′ 6= ~k′′ and ~k′ 6= −~k′′, we have I = 0.

Let us examine now the case in which ~k′ = ~k′′. In this case, collecting the
appropriate factors in a fashion analogous to the previous case, we have

I = I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)

∫ ∞

−∞

dR(−~k′)

∫ ∞

−∞

dI(−~k′)

×δ

[
R(~k′)−R(−~k′)√

2

]
δ

[
I(~k′) + I(−~k′)√

2

]

×
[
R2(~k′)− I2(~k′) + 2ıR(~k′)I(~k′)

]

×e−
Nd

2
[ρ2(~k′)+α0][R2(~k′)+I2(~k′)] e−

Nd

2
[ρ2(−~k′)+α0][R2(−~k′)+I2(−~k′)].
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Once more, we may use the delta functions to obtain

I = 2I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)

×
[
R2(~k′)− I2(~k′) + 2ıR(~k′)I(~k′)

]

×e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)].

For the third term of the bracket the same parity argument used in the previous
case is valid, and therefore it is zero. As for the first two terms, we may change the
names of the integration variables in one of them, thus verifying that they cancel
out. Therefore, in the case ~k′ = ~k′′ we also have I = 0.

There remains to be examined the case ~k′ = −~k′′. Once more we collect the
appropriate factors, obtaining

I = I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)

∫ ∞

−∞

dR(−~k′)

∫ ∞

−∞

dI(−~k′)

×δ

[
R(~k′)−R(−~k′)√

2

]
δ

[
I(~k′) + I(−~k′)√

2

]

×
[
R(~k′)R(−~k′)− I(~k′)I(−~k′) + ıR(~k′)I(−~k′) + ıR(−~k′)I(~k′)

]

×e−
Nd

2
[ρ2(~k′)+α0][R2(~k′)+I2(~k′)] e−

Nd

2
[ρ2(−~k′)+α0][R2(−~k′)+I2(−~k′)].

Using the delta functions to do the integrals over R(−~k′) and I(−~k′) we obtain

I = 2I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)
[
R2(~k′) + I2(~k′)

]
e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)].

where the facts that R(~k′) = R(−~k′) and that I(~k′) = −I(−~k′) imply the cancelling
of the two imaginary terms in the bracket. The two other terms no longer cancel
out as was the case in the previous case, so that it becomes now clear that in this
case the integral I is not zero. We have then the result
∫ ∏

~k

dϕ̃(~k)ϕ̃(~k′)ϕ̃(~k′′)e−S0[ϕ̃]

= 2I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)
[
R2(~k′) + I2(~k′)

]
e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)].

In analogous fashion, we also have the integral, with the same I ′,
∫ ∏

~k

dϕ̃(~k)e−S0[ϕ̃] = 2I ′ ×
∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′) e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)],

so that we may now use these results to calculate the ratio of integrals that appears
in the expectation value that defines the propagator in momentum space,
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〈ϕ̃(~k′)ϕ̃(−~k′)〉 =

∫
[dϕ̃] ϕ̃(~k′) ϕ̃(−~k′) e−S0[ϕ̃]

∫
[dϕ̃] e−S0[ϕ̃]

=

∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′)
[
R2(~k′) + I2(~k′)

]
e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)]

∫ ∞

−∞

dR(~k′)

∫ ∞

−∞

dI(~k′) e−Nd[ρ2(~k′)+α0][R2(~k′)+I2(~k′)]

=

∫ ∞

−∞

dR(~k′) R2(~k′) e−Nd[ρ2(~k′)+α0]R2(~k′)

∫ ∞

−∞

dR(~k′) e−Nd[ρ2(~k′)+α0]R2(~k′)

+

∫ ∞

−∞

dI(~k′) I2(~k′) e−Nd[ρ2(~k′)+α0]I2(~k′)

∫ ∞

−∞

dI(~k′) e−Nd[ρ2(~k′)+α0]I2(~k′)

.

These two terms containing ratios of integrals are identical, as one can check with
a simple change of the integration variable in one of them. We have then, using the
trick seen before of differentiating with respect to the parameter in order to relate
the integrals in the numerators with those in the denominators,

〈ϕ̃(~k′)ϕ̃(−~k′)〉 = 2

∂

∂
[
−Nd[ρ2(~k′) + α0]

]
√

π

Nd[ρ2(~k′) + α0]
√

π

Nd[ρ2(~k′) + α0]

= −2

√
Nd[ρ2(~k′) + α0]

(
−1

2

)
1

√
Nd[ρ2(~k′) + α0]

3

=
1

√
Nd[ρ2(~k′) + α0]

2 .

Using the fact that ϕ̃(−~k′) = ϕ̃∗(~k′) in order to write the left-hand side as a square
modulus, we have therefore the final result for the propagator of the free theory in
momentum space,

〈|ϕ̃(~k)|2〉 = 1

Nd[ρ2(~k) + α0]
. (3.3.3)

Note that this result for the propagator in momentum space is exactly equal to
the Green function of the classical theory written in momentum space. The same
is true for other boundary conditions, but this relation between the classical and
quantum theories is a specific property of the free theory, not a general property of
quantum field theory. It is interesting to mention that we may systematize this kind
of calculation writing only the result for the integral
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∫
[dϕ̃]e−S0[ϕ̃] =

∫
[dϕ̃]e−

Nd

2

∑
~k
[ρ2(~k)+α0]|ϕ̃(~k)|2 =

∏

~k

√
2π

Nd[ρ2(~k) + α0]
, (3.3.4)

because all the other relevant integrals, with even powers of the fields, can be
obtained from this one by means of differentiation with respect to the quantity
−Nd[ρ2(~k) + α0]/2.

The fact that expectation values of the type 〈ϕ̃(~k)ϕ̃(~k′)〉 are zero when ~k′ 6= −~k
is related directly to the conservation of momentum during the propagation of field
waves and, indirectly, also during the propagation of particles. It means that if
a wave or particle enters (we adopt the convention that “enters” means sign “+”
for the momentum) into a propagation process, which is a kind of interaction of
the object with itself, then it must exit (in this convention “exit” means sign “−”

for the momentum) with the same vector ~k, that is, it propagates with a constant
momentum, in a given mode of the lattice in momentum space. This is, of course, a
specific characteristic of periodical boundary conditions, for which we have discrete
translation invariance.

For fixed boundary conditions nothing essential changes regarding the calculation
of the Gaussian integrals. In that case the eigenmodes of the Laplacian are associated
to stationary waves within the box, not to travelling plane waves. Due to this the
components in momentum space are all real rather than complex, which implies that
the transformation to momentum space really diagonalizes the quadratic form in the
action, instead of anti-diagonalizing it as happened here. This actually makes the
calculation of the integrals more straightforward than in the periodical case, because
there is no additional complication of having complex components as integration
variables. In this case a modified versions of equation (3.3.4) holds (problem 3.3.6),

∫
[dϕ̃]e−S0[ϕ̃] =

∫
[dϕ̃]e−

(N+1)d

2

∑
~k
[ρ2f (

~k)+α0]ϕ̃2(~k) =
∏

~k

√
2π

(N + 1)d[ρ2f (
~k) + α0]

,

starting from which we can calculate other integrals using the same procedures of
differentiation with respect to a parameter, in this case the quantity

−(N + 1)d[ρ2f (
~k) + α0]/2,

as we already discussed above for the periodical case.
In order to finish the development of this section it is still necessary that we relate

these integrals over the Fourier components of the field with the original integrals
over the fields in position space, by means of which we defined the theory. We have
already seen how to transform the action from one field coordinate system to the
other, but the same must be done with the integration element in configuration
space. As we saw before in section 2.9, with our usual normalization we have for the
determinant of the transformation matrix of the finite Fourier transform det(F) =
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n−n/2, while det(F−1) = nn/2. The first determinant is simply the Jacobian of the
transformation from the basis [dϕ] to the basis [dϕ̃] in the functional integral. Since
it is independent of the fields and therefore cancels out in the ratio of integrals that
defines the measure for the functional integration, we may write a generic functional
integral, such as

〈O〉 =

∫
[dϕ] O [ϕ] e−S[ϕ]

∫
[dϕ] e−S[ϕ]

,

in terms of the basis of Fourier components, as

〈O〉 =

∫
[dϕ̃] O [ϕ̃] e−S[ϕ̃]

∫
[dϕ̃] e−S[ϕ̃]

.

Of course a similar result is valid for the expression of 〈O〉 in terms of integrations
involving the dimensionfull field φ.

Problems

3.3.1. Calculate, on a lattice with Nd sites in d dimensions, the multiple integral

I0 =

∫ ∏

~n

dϕ(~n) e−
α0
2

∑
~n ϕ2(~n).

3.3.2. Show that I1(~n1, ~n2) = Cδ(~n1, ~n2) where δ(~n1, ~n2) is the d-dimensional Kro-
necker delta function and

I1(~n1, ~n2) =

∫ ∏

~n

dϕ(~n) ϕ(~n1) ϕ(~n2) e
−

α0
2

∑
~n ϕ2(~n),

and calculate C.

3.3.3. Write, in the one-dimensional case, the matrix that represents the operator
K̃(k, k′) in configuration space, using as a basis the Fourier modes ϕ̃(k) of the
field, in terms of which the action of the free theory in momentum space, as
given in equation (3.3.2), is written as

S0[ϕ̃] =
N

2

∑

k

∑

k′

ϕ̃(k)K̃(k, k′)ϕ̃(k′).

For simplicity, use lattices with odd N , enumerating the corresponding mo-
menta from −(N − 1)/2 to (N − 1)/2, in order to verify that the matrix is
anti-diagonal, and write explicitly the elements of the anti-diagonal. Using this
fact and the result in equation (3.3.1), obtain the result in equation (3.3.4) up
to a multiplicative constant.
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3.3.4. (a) Consider the square of vertices (0, 0), (0, 1), (1, 0), and (1, 1) in the plane
(x, y), a function f(x, y) on this plane and the curve in the plane defined
by f(x, y) = 0. Let us denote by C the part of the curve that is inside
the square. Show that the line integral over the curve C that gives its
arc length can be written in terms of an integral over the plane in the
following way,

∫

C

dℓ =

∫ 1

0

dx

∫ 1

0

dy
√
(∂xf)2 + (∂yf)2 δ[f(x, y)],

where the Dirac delta function appears. Hint: make, at each point along
the curve, a transformation of variables from (x, y) to (u, v), where u
varies along the tangent to the curve and v varies along the line perpen-
dicular to it, that is, du ∝ dℓ; remember that df ≡ 0 along the curve; for
simplicity, assume that C is the graph of a function y(x).2

(b) Verify the result above for the particular cases f(x, y) = x2 + y2 − 1 and
f(x, y) = x − y. Show that this last case, in which f is linear on x and
y, is the one used in the text, in which the expression of the integral over
the plane reduces to

∫

C

dℓ =

∫ 1

0

dx

∫ 1

0

dy δ

(
x− y√

2

)
.

3.3.5. Consider the definition of the pairing operator P(~k), which is that P(~k) = −~k
unless one or more of the components of −~k falls outside the allowed range of
values, when they must be brought back into the range by the addition of N .

(a) Show that a real mode, for which the imaginary part of the Fourier trans-

form of the field is zero, is one for which ~k = P(~k). Examine then the
situation with these real modes and define the product

∏
~k=P(~k) used in

the text. Show that for odd N the product has just one factor, the zero
mode ~k = ~0, while for even N it contains 2d factors.

(b) Show that, excluding the real modes, it is possible to pair up all the
remaining Fourier modes in momentum space so that each pair has equal
real parts R and imaginary parts I that differ only by the sign. Use the
pairing operator P in order to do the pairing and define, in this way, the
product

∏
(~k,P(~k)),~k 6=P(~k) used in the text. Write a detailed definition of

this product, and show that for odd N it consists of Nd−1 factors, while
for even N it consists of Nd − 2d factors.

3.3.6. Calculate the basic Gaussian integral of the free theory in the case of fixed
boundary conditions, that is, show that

2Many thanks to Dr. Miguel Bello Gamboa for detecting an error in the first version of this

problem, and for correcting it for the author.
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∫
[dϕ̃]e−S0[ϕ̃] =

∏

~k

√
2π

(N + 1)d[ρ2f (
~k) + α0]

,

where ρ2f(
~k) was defined in equation (2.8.4).

3.4 Factorization of the Correlation Functions

One fundamental concept of the traditional theory is that the physical content of
a model in quantum field theory is defined by the set of its correlation functions.
Having developed the necessary calculational techniques, in this section we will
discuss the properties of the correlation functions of the free scalar field on a finite
periodical lattice. Through this simple model, that we use as our example, we may
learn some things of general interest about the structure of correlations of the theory.
The n-point functions are defined in position space as

g(~x1, . . . , ~xn) = 〈ϕ(~x1) . . . ϕ(~xn)〉,

but we may also define corresponding functions in momentum space, doing Fourier
transformations for each one of the n coordinates ~xi. Doing this we obtain n-point
functions in momentum space, given by

g̃(~k1, . . . , ~kn) = 〈ϕ̃(~k1) . . . ϕ̃(~kn)〉.

As proposed in problem 3.1.1, it is not difficult to verify that, in the free theory
defined by S0, we have for the function of a single point in position space

g(~x1) = 〈ϕ(~x1)〉 = 0,

by means of arguments of symmetry and parity applied to the functional integral,
and using the fact that the action is symmetrical by the exchange of the sign of
the field, that is, S0[ϕ] = S0[−ϕ]. In an analogous fashion, it is easy to verify
(problem 3.4.1) that the same result is valid for any functions for which n is odd,
independently of some of the factors ~xi being equal or not, that is, that for any
i = 0, . . . ,∞ and any ~xi we have

g(~x1, . . . , ~x2i+1) = 〈ϕ(~x1) . . . ϕ(~x2i+1)〉 = 0.

For example, we have that 〈ϕ(~x1)ϕ(~x2)ϕ(~x3)〉, 〈ϕ(~x1)ϕ
2(~x2)〉 and 〈ϕ3(~x1)〉 are all

zero, independently of the values of the vectors ~xi. Identical arguments may be
applied in momentum space for expectation values of products of the Fourier com-
ponents. In order to see this it suffices to write the action in terms of these com-
ponents, as we already did before, verifying that it remains invariant by changes of
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sign of the field, that is, that S0[ϕ̃] = S0[−ϕ̃]. Hence, all the same facts that follow
from this invariance are true in this case and all the expectation values of the Fourier
components of the field in momentum space involving an odd number of factors are
zero, that is, for any vectors ~ki we have

g̃(~k1, . . . , ~k2i+1) = 〈ϕ̃(~k1) . . . ϕ̃(~k2i+1)〉 = 0.

In the case of momentum space we may refine a little this argument, extending its
reach, if we take into account the fact that in this space the modes of the model are
decoupled. Due to this, one can easily show (problem 3.4.2) that the expectation
value of the product of two fields corresponding to distinct modes factors into the
product of the expectation values of each one of the two fields. Since the components
~kµ assume both positive and negative values, in this case we must worry also about

modes related by a change in the sign of ~k. For example, for the case of two factors
we have that, if ~k1 6= ±~k2, then

〈ϕ̃(~k1)ϕ̃(~k2)〉 = 〈ϕ̃(~k1)〉〈ϕ̃(~k2)〉.

Hence, even if the number of fields multiplied together is even, the expectation value
is still zero unless the fields are paired up in each mode, with an even number of
factors in each one. In addition to this, as we saw in the case of the propagator in
section 3.3, it is necessary the fields be paired up in such a way that they organize as
a set of squared absolute values. This is a general fact, valid for all the correlation
function in momentum space, associated to the fact that all the correlation functions
are real. It can be remembered by means of the rule of association of momenta that
we saw before: momentum conservation on the periodical lattice implies that each
momentum that “goes into” the expectation value, associated to ϕ̃(~k), must be equal

and opposite to the one that “exits”, associated to ϕ̃(−~k) = ϕ̃∗(~k). Hence, we have

that each factor ϕ̃(~k) must be paired up with another factor ϕ̃(−~k) in order for the

expectation value not to be zero. For example, the expectation value 〈ϕ̃(~k1)ϕ̃(~k2)〉
is zero if ~k1 6= −~k2, as we saw before in section 3.3.

In this way, in momentum space we may quickly reduce the number of different
possibilities for correlation functions potentially different from zero. The ones that
remain to be discussed are those of the types 〈|ϕ̃(~k1)|2〉, 〈|ϕ̃(~k1)|2|ϕ̃(~k2)|2〉, 〈|ϕ̃(~k1)|4〉,
〈|ϕ̃(~k1)|4|ϕ̃(~k2)|2〉, etc, where only even powers of absolute values of the Fourier
components appear. As a non-trivial example of factorization, it is not difficult to
verify (problem 3.4.3) that, for ~k1 6= ±~k2,

〈|ϕ̃(~k1)|2|ϕ̃(~k2)|2〉 = 〈|ϕ̃(~k1)|2〉〈|ϕ̃(~k2)|2〉.

It is important to emphasize that, although it is true that, for ~k1 6= −~k2,

〈ϕ̃(~k1)ϕ̃(~k2)〉 = 〈ϕ̃(~k1)〉〈ϕ̃(~k2)〉, (3.4.1)

the analogous relation is not true in position space, that is, even if ~x1 6= ~x2 we have
that
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〈ϕ(~x1)ϕ(~x2)〉 6= 〈ϕ(~x1)〉〈ϕ(~x2)〉. (3.4.2)

This is due to the fact that the degrees of freedom are decoupled only in momentum
space, not in position space. Hence, in the first case the fact that 〈ϕ̃(~k)〉 is zero

implies that 〈ϕ̃(~k1)ϕ̃(~k2)〉 = 0 for ~k1 6= −~k2, but in the second case, although 〈ϕ(~x)〉
is zero, we have 〈ϕ(~x1)ϕ(~x2)〉 6= 0, independently of the values of ~x1 and ~x2.

Of course the factorization relation (3.4.1) in momentum space has a counterpart
in position space, but it is necessary to keep in mind that this equation is only valid
for ~k1 6= −~k2 and not when the two momenta are equal and opposite. Doing the
Fourier transformation of the left-hand side of this equation one obtains a relation for
the two-point function in position space (problem 3.4.4), but it is not a factorization
relation like the one suggested by equation (3.4.2). Instead of this, what one obtains
is the relation

〈ϕ(~x1)ϕ(~x2)〉 =
∑

~k

e−ı 2π
L
~k·(~x1−~x2)〈|ϕ̃(~k)|2〉. (3.4.3)

The calculations involved in this kind of manipulation are usually simple but involve
a few accounting subtleties involving the accounting of the terms in the sums over
the modes in momentum space. This is a skill that it is very important to acquire
in order to develop good control over the theory.

We will now calculate some of the examples that remain of non-zero correlation
functions in momentum space, to illustrate the important phenomenon of the fac-
torization of all higher-order correlation functions in terms of the propagator, which
is characteristic of free field theories. A we already saw before, from equation (3.3.3)
we have the following fundamental result for the two-point function, which cannot

be factored in terms of the one-point function,

〈|ϕ̃(~k)|2〉 = 1

Nd[ρ2(~k) + α0]
.

Besides this, we have the result of equation (3.3.4) for the basic functional integral
in momentum space,

∫
[dϕ̃]e−S0[ϕ̃] =

∏

~k

√
2π

Nd[ρ2(~k) + α0]
,

starting from which it is easy to calculate all the others by means of differentiation
with respect to the quantity −Nd[ρ2(~k) + α0]/2. However, it is necessary to treat

separately the cases in which ϕ̃(~k) is real (such as, for example, the case ~k = ~0) and

the cases in which ϕ̃(~k) has a non-zero imaginary component, because there exists in
the sum that defines S0[ϕ̃] only one term containing a real component such as ϕ̃(~0),
but two identical terms containing a Fourier component that has non-zero imaginary
part. As an example of this kind of calculation, let us consider the quantity
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〈|ϕ̃(~k)|4〉 =

∫
[dϕ̃] |ϕ̃(~k)|4 e−S0[ϕ̃]

∫
[dϕ̃] e−S0[ϕ̃]

,

for which we may write, in the case in which ϕ̃(~k) is real,

〈|ϕ̃(~k)|4〉 =

(
−2∂

∂{Nd[ρ2(~k) + α0]}

)2 ∫
[dϕ̃] e−S0[ϕ̃]

∫
[dϕ̃] e−S0[ϕ̃]

=

(
−2∂

∂{Nd[ρ2(~k) + α0]}

)2∏

~k′

√
2π

Nd[ρ2(~k′) + α0]

∏

~k′

√
2π

Nd[ρ2(~k′) + α0]

=

(−2)2
(
−1

2

)(
−3

2

)
1

√
Nd[ρ2(~k) + α0]

5

1√
Nd[ρ2(~k) + α0]

= 3
1

{Nd[ρ2(~k) + α0]}2
.

In this way, comparing this result with the fundamental result of equation (3.3.3),
we obtain the factorization relation

〈|ϕ̃(~k)|4〉 = 3〈|ϕ̃(~k)|2〉2,

for the case ~k = ~0 and other purely real modes, showing that the four-point function
factors into two two-point functions. The same is true for higher-order functions,
as one can verify without difficulty. For example, one can obtain for the purely real
modes (problem 3.4.5) a more general factorization formula,

〈|ϕ̃(~k)|2n〉 = (2n− 1)!!〈|ϕ̃(~k)|2〉n,
for any integer n, involving a double factorial (2n−1)!! = (2n−1)(2n−3)(2n−5) . . . 1.

In the case in which ϕ̃(~k) has a non-zero imaginary part we have

〈|ϕ̃(~k)|4〉 =

(
−∂

∂{Nd[ρ2(~k) + α0]}

)2 ∫
[dϕ̃] e−S0[ϕ̃]

∫
[dϕ̃] e−S0[ϕ̃]
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=

(
−∂

∂{Nd[ρ2(~k) + α0]}

)2∏

~k′

√
2π

Nd[ρ2(~k′) + α0]

∏

~k′

√
2π

Nd[ρ2(~k′) + α0]

=

(
−∂

∂{Nd[ρ2(~k) + α0]}

)2
1

Nd[ρ2(~k) + α0]

1

Nd[ρ2(~k) + α0]

=

(−1)2 (−1) (−2)
1

{Nd[ρ2(~k) + α0]}3
1

Nd[ρ2(~k) + α0]

= 2
1

{Nd[ρ2(~k) + α0]}2
.

so that we obtain, in a way analogous to the previous one, the relation

〈|ϕ̃(~k)|4〉 = 2〈|ϕ̃(~k)|2〉2,

showing once more that the four-point function factors into two two-point func-
tions, but with a different coefficient. For higher-order functions one can obtain
(problem 3.4.5) the general formula

〈|ϕ̃(~k)|2n〉 = n!〈|ϕ̃(~k)|2〉n,

for any integer n. In fact, in future volumes we will see that it will be convenient
to build a small table of such relations between the functional integrals of the free
theory, because they will show up repeatedly in the development of the perturbative
theory for interacting theories, like the non-linear models that we will examine in
the future.

We see therefore that the complete solution of the theory of the free scalar field,
that is, the calculation of all its correlation functions, is reducible to the calculation
of the propagator. It follows that all the physics of the theory is contained in
the structure of this propagator. The factorization of the higher-order functions in
terms of the propagator means that there are no physical interactions between the
objects that propagate in this model. One way to understand this using our classical
intuition is to remember that the theory is linear, being characterized classically by
a linear equation of motion for which there is a principle of linear superposition, that
is, the waves that propagate in space-time in the non-Euclidean version of the theory
superpose linearly, going right through one another as in classical electrodynamics,
without interacting with one another. The factorization of the correlation functions
means that this linearity is preserved in the quantum version of the theory, that
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is, that the quantum fluctuations superpose linearly and in this way do not affect
the linearity of the theory. The propagator itself, the sole correlation function in
momentum space that does not factor our in terms of other lower-order functions,
describes how objects propagate in this model, which ends up being the only physics
that it contains.

Problems

3.4.1. Show, using the same ideas that were suggested for problem 3.1.1, that the
correlation function of an odd number of points in position space is zero, that
is, that for any i = 0, . . . ,∞ and any ~xi,

g(~x1, . . . , ~x2i+1) = 〈ϕ(~x1) . . . ϕ(~x2i+1)〉 = 0.

3.4.2. Show, using the explicit form of the action S0[ϕ̃] and the definition of the
functional integral in momentum space, that the expectation value of two
Fourier components of the field with different momenta factors into the product
of the expectation values of each component, that is, that for ~k1 6= ±~k2 we
have

〈ϕ̃(~k1)ϕ̃(~k2)〉 = 〈ϕ̃(~k1)〉〈ϕ̃(~k2)〉.

3.4.3. Show, using the same ideas used in problem 3.4.2, that for ~k1 6= ±~k2 we have
the factorization

〈|ϕ̃(~k1)|2|ϕ̃(~k2)|2〉 = 〈|ϕ̃(~k1)|2〉〈|ϕ̃(~k2)|2〉.

3.4.4. Show that equation (3.4.2) holds. In other words show that, unlike what
happens in momentum space as described by equation (3.4.1), this type of
factorization does not happen in position space. In order to do this, first
show that 〈ϕ(~x)〉 = 0, so that the right-hand side of equation (3.4.2) is zero.
Then apply Fourier transformations to the left-hand side of equation (3.4.1)
and obtain the result given in equation (3.4.3) for the two-point function in
position space. Finally, show that the right-hand side of this last equation is
never zero.

3.4.5. Using the techniques given in the text for the calculation of the functional
integrals, demonstrate the factorization formula

〈|ϕ̃(~k)|2n〉 = (2n− 1)!!〈|ϕ̃(~k)|2〉n,

for the case of purely real modes ϕ̃(~k), while for the case of modes in which

ϕ̃(~k) has a non-zero imaginary part, demonstrate the factorization relation
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〈|ϕ̃(~k)|2n〉 = n!〈|ϕ̃(~k)|2〉n,

for an arbitrary integer n in either case.

3.4.6. Using previous results already known and/or Fourier transforms, calculate
explicitly, at an arbitrary site ~n, the quantities 〈ϕ4(~n)〉 and 〈ϕ2(~n)〉, showing
in this way that the following factorization formula is valid for them:

〈ϕ4(~n)〉 = 3〈ϕ2(~n)〉2.

3.5 External Sources in the Quantum Theory

We studied before, in sections 2.10 and 2.11, the role of the external sources in
classical field theory. We will examine in this section the behavior of the models
when one introduces external sources in the quantum theory. We saw that, in
the case of the classical theory, the effect of the introduction of external sources is a
deformation of the classical solution, which depends of the specific form of the source
which is introduced. This happens due to the change, in the space of configurations,
of the position of the minimum of the action, which is caused by the introduction
of the external source. We will see that something similar happens in the case of
the quantum theory. It is clear that, in this case, it is not what happens to the
position of the minimum of the action which is of immediate interest, but rather
what happens with the relative statistical weights exp(−S) associated to all possible
configurations.

We saw, in the example of the classical theory of the free scalar field on a period-
ical lattice, that the classical solution without sources was simply ϕ ≡ 0, and that
it changed to a non-zero solution ϕ[j] in the presence of the external source j. This
is not a local point-by-point relation between ϕ and j, but rather a global relation,
so that we may say that the solution ϕ[j] is a type of functional of j: in order to
determine ϕ(s) at a site s it is not sufficient to know j(s), instead it is necessary to
know j at all lattice sites. In a similar way, we have that in the quantum theory of
the free scalar field on a periodical lattice the expectation value v = 〈ϕ〉 of the field
is zero in the absence of external sources. In this case the effect of the introduction
of the external source is to cause v(s) to be no longer zero, but rather a function of
position that depends on the source j.

In order to exemplify these facts, let us calculate the expectation value of the
field in the free theory, with periodical boundary conditions. When we have an
external source the action is given by equation (2.10.1),

S0[ϕ] =
1

2

∑

ℓ

(∆ℓϕ)
2 +

α0

2

∑

s

ϕ2(s)−
∑

s

j(s)ϕ(s).
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We know that the external source will make v 6= 0, unlike what happened before,
since it breaks the symmetry by the transformation ϕ → −ϕ, which we used before
to show that the expectation value was zero. We may then rewrite the theory in
terms of a new variable, the shifted field ϕ′ given implicitly by ϕ′ = ϕ − v, where
〈ϕ′〉 = 0 by definition. If j is a function of position then the same should hold for
v. We may then rewrite the action in terms of ϕ′, obtaining

S0[ϕ] =
1

2

∑

ℓ

(∆ℓϕ
′)2 +

1

2

∑

ℓ

(∆ℓv)
2 +

∑

ℓ

(∆ℓv)(∆ℓϕ
′)

+
α0

2

∑

s

ϕ′2(s) +
α0

2

∑

s

v2(s) + α0

∑

s

v(s)ϕ′(s)

−
∑

s

j(s)ϕ′(s)−
∑

s

j(s)v(s)

=
1

2

∑

ℓ

(∆ℓϕ
′)2 +

α0

2

∑

s

ϕ′2(s)

+
∑

ℓ

(∆ℓv)(∆ℓϕ
′) + α0

∑

s

v(s)ϕ′(s)−
∑

s

j(s)ϕ′(s)

+
1

2

∑

ℓ

(∆ℓv)
2 +

α0

2

∑

s

v2(s)−
∑

s

j(s)v(s).

Observe that the third line of the second version of this equation contains only
terms which are independent of ϕ. When we exponentiate S0 these terms become
a constant multiplying the functional integral and, since they exist in the integrals
both in the numerator and in the denominator, these factors cancel out, in all
observables. It is therefore clear that we may discard these terms without changing
anything in the quantum theory. We will commit here a small abuse of language and
discard the terms without, however, changing the symbol S0 to reflect the change.
The first line of the equation is the action from which we started written for the
field ϕ′, while the second contains only terms linear in ϕ′. If we recall our symmetry
arguments leading to the fact that 〈ϕ〉 = 0 in the theory without sources, added to
the fact that we are defining v here in such a way that 〈ϕ′〉 = 0, we see that this will
only be possible if these linear terms, which are not invariant by the transformation
ϕ′ → −ϕ′, are in fact zero for any ϕ′. Clearly, this is a condition which we can use
to determine v,

∑

~n

[
∑

µ

(∆µv)(∆µϕ
′) + α0v(~n)ϕ

′(~n)− j(~n)ϕ′(~n)

]
= 0, ∀ϕ′, (3.5.1)

where we decomposed the sum over ℓ in sums over µ and ~n. Since the boundary
conditions are periodical, we may write this equation in another, equivalent form,
performing an integration by parts in the first term to obtain

∑

~n

[
−∆2v + α0v(~n)− j(~n)

]
ϕ′(~n) = 0, ∀ϕ′. (3.5.2)
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In any case the important point is that it must be valid for all the configurations ϕ′

that exist in the ensemble of the quantum theory. Note that this equation does not
have a classical limit, because ϕ′ is an arbitrary configuration of the quantum theory,
and therefore it is not necessarily a continuous function in the continuum limit.
While ϕ′(~n) is a completely arbitrary function on the lattice, the quantity within
brackets contains only expectation values or classical quantities, all such quantities
having well-defined definite values. This is true both for the given external source
j and for the expectation value v of the field that results from its introduction. It
becomes clear therefore that the only way to satisfy this equation for all ϕ′ is that the
quantity within brackets be zero (problem 3.5.1). This equation gives us a condition
involving j and v, which determines the relation between these two quantities.

However, since the quantity within the bracket includes a finite-difference oper-
ator, it is not so straightforward to solve it as a stand-alone equation in its current
form. Another way to obtain the same result, which makes it easy to solve the equa-
tion, is to write all the functions of position in terms of their Fourier transforms. We
will do this starting from equation (3.5.1). We have for the field ϕ′, the expectation
value v and the external source j,

ϕ′(~n) =
∑

~k′

e−ı 2π
N

~k′·~n ϕ̃′(~k′),

v(~n) =
∑

~k

e−ı 2π
N

~k·~n ṽ(~k),

j(~n) =
∑

~k

e−ı 2π
N

~k·~n ̃(~k),

so that we may write equation (3.5.1) as

0 =
∑

~n

∑

~k

∑

~k′

[
∑

µ

(
∆µe

−ı 2π
N

~k·~n
)
ṽ(~k)

(
∆µe

−ı 2π
N

~k′·~n
)
ϕ̃′(~k′)

+α0 e
−ı 2π

N
(~k+~k′)·~n ṽ(~k) ϕ̃′(~k′)− e−ı 2π

N
(~k+~k′)·~n ̃(~k) ϕ̃′(~k′)

]

=
∑

~k

∑

~k′

[
∑

~n

e−ı 2π
N

(~k+~k′)·~n

]

×
[
−ṽ(~k) ϕ̃′(~k′)

∑

µ

ρµ(~k) ρµ(~k
′) e−ı π

N
(kµ+k′µ) + α0 ṽ(~k)ϕ̃

′(~k′)− ̃(~k) ϕ̃′(~k′)

]

=
∑

~k

∑

~k′

Ndδd(~k,−~k′)

×
[
−ṽ(~k)

∑

µ

ρµ(~k) ρµ(~k
′) e−ı π

N
(kµ+k′µ) + α0ṽ(~k)− ̃(~k)

]
ϕ̃′(~k′)

= Nd
∑

~k

ϕ̃′(−~k)
[
ṽ(~k)

∑

µ

ρ2µ(
~k) + α0ṽ(~k)− ̃(~k)

]
,
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where we used the fact that the complex exponentials are eigenvalues of the finite-
difference operator and also the orthogonality and completeness relations. Note that,
once more, this must be true for all the configurations ϕ̃′(~k) of the field, functions
which are as arbitrary in momentum space as the functions ϕ′(~n) are arbitrary in
position space. It follows therefore, exactly as before, that it is necessary that the
contents of the bracket vanish,

ṽ(~k)
[
ρ2(~k) + α0

]
− ̃(~k) = 0,

which is the version in momentum space of the equation for v that one obtains from
equation (3.5.2),

[
−∆2 + α0

]
v(~n)− j(~n) = 0.

We have therefore the solution for the expectation value v in the quantum theory,

ṽ(~k) =
̃(~k)

ρ2(~k) + α0

. (3.5.3)

One can verify (problem 3.5.2) that this equation may also be obtained directly
from the self-consistency equation 〈ϕ′(~n)〉 = 0, by direct calculation of the Gaussian
integrals involved in this expectation value. Naturally, this is the more direct and
straightforward way to obtain the result. The argument presented above is a shortcut
based on symmetry arguments.

Note that the solution obtained is exactly the same solution obtained in the
classical case for the field in the presence of the external source. It is important to
emphasize that this fact is a characteristic exclusively of the free theory, due to its
linearity, and is not valid in general. Having obtained the result in momentum space
it is not difficult to write it in position space. One can show directly (problem 3.5.3),
taking the inverse Fourier transform of this solution, that

v(~n) =
∑

~n′

K(~n, ~n′)j(~n′), (3.5.4)

where K(~n, ~n′) is given by

K(~n, ~n′) =
1

Nd

∑

~k

e−ı 2π
N

~k·(~n−~n′)

ρ2(~k) + α0

.

One can show also (problem 3.5.4) that K(~n, ~n′) is the propagator in position space,

K(~n, ~n′) = 〈ϕ′(~n)ϕ′(~n′)〉.

This propagator tells us how the introduction of a source at the point ~n′ affects the
average value of the field at another point ~n, that is, it describes the propagation of
relations of cause and effect within the model.
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We see in this way that, in a way analogous to what happens in the classical
theory, the quantum theory also establishes a functional relation between the expec-
tation value v of the field and the external source j. In the free theory this functional
relation is the same that appears in the classical version of the theory, but this is not
true in general. The fact that the relation is the same in either case in this simple
example is not very important, what really matters is that in the quantum case, in
a fashion analogous to what happens in the classical case, the theory establishes a
well-defined relation between the external sources and the expectation value of the
field. In the classical case we can establish the physical interpretation of the theory
in terms of this relation, so that we have here quite a familiar way of doing the
same thing on the quantum case. In fact, the effects of the quantization process on
the models, that is, the consequences of the quantum theory, can be explored by
means of the examination of the functional relation between v and j in the quantum
theory. As we shall see in what follows, this can most conveniently be done in terms
of a functional that we will call the effective action of the model, which is a way to
encode concisely this functional relation.

Problems

3.5.1. Show in detail that the only way to satisfy equations (3.5.1) and (3.5.2) for
all possible field configurations ϕ′(~n) on the lattice is that the expressions in
brackets that appear in these equations be zero. One way to do this, among
many others, is to choose a particular set of functions ϕ′(~n) that can constitute
a basis for the representation of any element of configuration space, which is
a vector space with a large but finite dimension, RNd

.

3.5.2. Calculate the expectation value in the equation 〈ϕ′(~n)〉 = 0 and use it to
derive the solution for v in terms of j in the quantum theory, showing that the
answer coincides with the one derived in the text.

3.5.3. Calculate the inverse Fourier transform of equation (3.5.3) in order to obtain
the solution in position space given in equation (3.5.4).

3.5.4. Show through the direct calculation of the expectation value that K(~n, ~n′) is
the propagator of the model in position space, 〈ϕ′(~n)ϕ′(~n′)〉.

3.5.5. Show that the width of the distribution of values of the field at a single site,
in the free theory with an external source j, which is given by

σ2
(j) = 〈ϕ2〉(j) − 〈ϕ〉2(j),

where the index j indicates the presence of the external source, is equal to the
width of the theory without the external source, which is given by

σ2 = 〈ϕ2〉 − 〈ϕ〉2,
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and, therefore, that it is independent of both j and the lattice position where
the expectation values are calculated.

3.6 Functional Generators on the Lattice

We saw in section 3.5 that the quantum theory, in a way analogous to the classical
theory, establishes a functional relation between the expectation value v of the field
and the external source j, which means that in order to calculate v at a given
point it is necessary to know j at all points, not only at that particular point. It
was mentioned there that this relation can be used to explore the properties of
the quantum theory. In this section we will introduce the functional generators

of the correlation functions of the quantum theory on the lattice, which are the
instruments that can be used for this type of analysis. The final objective of this
section is to arrive at the concept of the effective action. Observe that, differently
from what we have been doing up to this point in the discussion of the quantum
theory, the development presented in this section is of a very general character.
Instead of using the theory of the free scalar field to develop in detail concepts
whose qualitative nature may then be generalized, we will make the development
directly in the general case, for any arbitrary model of scalar fields.

In this section we will make a temporary change in notation and denote the
expectation value of the field by ϕ(c), not by v. We will also refer to ϕ as the
fundamental field, to distinguish it from ϕ(c), which will also be a type of field. In
order to develop the formalism we will assume that we have some model of scalar
fields defined by an action S[ϕ], without external sources, which has the property
that S[ϕ] = S[−ϕ] and, therefore, the property that 〈ϕ〉 = 0. We will then add
explicitly to this action a linear term with the external source, given as usual by the
product of j and ϕ,

S(j)[ϕ] = S[ϕ]−
∑

~n

j(~n)ϕ(~n).

When we do this the source causes the generation of a non-vanishing expectation
value for the field, which is a function of ~n and a functional of j,

ϕ(c)[j] = 〈ϕ(~n)〉(j) =

∫
[dϕ]ϕ(~n)e−S(j)

∫
[dϕ]e−S(j)

. (3.6.1)

The index j on the expectation value means that it is calculated in the distribution
of the theory with the external source, defined by S(j), instead of that defined only
by S. The expectation value ϕ(c) is also referred to as the “classical field” of the
quantum theory. This does not mean, however, that it can always be measured
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directly, because the expectation value of the field at a single site is an ultra-local
object, not an extended object on the lattice. For example, for a point source in the
theory of the free field ϕ(c) is the Green function and therefore has a divergence at
the origin, in the continuum limit. On the other hand, since this “classical field” is
an expectation value its value does not fluctuate like the fundamental field, that is,
it does behave basically like a classical quantity. By and large we may think of this
classical field ϕ(c) as an observable of the quantum theory, and that will be enough
for the purposes of this chapter. A deeper discussion of this topic will be presented
later on, when we introduce the concept of block variables.

An important point about the functional relation between ϕ(c) and j is that it is a
bijection, that is, given a j(~n) a certain function ϕ(c)(~n) is uniquely determined, and
vice-versa, given a certain ϕ(c)(~n) there is a unique function j(~n) that corresponds to
it. The first part of this statement is rather obvious, because a single cause j cannot
produce two different consequences ϕ(c)(~n). Regarding the second part, in the case
of the classical theory this is a simple consequence (problem 3.6.1) of the uniqueness
of the solution of a differential equation. In the quantum theory we may show this
in the following way: since S is invariant by the transformation ϕ → −ϕ, it follows
that S(j) is invariant by the joint change of sign of ϕ and j, which also has the effect
of changing the sign of ϕ(c). It is clear then that, if a certain j and a certain ϕ(c)

are related by the functional relation established by the quantum theory, then −j
and −ϕ(c) are as well. In addition to this, it is clear that any non-vanishing external
source affects the expectation value of the field in some way, so that only j = 0 is
related with ϕ(c) = 0. Given all this, it follows that there cannot be two different
sources j1 and j2 that produce the same ϕ(c), because otherwise there would be a
non-vanishing source j = j1−j2 that is related to ϕ(c) = 0 by the functional relation.

We will assume, for simplicity, that the models are defined on a finite lattice
within a box, with periodical boundary conditions. The basic functional generator
that we wish to define is a functional of the external source j, traditionally denoted
by Z[j],

Z[j] =
〈
e
∑

~n j(~n)ϕ(~n)
〉
=

∫
[dϕ]e−S(j)

∫
[dϕ]e−S

. (3.6.2)

Note that we have here an expectation value in the measure (or distribution) of S,
without the term with the external source. One may also say that Z[j] is the ratio
of two measures, one with j present and the other without it. Given j, Z is a real
number, a simple functional of j. As we will show later on, in general 〈S〉 diverges
in the continuum limit, so that Z is a possibly singular ratio in that limit, except
if j = 0, in which case Z = 1 both on finite lattices and in the continuum limit.
However, the value of Z itself is not actually very important, what really matters
is how it varies when we vary j. In any case it is a finite quantity on finite lattices,
where it can therefore be used for the operations to be described below, and anyway
we should always take the limit only at the final step of any given calculation, by
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which time Z will be gone from the picture.
We will consider, then, the functional derivatives of Z with respect to j(~n), that

is, the variations of Z when we vary j at a single point ~n. On the lattice functional
differentiation is no more than partial differentiation with respect to the variables
related to the degrees of freedom of the system. There is one j(~n) for each degree
of freedom ϕ of the system, and each value of j(~n) at the various sites is a variable
that may be changed independently, so that we have for our functional variations

dj(~n1)

dj(~n2)
= δd(~n1, ~n2),

where we used the symbol d to indicate the functional derivatives. Observe also
that only ϕ(c) depends on j, the fundamental field ϕ is independent of the external
sources. Taking n functional derivatives of Z we obtain

d
nZ[j]

dj1 . . .djn
=
〈
ϕ1 . . . ϕne

∑
~n j(~n)ϕ(~n)

〉
=

∫
[dϕ]ϕ1 . . . ϕne

−S(j)

∫
[dϕ]e−S

,

where we denoted the dependencies with the positions ~ni by means of indices i, for
simplicity of notation. Observe that the expectation value is taken in the measure of
S, without external sources. For j = 0 we recover from this formula the correlation
functions of the model in the theory without external sources,

d
nZ[j]

dj1 . . .djn
= 〈ϕ1 . . . ϕn〉 = g1,...,n.

However, for j 6= 0 we do not obtain the true correlation functions in the presence of
j, because the expectation values are taken in the measure of S. The true correlation
functions in the presence of j are given by the ratios

1

Z[j]

d
nZ[j]

dj1 . . .djn
= 〈ϕ1 . . . ϕn〉(j) =

∫
[dϕ]ϕ1 . . . ϕne

−S(j)

∫
[dϕ]e−S(j)

= g(j)1,...,n,

where the index (j) indicates that the expectation value is taken in the measure of
S(j) and where we do not make j = 0. In particular, the expectation value ϕ(c) of
the field is given by

ϕ(c)1[j] =
1

Z[j]

dZ[j]

dj1
=

d

dj1
ln(Z[j]).

This motivates the definition of another functional, related to Z by exponentiation,

W [j] = ln(Z[j]), that is, Z[j] = eW [j].
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The “classical field” ϕ(c)1 may now be written as

ϕ(c)1[j] = 〈ϕ1〉(j) =
dW [j]

dj1
=

1

Z[j]

dZ[j]

dj1
. (3.6.3)

In a way analogous to Z, the functional W also generates correlation functions of the
theory. However, we are looking in this case at a different set of functions. While Z
generates the full correlation functions g1,...,n, W generates functions that are called
the connected correlation functions g(c)1,...,n. As we saw above, the first derivative of
W with respect to j gives us the one-point function, the expectation value of the
field. In order to examine in more detail the nature of these functions, let us take
one more functional derivative of W . Starting from (3.6.3) we get,

d
2W [j]

dj1dj2
=

1

Z[j]

d
2Z[j]

dj1dj2
− 1

Z2[j]

dZ[j]

dj1

dZ[j]

dj2
= g(j)1,2 −ϕ(c)1ϕ(c)2 = g(c,j)1,2. (3.6.4)

Here g(j)1,2 is the complete propagator in the presence of j and g(c,j)1,2 is the con-
nected propagator in the same conditions. Note that, for j = 0 in a theory which is
symmetrical by reflection of the fields, as we assume here, we have that ϕ(c) = 0 and
then the two propagators coincide. However, for j 6= 0 or in cases where j = 0 does
not imply that ϕ(c) = 0, it is the connected propagator g(c,j)1,2 given by W , not the
full propagator g(j)1,2 given by Z, which is the true correlation function of the theory,
as we discussed in section 3.2. In order to obtain the correlations between ϕ1 and
ϕ2 in circumstances in which 〈ϕ〉 6= 0 it is necessary to subtract the product of the
expectation values of the two fields. We see therefore that W is a functional with a
more direct significance than that of Z. In particular, the functional W can be used
to write the functions of three, four or more points of the theory (problem 3.6.2),
which are related in a more direct way to the existence within it of true physical
interactions.

Up to this point, the structure that we have is that the functionals Z and W
depend on the external source j and that functional derivatives with respect to it
produce from these functionals all the correlation functions of the theory. Since the
physics of a model in the quantum theory is encoded in the set of its correlation
functions, these functionals may be understood as abbreviated condensations of all
the properties of the model. To calculate completely these functional is equivalent
to solve completely the theory, which usually is not an easy thing to do. We will
proceed now with the development of the formalism of the functional generators,
with the intent of obtaining a description of these properties in terms, not directly
of j, but of the classical field ϕ(c) that appears as a consequence of the introduction
of the external sources. Note that we may write the definitions of Z and W as

Z[j] = eW [j] =

∫
[dϕ]e

∑
~n j(~n)ϕ(~n)e−S

∫
[dϕ]e−S

,
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so that we may think of W as something like a “renormalized version” of the term
in the fundamental action involving the external sources,

∑
~n j(~n)ϕ(~n). Since there

is a definite relation between each j and each ϕ(c), we are led to think that it should
be possible to write W as a functional of ϕ(c) instead of j. Let us recall that the
first functional derivative of W is given by

ϕ(c)[j] =
dW [j]

dj
,

so that the total variation of W due to variations of j at each point may be written
in the form of a functional differential

dW =
∑

~n

dW [j]

dj(~n)
dj(~n) =

∑

~n

ϕ(c)(~n)dj(~n),

where dj are the arbitrary variations of j at all points. We may now define a new
functional Γ by means of a Legendre transformation applied to W ,

Γ =
∑

~n

j(~n)ϕ(c)(~n)−W [j].

Note that the first term is simply the expectation value of
∑

~n j(~n)ϕ(~n) because,
since j does not depend on ϕ, we have
〈
∑

~n

j(~n)ϕ(~n)

〉

(j)

=
∑

~n

〈j(~n)ϕ(~n)〉(j) =
∑

~n

j(~n)〈ϕ(~n)〉(j) =
∑

~n

j(~n)ϕ(c)(~n).

We consider now the variation of Γ due to an arbitrary variation of j, and therefore
of ϕ(c), obtaining

dΓ =
∑

~n

j(~n)dϕ(c)(~n) +
∑

~n

ϕ(c)(~n)dj(~n)− dW

=
∑

~n

j(~n)dϕ(c)(~n) +
∑

~n

ϕ(c)(~n)dj(~n)−
∑

~n

ϕ(c)(~n)dj(~n)

=
∑

~n

j(~n)dϕ(c)(~n),

where we used the Leibniz rule and the form of the differential of W . The conclusion
is that Γ is a functional directly of ϕ(c), because it depends only indirectly on j, its
functional derivative being given by

dΓ[ϕ(c)]

dϕ(c)

= j

and its functional differential by

dΓ =
∑

~n

j(~n)dϕ(c)(~n),
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showing that Γ is a functional only of ϕ(c). We may now write for our functionals
that

eW [j] = e
∑

~n j(~n)ϕ(c)(~n)e−Γ[ϕ(c)] =

∫
[dϕ]e

∑
~n j(~n)ϕ(~n)e−S

∫
[dϕ]e−S

.

At this point it starts to appear that Γ[ϕ(c)] has something to do with a kind of
“classical action” for the “classical field” ϕ(c). The functional Γ[ϕ(c)] is called the
effective action of the theory and we will see later on that this interpretation is
correct and can be in fact very useful. We may write its complete definition in the
form

e−Γ[ϕ(c)] =
〈
e
∑

~n j(~n)[ϕ(~n)−ϕ(c)(~n)]
〉
=

∫
[dϕ]e

∑
~n j(~n)[ϕ(~n)−ϕ(c)(~n)] e−S

∫
[dϕ]e−S

.

Note that, since Γ is a functional directly of ϕ(c), not of j, the external sources that
appear in this expression should be understood as functionals j[ϕ(c)]. As we shall
see in what follows, the effective action is related directly to the classical limit of
the theory, as well as to its main properties relative to propagation phenomena and
to the physical interactions that may exist in the theory.

Problems

3.6.1. Basing your arguments in the famous theorem relative to the uniqueness of
the solution of a differential equation under certain conditions, show that the
mapping between the classical solutions and the external sources in the clas-
sical theory of fields is a bijective or one-to-one map, that is, show that each
external source j corresponds to a unique classical solution ϕ(c).

3.6.2. Using the definition of the connected three-point correlation function,

g(c,j)1,2,3 =
d
3W [j]

dj1dj2dj3
,

in a theory with a non-vanishing external source j, show that it relates to the
complete three-point and two-point functions by

g(c,j)1,2,3 = g(j)1,2,3 − g(j)1,2 ϕ(c)3 − g(j)2,3 ϕ(c)1 − g(j)3,1 ϕ(c)2 + 2ϕ(c)1 ϕ(c)2 ϕ(c)3.

Substituting the complete propagators g(j)i,j in terms of the connected prop-
agators g(c,j)i,j, with the use of the relation shown in equation (3.6.4), show
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that the connected three-point function relates to the complete three-point
function by

g(c,j)1,2,3 = g(j)1,2,3− g(c,j)1,2 ϕ(c)3 − g(c,j)2,3 ϕ(c)1− g(c,j)3,1 ϕ(c)2−ϕ(c)1 ϕ(c)2 ϕ(c)3,

which corresponds to the subtraction from the complete function of all the
possible factorizations in terms of the connected functions of smaller number
of points.

3.6.3. Show, starting from the definition of ϕ(c)[j] in terms of j in equation (3.6.1),
that the variations of ϕ(c)(~n) and j(~n) at the same point ~n are related by

dϕ(c) =
[
〈ϕ2〉(j) − 〈ϕ〉2(j)

]
dj = σ2

(j)dj,

where σ(j) is the square of the local width of the distribution of values of ϕ at
any given site ~n,

σ2 = 〈ϕ2(~n)〉 − 〈ϕ(~n)〉2.

This is always a positive and non-zero number, which shows that, given the
sign we chose for the definition of S(j), ϕ(c) always increases with j if both
refer to the same point ~n.

3.6.4. Repeat the procedure in problem 3.6.3 for the case in which the two quantities
involved are at different points, ϕ(c)(~n1) and j(~n2) with ~n1 6= ~n2. Show that ϕ(c)

also increases with j in this case, so long as the model at issue has the property
that its propagator in position space is always positive, g(c)(~n1, ~n2) ≥ 0, for any
~n1 and ~n2. If we recall that the propagator is related to the Green function of
the classical theory, we see that this is intuitively a very reasonable property
for all models that we may want to examine.

3.7 Physical Significance of the Effective Action

As we saw in sections 3.5 and 3.6, both the classical theory and the quantum theory
establish well-defined functional relations between ϕ(c) and j. In the classical theory
this relation is established by the location of the minimum of the action S as a
function of the external source j, while in the quantum theory it is established by
the modification of the relative statistical weights exp(−S) of the field distribution
in configuration space, caused by the introduction of j. Unlike what happens in the
theory of the free scalar field, in general these two functional relations are different.
We may then ask whether there is in the quantum theory a functional whose mini-
mum establishes between ϕ(c) and j, in the fashion of what happens in the classical
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theory, the functional relation defined by this quantum theory. Clearly, this has to
be some functional of ϕ(c), so that we may consider its variations when we vary ϕ(c)

around the value defined by the quantum theory.

The objective of this section is to show that the effective action Γ[ϕ(c)] is such
a functional, besides analyzing its properties and establishing its role as a kind of
abstract of the properties of the quantum theory. Just as we did in section 3.6,
we will establish these facts in a general way, for any models of scalar fields, not
only for the free theory. We already saw in section 3.6 that the knowledge of the
functionals Z[j] and W [j] allows us to obtain all the correlation functions of the
quantum theory and, since from the physical standpoint the quantum theory may be
understood as the set of its correlation functions, we have through these functionals
a complete image of the quantum theory and its consequences. We will see here
that the effective action also has this same role, but that it presents the structure of
the quantum theory in a more synthetic and direct way. Obtaining Γ in closed form
corresponds to the complete solution of the theory and, therefore, is not usually an
easy task. However, it is often possible to formulate testable hypothesis about the
form of Γ or of parts of it, based on symmetry arguments or other types of reasoning,
that are very useful to guide us in our explorations of the structure of the models.

Our first task is to show that Γ is indeed related to the solution of the quantum
theory through a minimization process. In order to put in a clearer perspective our
procedure in this first part, let us point out that the classical theory and the quantum
theory act on very different spaces of functions with respect to the field ϕ. When we
study the classical theory through the principle of minimum action, we assume that,
in the continuum limit, the possible fields are continuous and differentiable functions
at almost all points, that is, all except a collection of isolated singularities, usually
associated to the presence of point sources, which are no more than mathematically
convenient fictions. In contrast to that, in the quantum theory we start by assuming
that the fields can assume values in a much larger space, the space of all possible
functions, without any restrictions of differentiability or even of continuity. As we
shall see in detail later on, this space of configurations is a space of functions which
are typically discontinuous at all points, even in the continuum limit. The imposition
on it of the statistical distribution of a given model attributes to each element of
the space different statistical weights but does not change the character typically
discontinuous of the configurations.

On the other hand, the space of the expectation values ϕ(c) of the field in the
quantum theory is much more limited than the space of the fields ϕ, because the
statistical averaging process over all the possible configurations has a strong effect
of eliminating the discontinuities and non-differentiabilities of the configurations,
usually resulting, in the continuum limit, in continuous functions for ϕ(c), which
in general are also differentiable except for a set of isolated singularities associated
to singularities in the external sources j that are included in the theory. As we
saw before, both the classical theory and the quantum theory establish functional
relations between the sources j and the continuous and mostly differentiable fields.
The relations among these spaces are illustrated in figure 3.7.1. In this figure J is
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J={ j }

{ ϕ }Q=

< >

RC

RQ

j0 ϕ
(c)0

C= (c){ ϕ   }

Figure 3.7.1: A diagram of the function spaces involved in the classical and quantum
theories.

the set of possible external sources, C is the set of possible configurations of the
fields in the classical theory and Q the set of possible configurations of the fields in
the quantum theory. The symbols RC and RQ represent the relations established
between J and C by the classical and quantum theories, respectively. The symbol
< > represents the averaging process of the quantum theory, which takes us from
Q into C.

In general, for j = 0 we have ϕ(c) = 0 and, for each j 6= 0 some fairly well-behaved
ϕ(c). Se see in this way that the possible configurations for ϕ(c) are determined by
the possible configuration of j that we may introduce in the theory. Since j are
classical external sources, we may think about the configurations of j as those that
we usually associate to distributions of sources or charges in the classical theory, that
is, densities represented by continuous and mostly differentiable functions to which
we may superpose arbitrary but finite sets of isolated point sources or charges. Once
this is settled, from this set of possible sources j the quantum theory determines
for each model a certain space of possible classical fields ϕ(c), which is a subspace of
Q and which we may take as the space that is relevant in the classical limit of the
theory. The classical limit is the limit of large wavelengths in which the quantum
fluctuations are ignored and the averages such as ϕ(c) represent what can be observed
in the theory.

We see in this way that, starting from the most general possible set of configura-
tions, the dynamical structure of the quantum theory itself automatically defines the
subspace of configurations which is relevant for the corresponding classical theory,
eliminating any need of imposing by hand the properties of this space in the classical
limit of the theory. By and large, we may think of J and C as copies of the same
space, the space where classical field-like objects exist. After all, an external source
is no more than a representation of an expectation value within some other model or
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some other part of a more general model, representing a part of the physical world
whose quantum behavior is not under direct scrutiny. Fundamentally, everything in
nature has an underlying quantum behavior and an ultimate theory in its most fun-
damental form should describe the quantum interaction between all parts of nature
without any explicit reference to external classical objects such as external sources.

It is in the context of this subspace of the possible configurations of the classical
field ϕ(c), defined by the averaging process in the quantum theory, that we will study
the behavior of Γ in the immediacy of the configuration ϕ(c)0 associated to a given
j0 by the functional relation established by the dynamics of the quantum theory. At
this point it is convenient to recall the definition of Γ,

Γ[ϕ(c)] = − ln





∫
[dϕ] e

∑
~n j(~n)[ϕ(~n)−ϕ(c)(~n)] e−S

∫
[dϕ] e−S





, (3.7.1)

as well as the fact that Γ is a functional of ϕ(c) alone, so that in this expression j
should be understood as just a functional of ϕ(c), through the functional relation
established between them by the quantum theory. Hence, given the effective action
Γ[ϕ(c)] defined in this way for a given but otherwise arbitrary ϕ(c), we will now
define the effective action in the presence of an arbitrary external source j0, not
necessarily the one that is related with ϕ(c) by the functional relation established by
the quantum theory, as

Γ(j) = Γ[ϕ(c)]−
∑

~n

j0(~n)ϕ(c)(~n).

Note that this new external source is a source for ϕ(c), not for ϕ, so we are asking
ourselves how would the action Γ behave as a classical action under the introduction
of a source. Given a fixed j0, this equation defines Γ(j) for an arbitrary ϕ(c), so that
its functional variation is given by

dΓ(j) = dΓ[ϕ(c)]−
∑

~n

j0(~n)dϕ(c)(~n).

In order to establish that the solution of the theory in the presence of j0 is given
by a local minimum of Γ(j), we will now consider the variations of this functional
around the point ϕ(c)0 which is the value of ϕ(c) that is related with j0 through the
functional relation established by the quantum theory. In this case the differential
of Γ(j) is the expression given above with

dϕ(c)(~n) = ϕ′
(c)(~n)− ϕ(c)0(~n).

It is necessary to make very clear in which way we should analyze the variations of
Γ(j). We assume that one makes small but otherwise arbitrary variations dϕ(c)(~n)
of the classical field and we ask what is the corresponding variation of Γ(j). In
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the second term of the equation above the external source is kept fixed at a given
function j0(~n) while ϕ(c) varies, but in the first term we should calculate the variation
of Γ that comes from its definition. Hence, when we calculate the variation of Γ, the
j[ϕ(c)] that appears in the definition, being a functional of ϕ(c), does not remain fixed
but rather varies with ϕ(c) according to the functional relation established between
them by the quantum theory.

Let us calculate then this variation of Γ, making a variation ϕ(c)0 → ϕ′
(c) of the

classical field around the value ϕ(c)0. The variation of Γ is given by

dΓ = Γ[ϕ′
(c)]− Γ[ϕ(c)0],

so that, using the definition of Γ, we obtain

dΓ = − ln





∫
[dϕ] e

∑
~n j′(~n)[ϕ(~n)−ϕ′

(c)
(~n)] e−S

∫
[dϕ] e

∑
~n j0(~n)[ϕ(~n)−ϕ(c)0(~n)] e−S





,

where the variation of ϕ(c) around ϕ(c)0 corresponds to a variation of j around j0,
j0 → j′[ϕ′

(c)]. In general both these variations are dependent on position. We will
now write j′ as j′ = j0 + dj and expand to first order the exponential that appears
in the denominator, getting

e
∑

~n j′(~n)[ϕ(~n)−ϕ′

(c)
(~n)] ≈ e

∑
~n j0(~n)[ϕ(~n)−ϕ′

(c)
(~n)]

{
1 +

∑

~n

[
ϕ(~n)− ϕ′

(c)(~n)
]
dj(~n)

}
,

from which it follows that

dΓ =

− ln





e−
∑

~n j0(~n)ϕ′

(c)
(~n)

∫
[dϕ] e

∑
~n j0(~n)ϕ(~n)

{
1 +

∑

~n

[
ϕ(~n)− ϕ′

(c)(~n)
]
dj(~n)

}
e−S

e−
∑

~n j0(~n)ϕ(c)0(~n)

∫
[dϕ] e

∑
~n j0(~n)ϕ(~n) e−S





,

where we took off the functional integrals factors that do not depend on ϕ. Writing
this expression in terms of S(j) = S −∑~n j0(~n)ϕ(~n) and manipulating it a little we
obtain

dΓ =
∑

~n

j0(~n)
[
ϕ′
(c)(~n)− ϕ(c)0(~n)

]

− ln




1 +

∫
[dϕ] e−S(j)

∑

~n

[
ϕ(~n)− ϕ′

(c)(~n)
]
dj(~n)

∫
[dϕ] e−S(j)
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=
∑

~n

j0(~n)dϕ(c)(~n)− ln

[
1 +

∑

~n

〈ϕ(~n)〉(j)dj(~n)−
∑

~n

ϕ′
(c)(~n)dj(~n)

]

=
∑

~n

j0(~n)dϕ(c)(~n)− ln

[
1−

∑

~n

dϕ(c)(~n)dj(~n)

]
,

since we have that 〈ϕ(~n)〉(j) = ϕ(c)0 and that dϕ(c) = ϕ′
(c) − ϕ(c)0. Expanding now

the logarithm to first order we obtain

dΓ =
∑

~n

j0(~n)dϕ(c)(~n) +
∑

~n

dϕ(c)(~n)dj(~n).

We have therefore for the variation of Γ(j), from its definition,

dΓ(j) =
∑

~n

j0(~n)dϕ(c)(~n) +
∑

~n

dϕ(c)(~n)dj(~n)−
∑

~n

j0(~n)dϕ(c)(~n)

=
∑

~n

dϕ(c)(~n)dj(~n).

If we recall now the result obtained in problem 3.6.3, according to which we may
write for the variations of j and ϕ(c) at the same arbitrary point ~n that

dj(~n) =
1

σ2
(j)

dϕ(c)(~n),

we see that we can write our final result for the variation of the effective action in
the presence of external sources,

dΓ(j) =
∑

~n

[dϕ(c)(~n)]
2

σ2
(j)

,

which means that, given a certain external source j0(~n) and a certain functional
Γ[ϕ(c)], the corresponding functional Γ(j) always increases, for any variation dϕ(c)(~n)
around the function ϕ(c)0(~n) determined by the quantum theory from j0(~n). It
follows that the functional Γ(j)[ϕ(c)] is at a minimum when dϕ(c)(~n) ≡ 0, that is,
when ϕ(c)(~n) is the function determined by the quantum theory.

In this way, we conclude that Γ describes how the quantum theory responds to
the introduction of external sources, in the same way in which S does the same thing
in the classical theory. We see therefore that, in the limit of large wavelengths, that
is, for distances which are much larger than those finite correlation lengths that
appear in the theory, in situations where the quantum fluctuations can be ignored,
Γ is indeed the classical action that describes the classical limit of the model, thus
describing its classical behavior, which exists as a consequence of the underlying
quantum structure of the model.

In order to continue to elucidate the significance of Γ we will now examine its
functional derivatives with respect to ϕ(c). We saw in section 3.6 that the functional
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derivatives of Z and W with respect to j give us directly all the correlation functions
of the theory. Let us now see how the derivatives of Γ can help us to probe the
structure of the theory. We already know the first derivative, which is

dΓ[ϕ(c)]

dϕ(c)1

= j1[ϕ(c)],

where we are using again the notation of the dependency on ~n1 by means of numerical
indices. It is tempting to differentiate this a second time directly in terms of ϕ(c),
but it is more convenient and clearer, causing less confusion, to proceed in another
way. We should always remember that the relation between j and ϕ(c) is not local
and that the derivative of the right-hand side of this equation is not as simple as it
may seem at first sight. We will differentiate this equation with respect to j first,
not with respect to ϕ(c), obtaining

d

dj2

dΓ[ϕ(c)]

dϕ(c)1

=
dj1
dj2

= δd1,2.

We now use the chain rule in order to rewrite the derivative in terms of ϕ(c),

d

dj2

dΓ[ϕ(c)]

dϕ(c)1

=
∑

3

dϕ(c)3

dj2

d
2Γ[ϕ(c)]

dϕ(c)3dϕ(c)1

= δd1,2.

Now, from equations (3.6.3) and (3.6.4) we have that

dϕ(c)3

dj2
=

d

dj2

dW

dj3
= g(c,j)3,2,

from which it follows that

∑

3

g(c,j)3,2
d
2Γ[ϕ(c)]

dϕ(c)3dϕ(c)1

= δd1,2. (3.7.2)

This result tells us that the second functional derivative of Γ is the inverse of the
propagator in position space, both the propagator and its inverse considered as
operators in space-time, with matrix representations such as the ones we saw before,
in section 2.3, for the finite-difference operators. We will give this new operator a
name, which is suggestive in the case of the free theory,

d
2Γ[ϕ(c)]

dϕ(c)1dϕ(c)2

= (c)1,2, (3.7.3)

where the propagator is the inverse of the operator (c), that is, g(c,j)1,2 = −1
(c)1,2.

Let us exemplify this with the theory of the free scalar field. One can show (prob-
lem 3.7.1) that, in the theory of the free scalar field defined by the action S0,

S0[ϕ] =
1

2

∑

ℓ

(∆ℓϕ)
2 +

α0

2

∑

s

ϕ2(s),
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the effective action has exactly the same form as S0, written in terms of the classical
field,

Γ[ϕ(c)] =
∑

~n

{
1

2

∑

µ

[
∆µϕ(c)(~n)

]2
+

α0

2
ϕ2
(c)(~n)

}
, (3.7.4)

where we decomposed the sum over links as usual. This fact explains in a clear way
why the propagator of the free quantum theory is equal to the Green function of
the free classical theory. We may now take the functional derivatives of Γ, which
we will do in a rather symbolic and formal way, leaving a more detailed approach
to the reader, in problem 3.7.2. Taking the first functional derivative we obtain

dΓ[ϕ(c)]

dϕ(c)1
=
∑

3

{
∑

µ

[
∆µϕ(c)3

] [
∆µδ

d
1,3

]
+ α0ϕ(c)3δ

d
1,3

}
,

where we once again are using the notation of numerical indices for the dependencies
on position, and we used the fact that the variables ϕ(c) are independent at all the
points, so that

dϕ(c)1

dϕ(c)2

= δd1,2.

Integrating the first term by parts, which does not produce any surface terms due
to the periodical boundary conditions, we then use the delta functions to eliminate
the sums and obtain

dΓ[ϕ(c)]

dϕ(c)1

=
∑

3

(−∆2
1,3 + α0δ

d
1,3)ϕ(c)3.

The second functional differentiation is now immediate and results in

d
2Γ[ϕ(c)]

dϕ(c)1dϕ(c)2

=
∑

3

(−∆2
1,3 + α0δ

d
1,3)δ

d
3,2 = −∆2

1,2 + α0δ
d
1,2.

We see that in this case the operator (c) is directly related to the Euclidean Klein-
Gordon operator. Note that, just as the Laplacian operator ∆2, the operator (c)

is not diagonal. We may write the content of this result in the form of operators in
configuration space,

(c)1,2 = (−∆2 + α0I)1,2,

where I is the identity operator. The fact that this operator is the inverse of
the propagator is translated in this language into the fact that the propagator is
the Green function of the Euclidean Klein-Gordon operator, satisfying the finite-
difference equation

∑

3

(−∆2 + α0I)1,3g(c)3,2 = δd1,2,
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which may be written in a more familiar form, in the continuum limit, as a differential
equation with a Dirac delta function in the non-homogeneous term, so that we have,
in terms of the corresponding dimensionfull quantities,

(
−
∑

µ

∂2
µ +m2

0

)
G(c)(x1 − x2) = δd(x1 − x2).

Observe that, since Γ is quadratic on the fields, any higher-order functional
derivative of Γ vanishes, showing that the propagator and hence the phenomenon
of propagation are the only physical content of this model. In general these higher-
order derivatives are related to the so-called irreducible functions with more than two
points, that is, with the physical interactions that exist in the models. Their absence
in this case is the mathematical translation of the fact that this is a theory of free
fields. In future volumes it will be seen that in non-linear models the higher-order
derivatives of the effective action will give us directly the renormalized coupling
constant, whose value describes the intensity of the physical interactions that exist
in the quantum theory.

Problems

3.7.1. Starting from its definition, given in equation (3.7.1), calculate the effective
action Γ of the theory of the free scalar field defined by S = S0, obtaining
the result given in the text, in equation (3.7.4). In order to do the calculation
transform the action to momentum space and use the explicit relation between
ϕ̃(c) and ̃ given in equation (3.5.3), which in our current notation may be
written as

ϕ̃(c)(~k) =
̃(~k)

ρ2(~k) + α0

.

3.7.2. Using the explicit form of the effective action Γ of the free theory, given in
equation (3.7.4), for the one-dimensional case d = 1, calculate its second func-
tional derivative with respect to the classical field, in two positions n1 and
n2,

d
2Γ[ϕ(c)]

dϕ(c)(n1)dϕ(c)(n2)
,

showing that the result is 2+α0 if n2 = n1, −1 if n2 = n1+1 or if n2 = n1− 1
and 0 in any other case. In this way, it becomes clear that this operation of
functional differentiation does in fact recover the matrix elements of the matrix
representation of the Euclidean Klein-Gordon operator in configuration space.
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Chapter 4

Correlation Structure

In this chapter we will perform a careful and detailed analysis of the two-point corre-
lation function of the Gaussian model. In this way we will be using the calculational
techniques described in the previous chapters in order to probe into the fundamental
structure of the theory, regarding its correlation functions. This is where we depart
from the purely traditional approach to the subject, because we shall see that the
results obtained are not part of that traditional approach, and lead to the necessity
of a fundamental reinterpretation of the theory. In fact, some aspects of the behavior
of the two-point function are quite surprising at first sight.

We will also examine in detail the issue of the mathematical nature of the field
configurations that contribute in a dominant way to the expectation values of the
theory. The conclusion that we will be led to, that those configurations are not
only non-differentiable functions, but that they are in fact discontinuous functions
on all the points of their domains, will put the definition of the quantum theory of
fields in terms of functional integrals defined on the lattice in sharp contrast to the
usual path-integral approach to quantum mechanics. This important fact will have
important future consequences for the mathematical treatment of the theory.

We will also introduce and examine in detail the concept of block variables,
which will be instrumental in solving the conceptual problems posed by the singular
structure of the two-point function. In fact, these variables will turn out to be
of central importance for the physical interpretation of the theory. We will see
that these variables are closely related to the Fourier components of the field in
momentum space, and hence that these Fourier components are quantities more
closely related to the observational aspects of the theory, and better instruments
than their counterparts in position space for looking into the physical content of the
theory.

4.1 Structure of the Two-Point Function

As we saw in section 3.4, the complete solution of the theory of the free scalar
field is reducible to the calculation of the propagator, with the consequence that all
the physics of the theory is contained in the structure of this propagator. We will

129
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examine here, in more detail, the properties of this function, which describes how
objects propagate in this model. Since propagation is in itself an important physical
phenomenon, it is worth wile to focus for some time on a more detailed analysis of
the structure of the propagator.

In momentum space this structure is very simple, it is just a function of the
momenta that decays quadratically for large momenta. In the context of the acqui-
sition of a better understanding of the inner workings of the quantum model, the
exploration that is of most interest to us is that of the propagator in position space.
The dimensionless propagator in position space,

g(~x1, ~x2) = 〈ϕ(~x1)ϕ(~x2)〉,

is a function only of ~x1 − ~x2 and may be written as

g(~x1 − ~x2) =
∑

~k

e−ı 2π
L
~k·(~x1−~x2)〈|ϕ̃(~k)|2〉

=
∑

~k

e−ı 2π
L
~k·(~x1−~x2)

Nd[ρ2(~k) + α0]
,

as we saw in the derivation of equation (3.4.3). Our initial objective relative to this
function is to calculate its value for ~x1 = ~x2 = ~x, in which case we have the quantity

σ2 = g(~x− ~x) = g(~0) = 〈ϕ2(~x)〉,

a quantity that, by discrete translation invariance on the torus, is independent of
position. Since we have that 〈ϕ(~x)〉 = 0, it follows that σ2 is the square of the
width of the distribution of values of the dimensionless field ϕ at a give site, that is,
σ =

√
σ2 is the average size of the fluctuations of the field around its average value

of zero. We will refer to σ as the local width of the distribution of the fields. We
may write for this quantity

σ2 =
1

Nd

∑

~k

1

ρ2(~k) + α0

. (4.1.1)

With the objective of determining whether or not this quantity has a finite limit
in the continuum limit, we start by approximating it by an integral. Note that
this is a mere approximation, which allows us to acquire a qualitative idea of the
behavior of this quantity, and that the expression above for σ2 does not converge
to an integral in the continuum limit, since we are taking this limit within a finite
box, where the Fourier modes and their momenta are always discrete. Since the
smallest non-vanishing value for the momentum components inside the box is 2π/L,
the “element of volume” in momentum space is given by

ddp =

(
2π

L

)d

, that is,

(
L

2π

)d

ddp = 1.
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Substituting this “1” in equation (4.1.1) and approximating the discrete lattice quan-

tity ρ2(~k) + α0 by a2[p2(~k) +m2
0] = L2[p2 +m2

0]/N
2 we obtain

σ2 ∼ 1

Nd

∑

~k

ddp

(
L

2π

)d
N2

L2

1

p2 +m2
0

,

so that we may now approximate σ2 by the integral

σ2 ∼ 1

(2π)d

(
L

N

)d−2 ∫
ddp

1

p2 +m2
0

.

We must now discuss how to determine the extremes of integration. Note that for
d ≥ 3, due to the factor of Nd−2 in the denominator, the result can only be non-
vanishing in the N → ∞ limit if the integral diverges in that limit. For p near zero
the integrand is finite, so long as m0 is not zero, so that the integral cannot diverge
at this extreme. For simplicity, let us assume temporarily that m0 6= 0, postponing
until later the discussion of the case m0 = 0. It follows from these considerations
that for d ≥ 3 the only part of the domain of integration that matters is the one for
large absolute values p of the momenta. In any case, we can write the integral in
spherical coordinates in momentum space, obtaining

σ2 ∼ 1

(2π)d

(
L

N

)d−2

Ωd−1

∫ Nπ/L

0

dp
pd−1

p2 +m2
0

,

where Ωd−1 is the complete solid angle in d dimensions and Nπ/L is the largest
possible value for the components of the momentum on a lattice with N sites in
each direction. Since we are not interested in the lower limit of the integral, we may
neglect the m0 that appears in the denominator and write the integral as

σ2 ∼ 1

(2π)d

(
L

N

)d−2

Ωd−1

∫ Nπ/L

pm

dp pd−3,

where pm is some small and finite but non-vanishing value of the momentum, which
we could choose to be m0 or 2π/L. Recalling that we are discussing all this mostly
in the context of the case d ≥ 3, we see now that for dimensions d ≤ 2 the factor of
p appear in the denominator, so that indeed we will have to examine the cases d = 1
and d = 2 separately. We may now do the integration for the case d ≥ 3, obtaining

σ2 ∼ 1

(2π)d

(
L

N

)d−2

Ωd−1
pd−2

d− 2

⌈Nπ/L

∼ 1

(2π)d

(
L

N

)d−2

Ωd−1
1

d− 2

(
Nπ

L

)d−2

,

were we neglected the contribution from the lower extreme of the integral, which
vanishes in the limit. We see that the factors of N cancel out and that the final
result for σ2 in the limit N → ∞ is
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Figure 4.1.1: Behavior of the squared local width σ2 with N in the case d = 1.

σ2 ∼ Ωd−1

2dπ2(d− 2)
,

which is finite, for in our case here d ≥ 3 and Ωd−1 is always a finite number
different from zero, since it is the volume of a compact manifold, the surface of
the d-dimensional unit sphere. For the case d = 2 the exponent of N vanishes, so
that the factor in front of the integral neither diverges nor vanishes. It follows that
in this case both the upper and the lower extremes of integration are in principle
important. In this case we have Ω1 = 2π and the integral results in

σ2 ∼ 1

2π

∫ Nπ/L

pm

dp

p
∼ 1

2π
ln

(
Nπ

Lpm

)
,

so that the upper extreme still dominates and in this case σ2 diverges logarithmically
with N , in fact a type of behavior that is very common in the case d = 2. In the
case d = 1 the factor in front of the integral diverges as N , so that in this case we
have the opposite of what happens in the other cases, and only the lower extreme
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Figure 4.1.2: Behavior of the squared local width σ2 with N in the case d = 2.

of the integral contributes. In this case we have that Ω0 = 2 and the integral may
be written as

σ2 ∼ N

πL

∫ Nπ/L

pm

dp

p2
∼ N

πLpm
,

so that in this case σ2 diverges linearly with N . Due to the fact that in these cases
the lower extreme contributes significantly to the integral, these are the only cases
in which the results depend on pm, that is, on the details of the choice of the lower
integration limit. Since this limit was introduced only to allow us to eliminate m0

from the integrand and hence facilitate the realization of the integral, this means, in
fact, that in these cases the results depend on m0. In fact, it is possible to improve
the analytical calculation in the case d = 1 (problem 4.1.1), so as to verify this is an
explicit way.

One can perform more careful calculations than these to evaluate the sums that
appear in the formulas for σ2, building integrals that are strict lower bounds and
strict upper bounds to the sums (problem 4.1.4), so as to prove that σ2 in fact
behaves as a function of N , for large N , in the way given here. In any case, it must
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Figure 4.1.3: Behavior of the squared local width σ2 with N in the case d = 3.

be emphasized that these are all just approximations that allow us to determine no
more than the type of asymptotic dependency of σ2 with N . This is still true even
if we make the volume V = Ld of the box go to infinity, so that the volume element
(2π/L)d in momentum space goes to zero. The reason is that the quantity ρ2(~k)/a2

that appears in the integrand only approaches p2 if N → ∞ with kµ kept finite, while
the sum over the momenta will always include terms in which kµ ∼ ±N/2. Hence,
for terms close to the upper limit of the sum it is not true that (ρ/a)2 approaches
p2. Note that for d ≥ 3, since it is necessary that the integrals diverge in order for
σ2 not to vanish, the main contribution to the final result comes precisely from such
terms. The same is true for d = 2, while for d = 1 the situation is reversed, and the
main contribution comes from the lower extreme of the integral, so that in this case
it is possible that the result of the approximation by the integral in fact becomes
exact when we go to infinite space, if we do not make any further approximations.

For a precise calculation of the values of σ2 in each dimension it is necessary
to write programs to performs the sums on finite lattices with various sizes and
then to extrapolate the results to the case N → ∞. The graphs that can be found
in the figures numbered from 4.1.1 to 4.1.5 show the values of σ2 for sequences
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Figure 4.1.4: Behavior of the squared local width σ2 with N in the case d = 4.

of finite lattices in dimensions d from 1 to 5, for the case m0 = 1, obtained by
the use of such programs. For d = 1 one can see clearly the linear divergence
with N . In the case d = 2 the logarithmic divergence is also quite clear and it is
not difficult to make sure of its nature by simply plotting the graph on an adequate
logarithmic scale (problem 4.1.5). Starting with the d = 3 case the behavior changes
radically, the function σ2(N) becomes a decreasing rather than increasing function
of N , approaching a plateau at a finite and non-vanishing value. The flatness of this
plateau becomes clearer as the dimension increases, at the same time that its value
decreases. In addition to this, as the dimension increases the value of the plateau is
approached ever faster, for lattices which are ever smaller in their linear dimensions.
Extrapolating these results (problem 4.1.6) to the limit N → ∞ we obtain for σ the
final results shown in table 4.1.1.

In all this analysis we see, in a very clear way, that the cases d = 1 and d = 2
are very special. For d ≥ 3 we have finite fluctuations of the values of ϕ at the sites,
while for d = 1 and d = 2 these fluctuations diverge. Observe that in all cases σ2

is the maximum value of g, because for ~x1 6= ~x2 the terms of the sum that defines
g are multiplied by numbers with absolute values smaller than 1. This is consistent
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Figure 4.1.5: Behavior of the squared local width σ2 with N in the case d = 5.

with the graphs of these functions that we saw before in section 3.5, which decay
when ~x1 moves away form ~x2.

We will now examine the behavior of the dimensionfull versions of g and σ2. Note
that we can define a quantity Σ2 for the dimensionfull field in a way analogous to
the definition of σ2. Given the scaling relations for the fields, we immediately have
that Σ2 = a2−dσ2, so that we may immediately deduce from table 4.1.1 the behavior
of Σ2. In d = 1 this quantity has a finite value proportional to L and for d = 2 it is
equal to σ2, and therefore it diverges in the same way, logarithmically. However, for
d ≥ 3 it diverges with some power of N , from which it follows that the dimensionfull
field undergoes fluctuations of infinite magnitude in the continuum limit. This is the
first sign indicating the extremely singular character of the behavior of the theory,
and possibly the fact that the fundamental fields are not variables amenable to a
direct physical interpretation.

Let us now continue our analysis by the examination of the behavior of the
propagators in position space in the case in which ~x1 and ~x2 are two distinct points.
Still from our scaling relations for the fields we have that those of the propagator
should be G = a2−dg, where a = L/N , so that we may write for G
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d σ(N → ∞)

1 ≃
√

1/12 + 1/(m0L)2
√
N

2 ≃ 0.4095
√
ln (N)

3 ≃ 0.5027
4 ≃ 0.3936
5 ≃ 0.3400

Table 4.1.1: Results for the local width σ for large values of N .

G(~x1 − ~x2) =
Nd−2

Ld−2Nd

∑

~k

e−ı 2π
L
~k·(~x1−~x2)

ρ2(~k) + α0

.

This time our objective is to show that the function G is finite in the continuum
limit, so long as ~x1 6= ~x2. We will once more approximate the sum by an integral,

G(~x1 − ~x2) ∼ 1

Ld−2N2

∑

~k

(
L

2π

)d

ddp
e−ı~p·(~x1−~x2)

a2[p2(~k) +m2
0]

∼ 1

(2π)d

∫
ddp

e−ı~p·(~x1−~x2)

p2 +m2
0

. (4.1.2)

Observe that this time there are no divergent terms in front of the integrals. Once
more, we must discuss the extremes of integration. Our intention here is to eventu-
ally make L → ∞, going in this way from the finite box to infinite space, where G
has a simpler form. For the time being, however, we are still doing the integration
in the context of a finite position-space volume. For simplicity, we will approximate
the momentum-space integral doing it over a spherical domain whose radius is the
largest possible value of a momentum component on a d-dimensional lattice with
Nd sites. Under these conditions, if we define ~r = ~x1 − ~x2, we see that G depends
only on the modulus r of the vector ~r because, if we make an arbitrary change in
the angles of the versor r̂, we can make the integral over the momenta return to its
previous form doing a corresponding rotation of the integration variables. Hence we
can put ~r in the direction of the dth component of ~p and write, for dimensions d > 2,
without loss of generality,

G(r) ∼ 1

(2π)d

∫

Ωd−1

dd−1Ω

∫ Nπ/L

0

dp pd−1 e−ıpr cos(θd−2)

p2 +m2
0

, (4.1.3)

where θd−2 is the angle between the vector ~p and its dth component and the angular
integration is over the solid angle Ωd−1 of the d-dimensional space, with integration
element given by

dd−1Ω = dφ sin(θ1)dθ1 sin
2(θ2)dθ2 . . . sin

d−2(θd−2)dθd−2,
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Figure 4.1.6: Integration contours in the complex p plane.

where the azimuthal angle φ goes from 0 to 2π and all the others go from 0 to π.
Naturally, the total solid angle being a compact integration domain and the inte-
grand a bounded function within it, the integration over the angles in (4.1.3) always
gives finite results. In addition to this, as one can verify in detail in each case,
the oscillations of the complex exponential cause the integration over p to converge,
resulting always in a function that decays quickly for large r, as a decreasing expo-
nential. Due to this, in this case it is always the lower integration extreme of the
integral over p that dominates and, therefore, the results will depend on m0 in any
dimension d.

We will perform here the integrals in the cases d = 1 and d = 3, leaving the
others to the reader (problem 4.1.7). For the time being, we restrict the discussion
to the case r 6= 0. In the simplest case, d = 1, as well as in the case d = 2, it
is really neither necessary nor useful to write the integral in the form of given in
equation (4.1.3). In the case d = 1, with x = x1 − x2, we may calculate directly the
integral in the form shown in (4.1.2),

G(~x1 − ~x2) ∼
1

2π

∫ Nπ/L

−Nπ/L

dp
e−ıpx

p2 +m2
0

=
1

2π

∫ Nπ/L

−Nπ/L

dp
e−ıpx

(p− ım0)(p+ ım0)
.

We may calculate this integral in the complex-p plane without difficulty, in the limit
N → ∞. In this case the integral runs over the real line and, if x > 0, we should
close the circuit with an arc at infinity, of size π, in the lower half-plane, where the
imaginary part of p is negative, so that the argument of the exponential, −ıpx, has a
negative real part. Figure 4.1.6 illustrates the complex-p plane, with the integration
contours and the poles of the integrand at p = ±ım0. In this case the integral is
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equal to (−2πı) times the value of the residue of the integrand in the lower pole,
that is,

G(x > 0) =
1

2π
(−2πı)

e−m0x

−2ım0
=

e−m0x

2m0
.

If x < 0 we should close the contour by the other side, the factor multiplying the
residue is (2πı), and hence we obtain in this case

G(x < 0) =
1

2π
(2πı)

em0x

2ım0
=

em0x

2m0
.

Defining r = |x|, we can join the two answers in the final result

G(r) =
e−m0r

2m0
.

We see that the result is finite for all values of r, including r = 0. If fact, we can
verify directly that G(0) is finite in this case. As we saw before, we have for the
dimensionless function the behavior g(0) ∼ N/(πLpm) and, since in the case d = 1
it holds that G = ag, it follows that G(0) ∼ 1/(πpm), which is also finite. The
complete equality of the two results corresponds to the choice pm = 2m0/π for the
lower extreme pm on the integral used in the approximate calculation of σ2.

Passing now to the case d = 3, in this case we have from equation (4.1.3) that

G(r) ∼ 1

(2π)3

∫ 2π

0

dφ

∫ 1

−1

d[cos(θ)]

∫ Nπ/L

0

dp
p2

p2 +m2
0

e−ıpr cos(θ).

We can do immediately the integrals over φ e θ, obtaining

G(r) ∼ 1

4π2

∫ Nπ/L

0

dp
p2

p2 +m2
0

e−ıpr − eıpr

−ıpr

=
1

2π2r

∫ Nπ/L

0

dp
p

p2 +m2
0

sin(pr).

If we now observe that the integrand is even, we may write this as

G(r) ∼ 1

4π2r

∫ Nπ/L

−Nπ/L

dp
p

p2 +m2
0

sin(pr)

=
1

4π2r

∫ Nπ/L

−Nπ/L

dp
p

(p− ım0)(p+ ım0)

eıpr − e−ıpr

2ı
.

where we again wrote the sine in terms of complex exponentials. Each one of these
two integrals can be done in the complex-p plane, in the limit N → ∞, in the
same way in which we did the integral in the case d = 1, closing the circuit in the
appropriate way in each case. Doing this we obtain
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d G(r) m0 → 0 r ≫ 1/m0

1 1
2m0

e−m0r → ∞ = 1
2m0

e−m0r

2 1
2πK0(m0r) → ∞ ∼ 1

(8πm0r)
1/2 e−m0r

3 1
4πr e−m0r → 1

4πr = 1
4πr e−m0r

4 m0

4π2r
K1(m0r) → 1

4π2r2
∼ m

1/2
0

2(2πr)3/2
e−m0r

5 1 +m0r
8π2r3

e−m0r → 1
8π2r3

∼ m0

8π2r2
e−m0r

Table 4.1.2: Table of correlation functions in the continuum limit.

1

8π2ır

∫ ∞

−∞

dp
p eıpr

(p− ım0)(p+ ım0)
=

e−m0r

8πr
,

1

8π2ır

∫ ∞

−∞

dp
p e−ıpr

(p− ım0)(p+ ım0)
=

e−m0r

8πr
.

With this, we have the final result

G(r) =
e−m0r

4πr
.

This function is the Yukawa potential that, in the limit m0 = 0, reduces to the
Coulomb potential of electrostatics. Just as in the case d = 1, for m0 6= 0 this
function also falls off exponentially for large values of r, and it is finite at all points
except at r = 0, where it diverges. Once more this is compatible with our previous
calculation for g(0), since we saw that g(0) is finite and, for d = 3, we have that
G = g/a, which means that G(0) diverges when N → ∞ and therefore a → 0. In
fact, one can verify that G(r) is finite at the origin only for d = 1, and that in all
the other cases, starting with d = 2, it diverges, typically with a negative power of
r which is characteristic of each dimension d. The functions G calculated as in the
examples above, for various dimensions d, are given in the table 4.1.2, which also
contains the corresponding asymptotic behaviors for r → ∞, that is, for r ≫ 1/m0,
as well as for m0 → 0. The symbols K0 and K1 in this table are Bessel functions.

As one can see, these functions in infinite space have relatively simple forms in
terms of known functions. In a finite box the form of the correlation functions is
not so simple, and in general cannot be written in a simple way in terms of known
functions, but only as infinite series (problem 4.1.8). However, they continue to be
finite at all points ~x2 different from ~x1, so that there are no important qualitative
differences between the two cases. One observes that the propagators in the cases
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d = 1 and d = 2 diverge in the limit m0 → 0. These are what one refers to as infrared
divergences, a type of behavior which is characteristic of the lower dimensions, in
particular of d = 1 and d = 2. One can verify that the behavior for m0 → 0 is also
problematic in the case of the calculations of σ2 which we did before. We will now
examine how σ2 behaves in this limit, in each dimension. From equation (4.1.1) we
see that σ2 always diverges if we make α0 → 0, even on finite lattices, because the
term of the sum involving the mode ~k = ~0 diverges in this limit. We may write for
σ2

σ2 =
1

Ndα0
+

1

Nd

′∑

~k

1

ρ2(~k) + α0

,

where in the sum
∑′

~k the zero mode is omitted. As we mentioned before, the Gaus-
sian model on the torus indeed has a zero mode in the case α0 = 0, which is what
is causing us trouble. This is not a physical problem, but only a mathematical
problem that reflects the fact that the periodical boundary conditions are not com-
pletely realistic from the physical point of view. If we want to deal with models
where α0 = 0 on finite lattices, it will be necessary to change slightly the dynamics
of the models in order to eliminate the degree of freedom corresponding to the zero
mode, as indeed we will do in future volumes, when we discuss non-linear models of
scalar fields.

However, it is not necessary to make α0 = 0 on finite lattices in order to study
field theories which are massless in the continuum limit. It suffices to recall that α0

is related to the mass by α0 = (m0a)
2 = (m0L)

2/N2, so that α0 goes to zero in the
limit no matter what value is given to m0. Since we have

m2
0 =

1

L2
α0N

2,

we can either cause m0 to have a finite non-vanishing limit, by means of a decrease
in α0 given by 1/N2, or cause m0 to vanish in the limit by means of a decrease in
α0 which is faster than 1/N2. Hence, there is a way to represent zero-mass theories
by means of infinite sequences of finite lattices in which α0 is always different from
zero, which avoids the divergence of the zero-mode term in the sum that defines
σ2. It remains to be seen how this term behaves in the continuum limit, in each
dimension. For finite masses we have that this term is

1

Nd

N2

(m0L)2
=

1

(m0L)2Nd−2
,

so that we see that this term goes to zero for d ≥ 3, is constant for d = 2 and
diverges with N for d = 1. In all cases these results do not significantly affect the
calculations made before for m0 6= 0. For d = 1 the zero-mode term has exactly the
same behavior found for the sum, for d = 2 it is constant while the sum diverges
logarithmically and for d ≥ 3 it goes to zero, while the sum has a finite non-vanishing
limit.
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In order to have m0 → 0 in the continuum limit it suffices to make α0 vary with
N as

α0 =
C

N2+ε
,

where C is some positive constant and ε some positive number, which we imagine
to be small. In this case the zero-mode term is

1

Nd

N2+ε

C
=

1

C Nd−2−ε
.

We see that this term continues to go to zero for d ≥ 3, so long as ε is smaller than
1. For d = 2, however, it becomes divergent as N ε, that is, faster than the sum,
while in d = 1 the situation is similar, since in this case it diverges as N1+ε, also
faster than the sum. Therefore, we see that for d = 1 and d = 2 σ2 presents in fact
infrared divergences similar to those of G(r), when we make m0 → 0. These facts
are peculiar of these low dimensions and should now worry us. The important thing
is that there are no divergences in the expression of σ2 in the cases d ≥ 3, when we
make m0 go to zero, so that the results we obtained before continue to hold in these
dimensions. This is not surprising because, as we discussed before, for d ≥ 3 one can
see that the main contributions to σ2 come from the large-momentum terms of the
sum, so that the results should not depend on m0, which is a quantity characteristic
of the low-momentum region. Since σ2 cannot depend at all on m0 under these
conditions, it is clear that its behavior should not change when we make m0 → 0.

The graphs we showed before to illustrate the behavior of σ2 as a function of N
in each dimension were obtained using the value 1 for m0, but we see now that this
is not really a relevant fact. For the cases d ≥ 3, the only ones in which σ2 converges
to a finite value in the limit, one can show (problem 4.1.9) that in fact the limits
are completely independent of m0.

We will end this section using the facts established do far in order to show a
rather surprising fact relating to the behavior of the two-point correlation functions
in quantum field theory. If we recall the basic definition of the correlation function in
the context of statistical mechanics, discussed in section 3.2, we see that it does not
really make any difference if we discuss the correlations in terms of the dimensionless
function g or in terms of the dimensionfull function G, because in any case we should
analyze the statistical correlations among the fields at various points by means of
the homogeneous correlation function

f(r) =
g(r)

g(0)
=

G(r)

G(0)
.

We can calculate this function on finite lattices without any trouble and then take
the continuum limit. Let us examine then how f(r) behaves in this limit. It is clear
that, by definition, f(0) is always equal to one, both on finite lattices and in the
continuum limit. For other values of r we saw that G(r) is finite in the limit, while
G(0) diverges. It follows therefore that in the continuum limit f(r) vanishes for all
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non-vanishing values of r. Since for the cases of interest, with d ≥ 3, g(0) is also
finite and non-vanishing in the limit, it follows that for d ≥ 3 the two-point function

g(r) is also zero for r 6= 0. In short, we have the continuum-limit results

f(r) =

{
1 if r = 0
0 if r 6= 0

,

g(r) =

{
σ2 if r = 0
0 if r 6= 0

.

The meaning of these results is that the fundamental fields of quantum field theory
become completely uncorrelated in the continuum limit. One can say that when
one takes the continuum limit all the structure of the two-point function, including
the characteristics of the exponential decay related to the mass, collapse into the
origin. The result of the continuum limit looks like utter uncorrelated chaos. This
is a surprising result, because the correlation between the fields in Euclidean space
is directly related to the propagation of perturbations across space-time in the non-
Euclidean version of the theory. Furthermore, the nature of this propagation process
is supposedly classifiable according to the value of the physical mass m0, which can
be either zero or not zero.

In order to better understand the significance of these functions in quantum field
theory it is essential that we introduce the concept of block variables, which we shall
examine in detail later on. We will see that these block variables are the mechanism
by means of which physical order arises out of the utter chaos of the underlying
realm of the fundamental field variables. In this way one can say that quantum field
theory is an example of a type of self-organizing structure. We will also see that in
quantum field theory the only reasonably simple way to deal with the dynamics of
the models is to work with the dimensionfull propagator G(r), which is finite at all
points but the origin. Only through an analysis involving block variables we may
understand why this function is the one that has most physical relevance, despite
its divergence at the origin.

The behavior of g(r) shown above will also be useful in the intuitive discussion of
the important phenomenon of the triviality of the non-linear models of scalar fields,
which we will discuss in future volumes. This triviality means that the models fail to
contain physical interactions between particles in the continuum limit, despite their
non-linear nature. This is one reason why we must look elsewhere for physically
relevant interacting models, and are thus naturally led to the study of gauge theories.

Problems

4.1.1. Consider, in the case d = 1, the quantity Σ′2 = Lσ′2/N where σ′2 is defined
like σ2 except for the omission from the sum of the zero-mode k = 0. Calculate
Σ′2 in the particular case m0 = 0. Analyze from which extreme of the integral
comes the main contribution in this case, and verify that one can approximate
N2ρ2(k) by (2πk)2 for large N . It will be useful to recall the definition of the
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Riemann ζ(z) function in terms of a sum of 1/kz and look up in a table of
integrals its value for z = 2.

4.1.2. From the result of the problem 4.1.1 show that Σ2, as defined in the text, is
bounded by a finite real number so long as L and m0 are finite and not zero,

Σ2 ≤ L

12
+

L

(m0L)2
,

as reported in one of the tables given in the text.

4.1.3. Write a program to calculate Σ′2 numerically for lattices with increasing sizes.
From its results produce an extrapolation to the limit N → ∞ with constant
m0, and show that the result of problem 4.1.1 is exact within your numerical
precision.

4.1.4. (⋆) Consider the quantity Σ2 in the case d = 1, in a finite interval of length
L, for m0 6= 0 and an arbitrary N , which implies that α0 6= 0 on each finite
lattice, leaving open, however, the possibility that α0 → 0 when N → ∞.
Build, for each finite N , two integrals IM and Im over the coordinates k of
momentum space, extending them to real values, so that IM is strictly larger
and Im strictly smaller than the sum that defines Σ2. Calculate the integrals,
take after that the limit N → ∞ and demonstrate in this way that Σ2 has a
finite and non-vanishing limit in the continuum limit, assuming that m0 6= 0
in the limit.

4.1.5. Write a program to calculate the local width σ2 of the fields in the case d = 2.
Use the program to calculate σ2(N) for the values of N shown in the graph
given in the text and plot the results as a function of ln(N), with constant m0,
verifying in this way that the results display indeed a logarithmic divergence
in the continuum limit.

4.1.6. (⋆) Write a program to calculate the local width σ2 of the fields in the case
d = 3. Use the program to calculate σ2(N) for as many values of N as possible
with a reasonable amount of computer time, and make a numerical fitting of
the resulting function to an expression of the form

f(N) = f0 +
f1
Np

,

where f0, f1 and p are unknown constants. Repeat the fitting for several
subsets of the data, each with an increasing maximum value of N , in some
convenient way, thus obtaining successive estimates for these three quantities,
for increasing values of N . In this fashion, obtain an extrapolation of the result
for these three quantities to the continuum limit N → ∞, with constant m0.
Hint: try to start your fitting with p ∼ 1, f0 ∼ 1/4 and f1 ∼ 1 and remember
that the important thing is to adjust the function for large values of N .
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4.1.7. Obtain the dimensionfull correlation functions G(r) in position space for the
cases d = 2, d = 4 and d = 5, calculating the corresponding integrals over
momentum space, as discussed in the text.

4.1.8. Calculate the functions G(~x1 − ~x2) in the continuum, for d = 1 and d = 2,
within finite cubical boxes of side L, using fixed boundary conditions with
vanishing fields at the border, starting from the results presented in the text for
infinite space. Remember that these functions, besides being the propagators
of the quantum models in position space, are also the Green functions (fields
of unit point-like external sources) of the corresponding classical models. For
simplicity make ~x2 = ~0 and calculate the functions in terms of ~x1. Remember
also that the Gaussian models are linear and that a principle of superposition
holds for them, which enables one to use a version of the method of images,
which is very popular in electrostatics, to solve the problem. Your answers
should be written in the form of infinite series. In general these series are not
absolutely convergent, but they are Borel-sumable, that is, it is possible to
find a specific order of summation for which they converge. See if you can
figure out what is the special order for these sums.

4.1.9. Consider σ2(m0) as defined in equation (4.1.1), where α0 = (m0L)
2/N2. Con-

sider the cases for which d ≥ 3, in which both σ2 and m0 have finite and
non-vanishing limits in the continuum limit. Differentiate σ2 as a function of
m0 and show that the resulting sum goes to zero in the limit, thus showing
that σ2 becomes independent of m0 in the limit. In order to do this, approxi-
mate the sums by integrals over the momenta, as was done in the text for the
calculation of σ2.

4.2 Discontinuity of the Configurations

In this section we will discuss one of the most basic properties of quantum field
theory, which characterizes its inner workings in a very fundamental way. This is the
fact that the field configurations in configuration space that contribute in a dominant
way to the expectation values of the observables of the theory are discontinuous, in
the continuum limit, as functions of the coordinates that span space-time. This
property will have important consequences relating to many aspects of the inner
workings of the theory, as we will discuss later, mostly in subsequent volumes of
these notes.

Let us cite a few examples, so that the reader can judge the importance of
the topic: the discontinuity of the field configurations is the basic phenomenon
responsible for the appearance of divergent quantities in the perturbative approach
to the theory; it causes different finite-differencing schemes on the lattice, which are
equivalent in the classical theory, not to be so in the quantum theory; it changes in
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a qualitative way our conception of the role played in the theory by mathematical
concepts of a topological nature; it leads us in an emphatic way to the idea that only
the block variables to be discussed later can actually be physical observables within
the theory; it strongly suggests new quantization procedures on the lattice, which
are of a very geometrical nature, for theories that have a curved internal symmetry
space, as is the case for the very important non-Abelian gauge theories. Hence, this
is a central and unifying concept, related to many of the difficulties that appear
in the theory, difficulties that usually cause great confusion, specially among those
trying to learn it.

In order to examine this important concept we must start by discussing what we
mean by continuity of the configurations, because we will be taking the continuum
limit from finite lattices, which are discrete mathematical objects in which there is
no natural concept of continuity. Usually functions ϕ(~x), mappings from Rd into R,
are considered continuous in the direction µ of the domain if the finite difference

∆µϕ(~x) = ϕ(~x+ εx̂µ)− ϕ(~x)

approaches zero when ε → 0 both by positive and by negative values. However,
in quantum field theories defined by means of Euclidean functional integrals only
averages of functionals of the fields on some particular ensemble can be calculated
and used to extract the physically relevant properties of the theories. It is clear
that, since the fields at sites are random variables that undergo constant fluctuations
including changes of sign, the direct expectation value of the difference 〈∆µϕ(~x)〉
will be of no use to determine the character of continuity or discontinuity of the
fields because, even if these differences never vanish, they can change sign, causing
the average to vanish even for discontinuous fields. In fact, this average can be
written as

〈∆µϕ(~x)〉 = 〈ϕ(~x+ εx̂µ)〉 − 〈ϕ(~x)〉,

so that its vanishing would only mean that the expectation value 〈ϕ〉 of the field is
independent of position. It is clear that we need a quantity that vanishes only when
the field is continuous, that is, of an observable that cannot change sign. In this
situation we may use the quantity 〈[∆µϕ(~x)]

2〉, which is a measure of the average
“jump” and hence of the average discontinuity of the fields in the direction µ, in
order to define what we mean by continuity (problem 4.2.1). The fields will be
considered typically continuous if this quantity vanishes when we make ε tend to
zero. To be more precise, the configurations of ϕ(~x) are predominantly continuous
at ~x, in terms of the measure of the action, if and only if

lim
ε→0

〈[∆µϕ(~x)]
2〉 = 0.

However, this definition still does now exhaust the issue, because there is more than
one form to take this limit. In the formulation of quantum field theory on the lattice,
ε has to be some multiple of the fundamental lattice spacing a. The continuity of
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the fields may be examined by first taking the lattice spacing to zero, while ε is
kept constant in relation to the correlation length of the theory, and only after that
making ε tend to zero within the continuous space that results from the first limit.
This might be the more natural way to take the limit in order to establish a notion
of continuity for fields defined on a lattice, but it is not the most relevant way in the
context of the definition of the theory in terms of functional integrals on the lattice.

A different notion of continuity appears in this context. The quantum theory is
defined by the functional integral of the exponential of the action, and it is the be-
havior of the derivatives that this action contains which is of far more direct interest
to us. When the models are defined on the lattice, the discrete representation of the
action contains finite differences of the fields at close-neighboring sites. Therefore,
in the continuum limits within this formalism the quantity ε is is always kept equal
to the lattice spacing a. Hence, in this case the limits ε → 0 and a → 0 are taken
simultaneously, unlike what happened in the other type of limit. In what follows
we will stick to this type of limit, which is the one with greater relevance for the
definition of the quantum theory of fields by means of the lattice. However, one
can show (problem 4.2.2) that the situation does not change qualitatively when one
exchanges one type of limit by the other.

As always, we will use the theory of the free scalar field as an example. In
order to have a definite case to examine, we will also adopt periodical boundary
conditions, but this does not have any fundamental importance for the results. The
calculations we must do are not, in fact, very complex. It suffices to use the result
obtained before for the propagator of this model in momentum space, which can be
written as

〈ϕ̃(~k)ϕ̃(~k′)〉N =
δd(~k,−~k′)

Nd[ρ2(~k) + α0]
.

From this result it is simple to show that 〈[∆µϕ(~n)]
2〉N tends to a finite and non-

vanishing value when a → 0, that is, when N → ∞. Using the Fourier transforms
we may write

[∆µϕ(~n)]
2 =


∑

~k

ϕ̃(~k) ∆µe
ı 2π
N

~k·~n




∑

~k′

ϕ̃(~k′) ∆µe
ı 2π
N

~k′·~n




=
∑

~k

∑

~k′

ϕ̃(~k) ϕ̃(~k′) ρµ(kµ) ı e
ı π
N
kµ eı

2π
N

~k·~n ρµ(k
′
µ) ı e

ı π
N
k′µ eı

2π
N

~k′·~n,

where we used the fact that the complex exponentials are eigenvectors of the finite-
difference operator, as discussed in section 2.7. We also used the quantities ρµ(kµ)
defined in equation (2.7.1). Taking now the expectation value on an N -lattice we
obtain

〈[∆µϕ(~n)]
2〉N = −

∑

~k

∑

~k′

〈ϕ̃(~k)ϕ̃(~k′)〉N ρµ(kµ) ρµ(k
′
µ) e

ı π
N
(kµ+k′µ) eı

2π
N

(~k+~k′)·~n
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= −
∑

~k

∑

~k′

δd(~k,−~k′)

Nd[ρ2(~k) + α0]
ρµ(kµ) ρµ(k

′
µ) e

ı π
N
(kµ+k′µ) eı

2π
N

(~k+~k′)·~n

=
1

Nd

∑

~k

ρ2µ(kµ)

ρ2(~k) + α0

,

where we substituted the result for the propagator and used the delta function
to eliminate one of the sums over the momenta. Note that there is no sum over
µ in this expression. Since both the lattice and this observable are symmetrical
by permutations of the various directions µ, we may write this result in terms of
ρ2(~k) =

∑
µ ρ

2
µ(kµ) as

〈[∆µϕ(~n)]
2〉N =

1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

.

It is not difficult to find upper and lower bounds to the sum that appears in this
expression, which will hold for any value of N . In order to find an upper bound it
suffices to take off the positive constant α0 that appear in the denominator. It is
interesting to note that, since α0 → 0 in the continuum limit, it is reasonable to
think that this change does not in fact affect the result in the limit. In order to find
a lower bound it suffices to exchange the ρ2(~k) that appears in the denominator by
its maximum value, which is 4d. With this we obtain the relations

1

dNd

∑

~k

ρ2(~k)

4d+ α0

<
1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

≤ 1

dNd

∑

~k

ρ2(~k)

ρ2(~k)
⇒

1

4d+ α0

1

dNd

∑

~k

ρ2(~k) <
1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

≤ 1

dNd

∑

~k

1 ⇒

1

4d+ α0

1

Nd

∑

~k

ρ2µ(kµ) <
1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

≤ 1

d
⇒

1

4d+ α0

1

N

∑

kµ

ρ2µ(kµ) <
1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

≤ 1

d
.

The sum that remains in the case of the lower bound can be calculated (prob-
lem 4.2.3) by the decomposition of the sines in terms of complex exponentials,
followed by the use of the orthogonality and completeness relations. The result
is simply the number 2N , so that we have the final result for our sum,

2

4d+ α0
<

1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

≤ 1

d
.

In the limit N → ∞ we have that α0 → 0 and therefore we can write, recalling that
there is no sum over µ,
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1

2d
< 〈[∆µϕ(~n)]

2〉 ≤ 1

d
.

This result shows that, for any finite dimension of space-time, on average over the
ensemble of configurations, the variation of the field from one site to the next one

does not approach zero when the lattice spacing goes to zero. It follows that, on
average, in the continuum limit, the configurations of the dimensionless field are
not continuous as functions of position. Observe that this is a very violent type of
discontinuity, because we are not talking here of a set of isolated discontinuities in
a continuous functions. The field is discontinuous in all directions and at all the

points where it is defined. Obtaining an exact result for 〈[∆µϕ(~n)]
2〉 requires more

work. One can show (problem 4.2.4) that in the continuum limit the sum in fact
assumes its upper bound, so that we have

〈[∆µϕ(~n)]
2〉 = 1

d
.

Having established this important result, we may now examine some of its im-
mediate consequences. If we recall that the dimensionfull field φ is related to the
dimensionless field by φ = a(2−d)/2ϕ, we can determine how the derivatives of the
dimensionfull fields behave in the continuum limit. For a small but non-zero we
have

〈[∆µφ(~n)]
2〉 ∼ a2−d

d
.

The meaning of this relation depends on the dimension d. For d = 1 we have that,
in the continuum limit,

〈[∆µφ]
2〉 ∼ a → 0,

while for the derivative ∂µφ = ∆µφ/a itself we have

〈[∂µφ]2〉 ∼
1

a
→ ∞,

which shows that in this case the dimensionfull field is continuous but not differen-
tiable. One can show (problem 3.1.2) without difficulty that the quantum theory of
the free scalar field in one dimension is formally identical to the quantum mechanics
of the harmonic oscillator, by mapping the quantities that appear in one of these two
structures onto corresponding quantities of the other. This result for d = 1 repro-
duces, therefore, the well-known quantum-mechanical fact that the one-dimensional
configurations involved in the functional integration are in that case random walks,
continuous but non-differentiable paths, as those of a Brownian motion. In this case
the denomination of the functional integral as a path integral is justified, but this is
a characteristic exclusively of the one-dimensional case. Already for d = 2 we have,
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for both the dimensionless field and the dimensionfull field, since they are in fact
equal in this case,

〈[∆µφ]
2〉 → 1

2
,

showing that in this case the discontinuities exist but are finite. In dimensions
d = 3 and larger the discontinuities of the dimensionfull field diverge with powers
that increase with the dimension,

〈[∆µφ]
2〉 ∼ 1

ad−2d
→ ∞.

We see here two very important basic facts: first, that there is a qualitative

difference between the behavior of quantum mechanics (the case d = 1) and the
behavior of the quantum theory of fields (the cases d > 1); second, confirming what
was already discussed in section 4.1, the fundamental dimensionfull fields display
extreme fluctuations in the continuum limit, which puts immediately in great doubt
any possibility that they may have any direct physical significance as observables.
We will now explore a consequence of these facts that is directly related to the
action. Since the action S[ϕ] is itself a functional of the fields, we may consider
the calculation of its expectation value 〈S〉. The result may help us to understand
the behavior of the theory from another point of view. We know that the classical
solution of the theory is the one that minimizes the action, whose minimum in the
case of the action S0 of the free scalar field is zero. This is the value that maximizes
the relative statistical weight exp(−S) of the configuration within the ensemble.
The average value of S will tell us something about the typical relative weights of
the configurations that contribute in a dominant way to the averages. For the time
being, we will limit ourselves to the calculation of the expectation value of the kinetic
part SK of the action S0 of the free theory, the part that involves the derivatives,

SK =
1

2

∑

ℓ

(∆ℓϕ)
2,

which also appears in any model involving scalar fields. The expectation value of
SK is given by

〈SK〉 =
1

2

∑

ℓ

〈(∆ℓϕ)
2〉.

where we already know that the expectation value of the square of the finite differ-
ence converges to 1/d in the continuum limit. Since this limit does not depend on
the link at which it is being calculated and there are dNd links in the lattice, we
obtain immediately that

〈SK〉 ∼
1

2
Nd → ∞,
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that is, the expectation value of the action diverges as Nd. Note that the action
is dimensionless and that this divergence has nothing to do with an increase in the
volume of the box within which we are defining the model, the action diverges even
if we are within a finite box. This is a property related to the behavior of the high-
frequency modes of the theory, which we denominate the ultraviolet regime, which
has nothing to do with the infrared aspects connected to the volume of the box.

We may also examine the behavior of the mass term SM of the action S0, the
one that contains the parameter α0,

SM =
α0

2

∑

s

ϕ2(s),

in a way analogous to the analysis of SK . This is another term that will also appear
in other models involving scalar fields, usually as part of a potential involving the
fields, which establishes non-linear relations among them. The expectation value of
this part of the action may be written as

〈SM〉 = α0

2

∑

s

〈ϕ2(s)〉.

As we saw in section 4.1, the expectation value σ2 = 〈ϕ2〉 has a finite and non-
vanishing limit for d ≥ 3, diverging for d = 1 and d = 2. Besides, σ2 does not
depend on position, and it therefore follow that

〈SM〉 = α0

2
Ndσ2.

Since α0 = (m0L)
2/N2, we have that for d ≥ 3 this part of the action also diverges,

although in a somewhat slower way than the kinetic part,

〈SM〉 = (m0L)
2

2
Nd−2σ2 → ∞.

For d = 2 the divergence becomes logarithmic, due to the fact that in this case
σ2 ∼ ln(N), while in the case d = 1 there is no divergence, because in this case σ2

diverges with N and cancels the factor of N−1, resulting on a finite action. Once
more we see that the case d = 1 is significantly different from the others. In the
cases of greater interest for us, d ≥ 3, both 〈SK〉 and 〈SM〉 diverge in the limit, this
second term in a somewhat less violent way than the first. We see therefore that
the dynamics defined by S0 tends to be dominated by the term SK containing the
derivatives.

The most important thing is that we arrive at the inevitable conclusion that
S0 typically diverges and therefore that the statistical weights exp(−S0) typically
go to zero very fast in the continuum limit. It is necessary to emphasize that this
is the minimum possible value for these weights, very different from the maximum

possible value that it assumes for the classical solution, which shows that typically
the dominant configurations of the quantum theory are very distant from the clas-
sical solution, if we use the action as a measure of this distance. This fact may
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seem surprising at first sight, but this surprise is due only to the fact that, when we
examine these relative statistical weights, we are leaving aside another very impor-
tant factor, the number of configurations with each value of the weight that exist
in configuration space and that, therefore, contribute to the averages. Although
the discontinuous configurations have, individually, negligible statistical weights as
compared to the weights of continuous configurations such as the classical solution,
their number is immensely larger, so that they end up dominating the situation
completely. It becomes quite clear that the quantum-mechanical concept of the
semi-classical approximation will have to be revised before one considers its appli-
cation in quantum field theory. In future volumes we will also see that divergences
like these are intimately connected to the divergences that appear pervasively in
perturbation theory.

We might ask ourselves if this behavior could be just a peculiarity of the theory
of the free scalar field. In future volumes we will see that it also applies to other free
fields such as, for example, the free vector field of electromagnetism without sources,
that is, without charges and currents. For the case of free electrodynamics this can
be found in reference [1]. In the case of non-linear models, we do not know how to
do a direct analytical verification, being in this case limited to extrapolations from
computer simulations on finite lattices. We may, however, argue as follows to the
effect that this is a property that must also hold in these models. The non-linear
models in general contain a real parameter λ, the coupling constant, which is such
that they converge to the free theory when we make λ go to zero. In fact, it is
important for the physical interpretation of these models that they have the free
theory as a smooth limit for λ → 0. The property of discontinuity of the fields that
we examined in this section depends only on the facts that 〈(∆ℓϕ)

2〉 and 〈ϕ2(s)〉
have non-vanishing finite values in the limit. It is very reasonable to think, then,
that they will still be finite and non-vanishing for λ 6= 0, although their values might
vary with λ, so that the λ → 0 limits of the expectation values of these observables
may be smooth ones. In fact, despite the strong fluctuations and discontinuities of
the fields, usually the expectation values are smooth or at least continuous functions
of the parameters of the models.

Hence we see that the main facts described here are, in all probability, general
properties of all quantum field theories. As we progress in our exploration of the
subject, we will continue to verify and solidify this important notion.

Problems

4.2.1. Show, in the classical theory of fields, that the criterion that the quantity

[∆µϕ(~x)]
2 = [ϕ(~x+ εx̂µ)− ϕ(~x)]2

goes to zero when ε → 0, by either positive or negative values, is equivalent
to the condition that ∆µϕ(~x) → 0.
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4.2.2. Calculate, in the case of the quantum theory of the free scalar field, the limit

lim
ε→0

[
lim

N→∞

〈
[ϕ(~x+ εx̂µ)− ϕ(~x)]2

〉
N

]
,

in the indicated order, at an arbitrary point ~x and for an arbitrary direction µ,
showing that it is finite and not zero. In order to do this expand the square and
use the values of σ2

0 = g(~0) and g(~x−~x′) that were calculated in section 4.1. In
this way one shows that the fundamental facts associated to the discontinuity
of the fields do not depend on the way in which the limit is defined.

4.2.3. Calculate the d-dimensional sum in momentum space

∑

kµ

ρ2µ(kµ), where ρ2µ(kµ) = 4 sin2(πkµ/N),

decomposing the sine into complex exponentials and using the orthogonality
and completeness relations that hold for them.

4.2.4. (⋆) Find out a more restrictive lower bound for the sum that appears in the
calculation of the square of the finite difference of the fields,

1

dNd

∑

~k

ρ2(~k)

ρ2(~k) + α0

,

that has the property that its limit is equal to 1/d in the continuum limit,
hence demonstrating rigorously that

〈[∆µϕ(~n)]
2〉 → 1

d

in the continuum limit1. Use for the momentum components the interval of
values [0, N − 1] and the fact that

ρ2(k1, k2, . . . , kd) = ρ2(N − k1, k2, . . . , kd) = ρ2(N − k1, N − k2, . . . , kd), etc.

The idea is to take off the sum classes of terms that end up not contributing
in the limit, in particular the terms with kµ <

√
N , in addition to decreasing

the sum in other ways that simplify it, until one obtains a sum that can be
calculated in the limit and that tends to 1/d.

4.2.5. Consider the quantum theory of the free scalar field, whose action is S0. Con-
sider a change of variables from the Nd field variables ϕ(s) to another set of
Nd variables, one of which is the action S0 itself, which varies from 0 to ∞.

1This calculation was originally developed in collaboration with Dr. See Kit Foong.
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(a) Using the fact that the action is quadratic on the fields, and hence that
it is homogeneous of degree 2 on the fields, show that the distribution of
the theory can be written as

∫

Ω

[dϕ] e−S0 = Z0 S
Nd

2
−1

0 e−S0 dS0,

where Z0 is a constant and we integrate over the manifold Ω, a kind of
solid angle in configuration space, described by all the variables except
S0, which is a kind of radial variable.

(b) Defining the action per site by s0 = S0/N
d and using the distribution in

terms of S0 given above, show that we have for its average value 〈s0〉 =
1/2, which implies that 〈S0〉 = Nd/2 diverges, as was seen in the text.
Note that the integrals that appear can be written as Γ functions.

(c) Calculate also the width of the distribution of values of s0, showing that
〈s20〉 − 〈s0〉2 = 1/(2Nd). This quantity goes to zero in the continuum
limit and this fact shows that the distribution of values of s0 becomes a
delta function centered at the value 1/2, in that limit. This is another
way to see that the continuous configurations, for which s0 = 0, do not
contribute to the expectation values of the theory in the continuum limit,
being therefore of zero measure.

4.3 Block Variables and Observables

Block variables are defined as averages of some type, over the fields contained within
finite regions of space-time, which we call blocks. The name comes from the realiza-
tion of statistical-mechanic models on the lattice, where the regions consist of block
of sites, having been introduced by Kadanoff in the study of statistical systems in-
volving spins. In the example we will study here the average at issue will be a simple
arithmetic average of the fields within the blocks but, in general, some other type
of linear or even non-linear superposition may be involved. The block variables and
the corresponding systems of linear superposition that define them play a central
role in the definition of quantum field theories, because they determine the types of
physical observables that can, in fact, be measured.

If we think about how we would go about measuring the instantaneous value of
the field at a certain point in space-time, in the continuum limit, it will immediately
become clear that we would not be able to do it at all. In order to do this it would
be necessary to use as the instrument of measurement some object that could be
completely localized at the point in question, so that we may detect exclusively
the field at that point. However, the wave-like nature of all objects existing in
nature, added to the uncertainty principle of quantum mechanics (or, equivalently,
to the simple uncertainty principle of classical wave physics [2]), implies that this
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object should have vanishing wavelength and, therefore, consist of “quantums” of
infinite energy. We are forced to conclude that, as refined and developed as the
measurement apparatus may be, it will always end up measuring the field over some
region of space-time with finite and non-vanishing dimensions, however small they
may be.

Since we are interested in quantum field theory in the continuum limit from the
lattice, we will always end up having an infinite number of points within any finite
region, when we take the limit. Therefore any measurement instrument will always,
in practice, be measuring the field over an infinite number of points, never at a
single point. The actual result of the measurement by the apparatus depends not
only on the values of the fields at the points involved, but also on the nature of the
superposition rule for the fields, generating from the values of the field at all the
points a single resulting value to be associated to the region as a whole. This rule is
not arbitrary, of course, it is related to the way in which the measurement apparatus
interacts with the fields. Note that, so far as we are able to define the structure
of the theory with our current knowledge, the measurement apparatus is an object
which remains external do the structure. Hence, any model intended to represent
all possible physical measurements based on fields distributed over a continuous
space-time should not only discriminate the number and type of fields involved and
define a dynamics for them, but should also discriminate a superposition process to
be used for each type of field.

In this way we see that, at the stage of development in which the theory is being
built here, the discrimination of the superposition process is an integral part of the

definition of a quantum field theory, in addition to the discrimination of the fields
involved and the definition of their dynamics, by means of an action functional S.
It is possible that this will cease to be so in a more complete future theory, in which
the notion of the physical measurement is included in the structure of the theory
from the start, but for the time being we must be content with this state of affairs.

The introduction of block variables in a given model may be understood as a kind
of change of variables in the model. However, such a change from point variables
to block variables is not invertible, because it involves loss of information about the
behavior of the point variables above a certain energy. One should not, however,
get the impression that there will be a smaller number of block variables than of the
original point variables, that they will always be a finite or even a discrete set. This
is due to the fact that it is not necessary to separate space-time into disjoint and
exclusive blocks; quite to the contrary, the blocks may very well overlap each other.
In fact, we may associate to each single point of space-time a corresponding block
variable ϕ̄ which is the result of the superposition of the fields ϕ inside a region of
volume Vr centered at that point. In this way we produce a block field ϕ̄(~n) defined
over all of space-time, just like the fundamental field ϕ(~n). These new fields are
sometimes denominated block-renormalized fields for blocks of volume Vr. Note that
this is a specific definition using the term “renormalized”, which is used in many
different ways, not necessarily clear or even consistent, in the usual formalism.

Given a certain energy limit, we may define the corresponding block-renormalized
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Figure 4.3.1: The problem of the calculation of the gravitational potential of a
homogeneous spherical body.

field, by means of a judicious choice of the volume Vr of the blocks, and then discuss
the theory in terms of these block variables, for all phenomena in the theory which
are below that energy limit. In fact, one seldom does this, because usually the theory
acquires a much more complex form when written in terms of these block variables,
but in principle we may discuss the n-point correlation functions for these variables,
in a way similar to the discussion of the correlation functions of the fundamental
field,

gr(~n1, . . . , ~nn) = 〈ϕ̄(~n1) . . . ϕ̄(~nn)〉.

We will examine here in detail only the case of the two-point function in the free
theory, that is, the block propagator. This will be useful to develop our understand-
ing of the roles played by the dimensionfull and dimensionless versions of the fields,
as well as to illustrate the reasons due to which we use, most of the time, the point
variables rather than the block variables for the development of the theory, although
the two-point function of these variables in position space has a singular behavior
at the origin, in the continuum limit.

Let us consider then the calculation of the two-point function for block variables.
Our objective here will be to verify how the block variables are correlated for short
and long distances, relative to the size of the blocks. We will do the calculation
both in position space and in momentum space, and in this second case we will be
particularly interested in verifying whether or not the block propagator has a pole
at the position of the renormalized mass, as is the case for the usual renormalized
propagator that appears in perturbation theory. Observe that the usual renormal-
ized propagator, written in terms of the fundamental field, is not the same as the
block-renormalized propagator. The fact that both are referred to as “renormalized
propagators” is just an example of the use of the term “renormalized” for multiple
different ends. As we shall see, these two propagators have similar behavior for
large distances and small momenta, but their behavior for short distances and large
momenta is very different.

The calculations related to the block propagator will be done in the spirit of the
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Newtonian gravitation problem in which one calculates the gravitational potential of
a spherical homogeneous body of radius a. In fact, the Newtonian gravitational po-
tential of a point mass is just the Green function of the three-dimensional Laplacian,
that is, the Green function of the free theory with m0 = 0 in three dimensions. The
geometrical situation is described in figure 4.3.1. Solving this elementary problem
of classical mechanics one verifies that, outside the sphere, what is seen is exactly
the potential of a point particle located at the origin, with mass equal to the total
mass of the body. However, inside the sphere the situation is very different, instead
of the singularity of the Green function at the origin, we have a finite and smooth
potential over all the interior of the sphere. In figure 4.3.2 a comparison of the two
potentials can be found. At distances that are large compared to the radius a of
the sphere we have the simple potential of a point mass, while a distances that are
small compared to the radius we have a finite field, smoothed out by a mechanism
we may call the “smearing” of the point source. This situation is similar to the one
we will find for our block variables, with the size of the block playing the role of the
volume of the spherical body.
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Consider then the free scalar field in a cubical d-dimensional lattice with Nd sites
and periodical boundary conditions. Consider also in this lattice cubical blocks of
sites, each with Nd

r sites and Nr = N/r sites along each direction, for some number
r such that 1 ≤ r ≤ N . The geometrical situation is illustrated in figure 4.3.3. For
simplicity of notation, in this section the vectors ~n and ~k will be represented by n

and k, while an upper bar will denote average over a block. The block variables
are defined by arithmetical averages over the blocks. In terms of the dimensionless
fields, for a block B centered at the position n, we have

ϕ̄(n̄) =
1

Nd
r

∑

n∈B

ϕ(n),

where the position n̄ of the block is given by

n̄ =
1

Nd
r

∑

n∈B

n.

Note that, unlike n, n̄ does not necessarily have integer components, depending on
how the blocks are chosen. If we so wish, we may simplify this situation choosing the
blocks in a more symmetrical way, with odd Nr and center at a site of the original
lattice, but this is not actually important or necessary. The dimensionless block
propagator in position space is given by

gr(n̄1, n̄2) = 〈ϕ̄(n̄1)ϕ̄(n̄2)〉,

relating two blocks, a block B1 at n̄1 and another block B2 at n̄2. We may write
this propagator in terms of the fundamental field as
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gr(n̄1, n̄2) =
1

N2d
r

∑

B1

∑

B2

〈ϕ(n1)ϕ(n2)〉

=
1

N2d
r

∑

B1

∑

B2

g(n1,n2).

We may now write the Green function g(n1,n2) in terms of the Fourier modes of
the lattice as usual,

g(n1,n2) =
∑

k

eı
2π
N

k·(n2−n1)g̃(k),

where it becomes explicit that g(n1,n2) is a function only of n2 − n1. For the free
theory we know that

g̃(k) =
1

Nd

1

ρ2(k) + α0

,

so that we obtain for the block propagator

gr(n̄1, n̄2) =
1

N2d
r

1

Nd

∑

B1

∑

B2

∑

k

eı
2π
N

k·(n2−n1)
1

ρ2(k) + α0
.

If we now define coordinates n′
1 and n′

2 internal to the blocks, which give the position
of the sites with respect, respectively, to n̄1 and n̄2, then we have for the sites the
relations

n1 = n̄1 + n′
1, n2 = n̄2 + n′

2, in addition to R = n̄2 − n̄1,

from which it follows that

n2 − n1 = n̄2 − n̄1 + n′
2 − n′

1 = R+ n′
2 − n′

1, (4.3.1)

so that we may write for the block propagator

gr(n̄1, n̄2) =
1

N2d
r

1

Nd

∑

B1

∑

B2

∑

k

1

ρ2(k) + α0
eı

2π
N

k·R e−ı 2π
N

k·n′
1 eı

2π
N

k·n′
2

=
1

Nd

∑

k

e−ı 2π
N

k·R

ρ2(k) + α0

(
1

Nd
r

∑

B1

e−ı 2π
N

k·n′
1

)(
1

Nd
r

∑

B2

eı
2π
N

k·n′
2

)
. (4.3.2)

We now see that the block propagator depends only on R = n̄2− n̄1. The two sums
in parenthesis are now internal sums within each block, they do not depend on the
position of the blocks, but only on the momenta. Since the blocks are all equal by
hypothesis, these two parenthesis are the complex conjugates of each other. They
are in fact a form factor f

(d)
r (k), in terms of which we may write

gr(R) =
1

Nd

∑

k

eı
2π
N

k·R

ρ2(k) + α0

∣∣f (d)
r (k)

∣∣2 , (4.3.3)
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where the form factor is defined within an arbitrary block B as

f (d)
r (k) =

1

Nd
r

∑

n′∈B

e−ı 2π
N

k·n′

.

From the expression above for gr we may read immediately its Fourier transform,

g̃r(k) =
1

Nd

∣∣∣f (d)
r (k)

∣∣∣
2

ρ2(k) + α0
,

which is, therefore, the block propagator in momentum space. Note that, unlike
what happens in position space, in momentum space no change is needed in the
coordinates k.

We have, then, the block propagator dully calculated, in terms of f
(d)
r , both in

momentum space and in position space. In order to examine the properties of this
propagator, we must first examine the properties of the form factor f

(d)
r . Observe, in

the first place, that since f
(d)
r is an average of complex phases it is always true that

|f (d)
r (k)| ≤ 1, from which it follows that, in momentum space, the block propagator

is always smaller than or equal to the propagator of the fundamental field. Observe
also that, for simple cubical blocks like the ones we are using here,

f (d)
r (k) =

1

Nd
r

∑

n′∈B

e−ı 2π
N

k·n′

=
d∏

µ=1


 1

Nr

∑

n′
µ∈B

e−ı 2π
N

kµn′
µ




=

d∏

µ=1

f (1)
r (kµ),

so that it is enough to calculate f
(1)
r (k) = fr(k) in order to find out how the form

factor behaves. Given the system of internal coordinates that we adopted for the
blocks, we may write explicitly

fr(k) =
1

Nr

(Nr−1)/2∑

n′=−(Nr−1)/2

e−ı 2π
N

kn′

,

where n′ spans Nr consecutive values, being half-integer if Nr is even and integer if
Nr is odd, as is the case for a symmetrical choice of the blocks around the sites. We
may execute the sum using the formula for the sum of a geometrical progression,

fr(k) =
1

Nr

e−ı 2π
N

kNr−1
2 e−ı 2π

N
k − eı

2π
N

kNr−1
2

e−ı 2π
N

k − 1

=
1

Nr

e−ı π
N
kNr − eı

π
N
kNr

e−ı π
N
k − eı

π
N
k
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Figure 4.3.4: Logarithms of the fundamental and block propagators in momentum
space.

=
1

Nr

sin
(
π
N
kNr

)

sin
(
π
N
k
)

=
r sin

(
kπ
r

)

N sin
(
kπ
N

) .

This is true if k 6= 0, and if k = 0 we have immediately that fr(0) = 1. Finally
observe that, for any mode k of the lattice which coincides with an internal mode
of the block, fr vanishes because the sum that defines it coincides in this case with
the sum that appears in the orthogonality and completeness relations of the block
itself. We may see from the expression above that this will be true for modes k such
that kµNr/N = kµ/r is an integer for at least one value of µ. In other words, fr
tends to suppress the modes of the lattice whose wavelengths fit an integer number
of times within the block, getting, so to say, in resonance with it. If the wavelength
does not fit exactly an integer number of times within the block, the mode will be
partially suppressed, only a little if the number of times it fits inside is small, more if
that number is large. In short, one perceives that fr tends to suppress preferentially
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Figure 4.3.5: Behavior of the local block width as a function of N , for d = 1.

the high-frequency modes in the momentum space of the lattice. In position space
this suppression has the effect of eliminating the singularity of the propagator at the
origin, corresponding to a smearing of the fields by the blocking process. Figure 4.3.4
shows the fundamental propagator and the block propagator, on a logarithmic scale,
along one of the directions in momentum space. The normalizations of the two
propagators are arbitrary but consistent with each other. The graph is the same for
any dimension d. One can clearly see the strong suppression of the block propagator
for large momenta, as well as its oscillations due to resonances with the internal
modes of the blocks.

We would like to discuss the results for gr and g̃r in two different limits, for
R ≫ Nr and for R = 0. The first case turns out to be much simpler and we may
discuss it directly from equation (4.3.1). If R ≫ Nr then it follows that R ≫ n′

1

and R ≫ n′
2 and we may neglect n′

1 and n′
2 in that equation, which makes fr = 1

in equation (4.3.2) and therefore results in

gr(R) =
1

Nd

∑

k

eı
2π
N

k·R

ρ2(k) + α0

,
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Figure 4.3.6: Behavior of the local block width as a function of N , for d = 2.

which is exactly the expression of the propagator of the fundamental dimensionless
field in momentum space. We see therefore that for the correlations at large dis-
tances, much larger than the size of the blocks, the propagators of the fundamental
field and of the blocks do in fact coincide, displaying the same long-range behavior.
Examining their expressions in momentum space we see that the two propagators
have the same simple pole at the position −α0, characterizing this long-range be-
havior. In fact, since for k → 0 we have that fr → 1, we can see that the two
propagators have the same behavior for small values of the momentum.

As we saw in section 4.1, the dimensionless propagator of the fundamental field
goes to zero away from the origin, hence the same will happen with the dimensionless
version of the block propagator. It follows that it is more convenient to use the
dimensionfull version of the block propagator which, starting from equation (4.3.3),
is given by

Gr(R) =
1

N2Ld−2

∑

k

eı
2π
N

k·R

ρ2(k) + α0

∣∣f (d)
r (k)

∣∣2 . (4.3.4)

As we also saw in section 4.1, the dimensionfull propagator of the fundamental field
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Figure 4.3.7: Behavior of the local block width as a function of N , for d = 3.

diverges at the origin. We should now verify how this block propagator behaves at
the origin. Its value Gr(0) = 〈φ̄2〉 at the origin is related to the average value of
the fluctuations of the block variables, because since 〈φ〉 = 0 and the block field is a
simple arithmetical average of the fundamental field over the block, it follows that
we also have 〈φ̄〉 = 0. The block propagator at the origin is given by

Gr(0) = Σ2
r =

1

N2Ld−2

∑

k

∣∣∣f (d)
r (k)

∣∣∣
2

ρ2(k) + α0
=

1

Ld−2
σ2
r ,

where Σ2
r is the local block width. In the graphs contained in the figures from 4.3.5

to 4.3.9 we present the corresponding dimensionless quantity σ2
r , which is propor-

tional to Σ2
r in finite boxes, with values from 3 to 7 for the ratio r between the sizes

of the lattice and the blocks, for a mass m0 = N2α0 = 1, in dimensions from d = 1
to d = 5, for sequences of lattices of increasing sizes.

We see that, in all cases, Gr(0) converges to a finite value for each value of
r, there being therefore no divergence at the origin. These values increase with
r, meaning that, the smaller the blocks, the larger the fluctuations of the block
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Figure 4.3.8: Behavior of the local block width as a function of N , for d = 4.

variables. Note that for d = 1 and d = 2 the curves seem to tend to eventually
accumulate near some finite value as r increases. For d = 3 we see that the width σ2

r

seems to increase linearly with r, while for d = 4 and d = 5 it seems to increase faster
than linearly with r. These facts are related to the fact that, at first sight, Gr(R)
seems to go to zero for d ≥ 3 when we make the size L of the box tend to infinity,
due to the factors of L that appear in its definition. Of course, in this case keeping
the blocks at a constant size corresponds to making r increase linearly with L, so
that the size Lr = L/r of the blocks remains finite. One can verify (problem 4.3.1)
that this increase of σ2

r with r exactly compensates the factor 1/Ld−2 that appears
in the expression for Gr(R), resulting therefore in a finite and non-vanishing block
propagator also in the case of the theory in infinite space, that is, in the limit
L → ∞.

We see therefore that the dimensionfull block propagator in position space is a
finite and non-vanishing function at all points. We may therefore define for the block
variables a correlation function like the one we discussed in section 3.2, normalized
to be equal to 1 at the origin, which, unlike the corresponding function in the case
of the fundamental field, will not be a singular function,
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Figure 4.3.9: Behavior of the local block width as a function of N , for d = 5.

fr(R) =
gr(R)

gr(0)
=

Gr(R)

Gr(0)
.

The graphs contained in figures from 4.3.10 to 4.3.13 show the homogeneous corre-
lation functions f(R) calculated along one direction of the lattice, for dimensions d
from 1 to 4, with L = 1, m0 = N2α0 = 3, r = 5 and different values of N in each
case. We also put in these graphs parts of the corresponding dimensionfull propa-
gators of the fundamental field in position space, which are divergent at the origin
for d ≥ 2, calculated for the same values of the parameters d, L, m0 and N , and
normalized consistently with f(R), so as to permit the comparison of the results.

We see that, in general, the block propagator is smaller than the fundamental
propagator, particularly near the origin, although this relation can be reversed in a
slight way for larger values or R, specially for low dimensions, in which the infrared
effects are more important. We see also that in the continuum limit Gr(R) tends
to a finite, continuous and differentiable function, at all points. One might be led
to ask how can this happen, how is it possible that there are variables correlated
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Figure 4.3.10: Block propagator in position space, for d = 1.

in a finite and non-vanishing way in the continuum limit of a theory in which the
fundamental variables become completely uncorrelated in the same limit. We may
see that the mechanism which causes this behavior is in fact very simple, if we
examine what happens during the process of taking the limit. The fundamental
field becomes completely uncorrelated in the limit, but while we are taking the limit
there is a very large and ever increasing number of values of the fundamental field
which are superposed within each block, with the consequence that a very large
number of correlations between the fields inside one of the blocks and the fields
inside the other block also superpose. During the limit the increase in the correlation
function of the superposition, due to the increase in the number of superposed values,
exactly compensates the decrease in the correlation function between each pair of
fundamental field values, one in each block. The result is a finite and non-vanishing
correlation function between the blocks, despite the complete lack of correlation of
the fundamental field in the continuum limit.

It becomes clear, then, how to go about the physical interpretation of the theory.
Usually we deal with it in terms of the fundamental field because it is simpler to
act in this way, but the physical interpretation must be always in terms of block
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Figure 4.3.11: Block propagator in position space, for d = 2.

variables. For distances which are large compared to the size of the blocks, the
propagator of the fundamental field coincides with the block propagator and we
may use it directly to extract the physical results from the theory. We may say that
the fundamental field encodes the information about how the models behave in all

energy scales, from zero to infinity, but that in order to measure physical quantities
it is necessary to define beforehand what is the proper energy scale of the physical
situation one is dealing with, and then to choose block variables of appropriate size.

Note that the block variables do not necessarily have to be associated to cubical
blocks centered at each point. Of course it is not essential that the blocks have any
given form, they may be cubical, spherical, or of any other form adequate to each
situation. Going even beyond that, the block variables may even be objects of a quite
different nature such as, for example, the Fourier components of the fundamental
field themselves. What matters is that they involve the superposition of an ever
increasing number of values of the field as we take the continuum limit, as is the
case for the Fourier components, and that there exist for them a fixed maximum limit
for the momenta, as is the case for the Fourier transforms for fixed given momenta,
which do not increase in the limit. Hence we see that the description in terms of



BLOCK VARIABLES AND OBSERVABLES 169

-40 -20 0 20 40

sites

0

10

20

30

40

f

Block Propagator
d=3

Figure 4.3.12: Block propagator in position space, for d = 3.

the momentum space is intrinsically more realistic, from the physical point of view,
than that in terms of the position space. This is associated to the fact that the
concept of wave is more natural and more elementary than the concept of particle
in quantum field theory.

It is interesting to observe that, since the fundamental field becomes completely
uncorrelated in the continuum limit, which is a very singular limit, it is not really
possible to first take the limit and only afterward extract the physical consequences
predicted by the theory. It is only possible to extract these physical consequences
by taking the limit from finite lattices directly of the relevant physical quantities,
in blocks of appropriate size. Hence, we see that the taking of the continuum limit
from the lattice is an integral part of the manipulation of the theory for obtaining
physical results.

Problems

4.3.1. (a) Write a program to calculate σ2
r in dimensions d from 1 to 5, for a given

lattice size N . Use the program to calculate σ2
r for the largest fixed value
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Figure 4.3.13: Block propagator in position space, for d = 4.

of N that it is possible to use in each dimension within a reasonable
amount of computer time, varying r from 1 to N .

(b) Plot graphs of σ2
r as a function of r for this fixed value of N and make

curve fittings in order to try to discover the dependency of this quantity
on r.

(c) Use these results to find out how Σ2
r behaves in continuum limits in which

both L and r increase with N as
√
N , so that the size Lr = L/r of the

blocks remains finite. Show in this way that Σ2
r has a finite and non-

vanishing limit under these conditions, in the cases d = 3, d = 4 and
d = 5.

(d) Find out the behavior of Σ2
r under these same conditions, in the cases

d = 1 and d = 2. Remember that it is quite possible that the behavior is
logarithmic in the case d = 2, in fact, this is likely to happen2.

4.3.2. (a) Starting from the formula in equation (4.3.4) for the dimensionfull block

2Note: the answer to this problem is currently unknown.
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propagator, calculate its derivative ∂RGr(R) and show that it is always
negative, indicating that the propagator in a monotonically decreasing
function of R.

(b) Calculate also the second derivative and solve the equation ∂2
R
Gr(R) = 0,

in order to find the position of the inflection point of Gr(R). Do this
numerically if necessary. Find out the physical meaning of your answer.
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Chapter 5

The Concept of Energy

One of the most important universal concepts of physics is the concept of energy,
which we did not touch up to now in our technical development. In this chapter
we will correct this state of affairs, introducing and exploring the concept of en-
ergy, thus continuing our probe into the fundamental structure of the theory, and
extending it in this important new direction. This will require the redefinition of
the theory in the context of the canonical formalism, which we will develop entirely
on the Euclidean lattice. We will see that it is possible to do this without any
problems, and that the usual familiar results are recovered in the d = 1 case of
quantum mechanics. However, significant differences with respect to the results of
the traditional formalism will be found in the case of quantum field theory, that is,
for the cases d ≥ 2.

At first the exploration of the concept of energy will be limited to the study of
the vacuum state of the theory, which has already been defined, but one is quickly
led to consider other states, resulting in the definition and exploration of particle
states, that is, states with energies and momenta corresponding to multiples of some
fundamental quanta. These particle states will be associated to the modes of the
d-dimensional cavity containing the physical system, in momentum space, an associ-
ation which is of great physical importance, since it can be realized experimentally in
the non-relativistic limit. The important on-shell condition characterizing the phys-
ical states of relativistic particles will appear naturally from the resulting structure
when one considers the continuum limit.

We will see that the introduction of the particle states permits a deeper and more
direct probe into the structure of the theory, which is closer to the observability
aspects of the physical structure. However, some difficulties of a very fundamental
nature will also be found, when we try to make closer contact with the traditional
formalism involving state-vectors and operators in a Hilbert space. These difficulties
do not appear in the definition and calculation of the correlation-function aspects of
the structure, but only when one considers the issue of the definition of the energy
and of particle states. The results of the last section of this chapter will lead us to
depart even further from the traditional approach to the subject.

173



174 THE CONCEPT OF ENERGY

5.1 Connection with the Canonical Formalism

The concept of energy is introduced by means of what is denominated the canonical
formalism, which is the one usually employed in the traditional presentation of the
theory, and which is discussed in terms of states and operators in a Hilbert space. It
is therefore necessary to discuss some aspects of the relation of the formalism of the
Euclidean lattice with the canonical formalism of quantum field theory. Our main
objective in this section is to introduce and examine the concept of energy from the
point of view of the theory formulated on the Euclidean lattice. Later on we will
try to see under what conditions it is possible to establish connections between the
lattice formalism and elements of the operator formalism, such as particles states,
the Hamiltonian operator and its eigenstates.

In this section we will construct the canonical formalism on the Euclidean lattice,
introducing the concepts of conjugate momenta and of the energy. We will use the
well-known case of quantum mechanics both as a guide for our construction and as
a way to verify the correction of our results. Always using the free scalar field of a
single component as our basic example, we have the action

S =
∑

s

L, L =
1

2

∑

µ

(∆µϕ)
2 +

α0

2
ϕ2,

where both S and L are dimensionless, L being the Lagrangian density. In order to
build the canonical formalism it is necessary to separate one of the dimensions of
the space, which we will call the time, from the other dimensions, which we will call
spacial dimensions. To make things definite, we may think of the d = 4 case, but
the formalism can be used in any dimension. We will denote the d-dimensional sums
by
∑

µ and
∑

s, while those that do not include the time will be written as
∑

i and∑
x
, respectively, and then the sum over the temporal dimension will be denoted by∑

t. The temporal variables will be denoted by an index 0 or T . The lattice will
have NL sites in the spacial directions and NT sites in the temporal direction. In
general these two numbers will be equal, but the possibility remains open that they
be different, if and when this becomes necessary for future discussions. We may
rewrite the action in this new notation, obtaining

S =
∑

t

∑

x

L, L =
1

2
(∆0ϕ)

2 +
1

2

∑

i

(∆iϕ)
2 +

α0

2
ϕ2.

Classically we may define the dimensionless conjugate momentum to the field ϕ,
which we shall call π̄, by means of

π̄ = ı
∂L

∂(∆0ϕ)
= ı∆0ϕ,

which is the usual relation except for the factor of ı, whose introduction is due to
the fact that we are doing the construction in Euclidean space, as well as to the fact
that π̄ is the temporal component of a vector. This conjugate momentum may be



CONNECTION WITH THE CANONICAL FORMALISM 175

understood as a site variable related to the link variable ∆0ϕ which is associated to
the link that starts at that site and points in the positive temporal direction. We
may now define a dimensionless Hamiltonian density is a way analogous to the usual
definition,

H = π̄∆0ϕ− ıL ⇒

H = − ı

2

[
π̄2 +

∑

i

(∆iϕ)
2 + α0ϕ

2

]
, (5.1.1)

which is the usual definition except for the factor of ı, due to the Euclidean nature of
our development, and of the factor −1, chosen by mere convenience. As we shall see
later, independently of the choice of sign adopted here there will always exist in the
theory states with both positive energy and negative energy, just as in the traditional
formalism. We may now add over the spacial part and write dimensionless versions
of the Lagrangian and of the Hamiltonian,

L =
1

2

∑

x

[
(∆0ϕ)

2 +
∑

i

(∆iϕ)
2 + α0ϕ

2

]
,

H = − ı

2

∑

x

[
π̄2 +

∑

i

(∆iϕ)
2 + α0ϕ

2

]
.

Observe that we wrote H in terms of π̄ and L in terms of ∆0ϕ, in the usual way.
Classically nothing changes if we writeH in terms of ı∆0ϕ, since this and π̄ are equal.
However, as we shall see in what follows, in the quantum theory it is necessary to
take seriously the distinction between π̄ and ∆0ϕ.

In order to define the quantum theory there are two paths we may follow. On
the one hand, we might follow our usual definition and write a dimensionless version
of the energy, as well as of any other observable depending on π̄, assuming that
π̄ = ı∆0ϕ, as the expectation value

E =

∫
[dϕ] H′ e−S

∫
[dϕ] e−S

= − ı

2

∑

x

∫
[dϕ]

[
−(∆0ϕ)

2 +
∑

i

(∆iϕ)
2 + α0ϕ

2

]
e−S

∫
[dϕ] e−S

,

where H′ is H with π̄ exchanged by its classical value ı∆0ϕ. The dimensionfull
version of the energy is given by E = E/a = NTE/T , in terms of the lattice spacing
a or of the total temporal length T of the box. On the other hand, we might start
with a definition of the quantum theory in terms of independent variables π̄ and
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∆0ϕ, with functional integrals involving both the variables π̄ and the variables ϕ.
As we shall see, the results are different in each case. We will adopt as the definition
of the canonical version of the theory the following expression for the observables,

〈O〉 =

∫
[dϕ][dπ̄] O[ϕ, π̄] eı

∑
s(π̄∆0ϕ−H)

∫
[dϕ][dπ̄] eı

∑
s(π̄∆0ϕ−H)

, (5.1.2)

where O is a functional of π̄ and ϕ, and H is the expression in (5.1.1). Observe
that the dependency on π̄ is always Gaussian in this definition, independently of the
model under consideration, because we have

ı(π̄∆0ϕ−H) = −1

2

[
π̄2 − 2ıπ̄∆0ϕ+

∑

i

(∆iϕ)
2 + α0ϕ

2

]
.

Note that, due to the introduction of the factor of ı in the definition of π̄, the
integrals on this variable converge in Euclidean space so long as the integrations are
made over real values, exactly as in the case of ϕ. It is understood, therefore, that
at each site we have the integrals

∫ ∞

−∞

dϕ and

∫ ∞

−∞

dπ̄,

along the real axis of each one of the variables.
Hence we have a complete definition of all the observables of the theory in the

canonical formalism on the Euclidean lattice. It is important to observe that when
O does not depend on π̄ this definition reduces to the previous one, since in this
case we can do the integrations on π̄ explicitly and return to the usual definition.
In order to do this we start by separating the variables, writing

〈O〉 =

∫
[dϕ] O[ϕ] e−

1
2

∑
s[
∑

i(∆iϕ)2+α0ϕ2]
∫

[dπ̄] e−
1
2

∑
s(π̄2−2ıπ̄∆0ϕ)

∫
[dϕ] e−

1
2

∑
s[
∑

i(∆iϕ)
2+α0ϕ2]

∫
[dπ̄] e−

1
2

∑
s(π̄2−2ıπ̄∆0ϕ)

. (5.1.3)

We may then complete the square on π̄ in the exponent of the second exponential,
obtaining

π̄2 − 2ıπ̄∆0ϕ = (π̄ − ı∆0ϕ)
2 + (∆0ϕ)

2 ⇒∫
[dπ̄] e−

1
2

∑
s[(π̄−ı∆0ϕ)2+(∆0ϕ)2] = e−

1
2

∑
s(∆0ϕ)2

∫
[dπ̄] e−

1
2

∑
s(π̄−ı∆0ϕ)2 . (5.1.4)

We now shift the variable π̄, defining a new variable χ = π̄ − ı∆0ϕ, and obtain for
the integral on π̄

∫ ∞

−∞

[dπ̄] e−
1
2

∑
s(π̄−ı∆0ϕ)2 =

∫ ∞−ı∆0ϕ

−∞−ı∆0ϕ

[dχ] e−
1
2

∑
s χ

2

.

Drawing now the complex-χ plane we can identify the relevant integration paths.
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Re

Im χ

χ

Completing a closed circuit with two small arcs at infinity, at which the integral is
zero, we use the residue theorem for the exponential, which has no poles, obtaining

∫ ∞−ı∆0ϕ

−∞−ı∆0ϕ

[dχ] e−
1
2

∑
s χ

2

=

∫ ∞

−∞

[dχ] e−
1
2

∑
s χ

2

,

which is a convergent integral that gives the usual result, which is already known.
However, the important fact here is that these integrals do not depend on ϕ, which
means that in 5.1.4 we succeeded in decoupling the integrals on π̄ from those on ϕ.
The factor that remains from the completion of the square in 5.1.4,

e−
1
2

∑
s(∆0ϕ)2 ,

completes in 5.1.3 the expression for the action, so that we have

〈O〉 =

∫
[dϕ] O[ϕ] e−

1
2

∑
s[
∑

µ(∆µϕ)2+α0ϕ2]

∫
[dϕ] e−

1
2

∑
s[
∑

µ(∆µϕ)2+α0ϕ2]
=

∫
[dϕ] O[ϕ] e−S

∫
[dϕ] e−S

,

that is, we recovered the usual definition. However, if the observable O depends
on π̄ then the results can only be obtained by means of the canonical definition. If
we substitute π̄ by its classical value ı∆0ϕ and use the usual definition, the result
will be, in general, different from the result obtained by means of the canonical
definition.

An interesting exercise to illustrate the calculation of expectation values of ob-
servables that depend on π̄ is the calculation at a given site of the observables
〈π̄(s) − ı∆0ϕ(s)〉 and 〈[π̄(s) − ı∆0ϕ(s)]

2〉, by means of which we can examine the
nature of the relation between π̄ and ı∆0ϕ in the quantum theory. Of course, if we
calculate these observables according to the previous, non-canonical definition, we
will obtain zero for both. For the calculation of the first of these two observables we
start from the canonical definition given in equation (5.1.2), whose numerator can
be written as
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∫
[dϕ][dπ̄](π̄ − ı∆0ϕ) e

− 1
2

∑
s[
∑

i(∆iϕ)2+α0ϕ2] e−
1
2

∑
s(π̄2−2ıπ̄∆0ϕ)

=

∫
[dϕ] e−S

∫
[dπ̄](π̄ − ı∆0ϕ) e

− 1
2

∑
s(π̄−ı∆0ϕ)2

=

∫ ∞

−∞

[dϕ] e−S

∫ ∞−ı∆0ϕ

−∞−ı∆0ϕ

[dχ] χ e−
1
2

∑
s χ

2

,

where χ = π̄− ı∆0ϕ and we used once more some of the manipulations used before.
We may now modify the integration circuit as we did before, obtaining

∫ ∞

−∞

[dϕ] e−S

∫ ∞

−∞

[dχ] χ e−
1
2

∑
s χ

2

= 0,

by a simple symmetry argument. We see therefore that π̄ and ı∆0ϕ have the same
expectation value,

〈π̄〉 = ı〈∆0ϕ〉.

However, we may verify that π̄ 6= ı∆0ϕ in a simple way, calculating the second
expectation value. Repeating the same procedures and calculations used previously,
and executing some Gaussian integrations (problem 5.1.1), we obtain

〈
(π̄ − ı∆0ϕ)

2
〉
= 1.

This means that, although π̄ and ı∆0ϕ have the same expectation value, the two
quantities fluctuate around each other in such a way that the difference between
them is, typically, a non-vanishing real number with a magnitude of the order of
one.

We will now calculate the expectation value of the Hamiltonian H in this canon-
ical version of the formalism. Since this corresponds to the calculation of the energy
of the vacuum state, this is the first step for the determination of the role that the
concept of energy plays in the theory. For starters, let us worry about the calculation
of the integrals over the momenta. Starting from the definition of the expectation
values in the canonical formalism, and repeating once more some of the previous
operations, we may write for the expectation value of H

〈H〉 = − ı

2

∑

x

∫
[dϕ] e−S

∫
[dχ] e−

1
2

∑
s χ

2

[
π̄2 +

∑

i

(∆iϕ)
2 + α0ϕ

2

]

∫
[dϕ] e−S

∫
[dχ] e−

1
2

∑
s χ

2
,

where π̄ = χ+ı∆0ϕ, so that we may write for the expression ofH in the denominator

−2ıH = (χ+ ı∆0ϕ)
2 +

∑

i

(∆iϕ)
2 + α0ϕ

2

= χ2 + 2ıχ∆0ϕ− (∆0ϕ)
2 +

∑

i

(∆iϕ)
2 + α0ϕ

2,
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so that we have

〈H〉 = − ı

2

∑

x

∫
[dϕ] e−S

∫
[dχ] e−

1
2

∑
s χ

2 (
χ2 + 2ıχ∆0ϕ− 2ıH′

)

∫
[dϕ] e−S

∫
[dχ] e−

1
2

∑
s χ

2
,

where H′ is the expression of H with the variable π̄ changed to ı∆0ϕ. The linear
integral on χ vanishes by symmetry and we have then

〈H〉 = − ı

2

∑

x

∫
[dϕ] e−S

∫
[dχ] e−

1
2

∑
s χ

2 (
χ2 − 2ıH′

)

∫
[dϕ] e−S

∫
[dχ] e−

1
2

∑
s χ

2

= − ı

2

∑

x

∫
[dχ] χ2e−

1
2

∑
s χ

2

∫
[dχ] e−

1
2

∑
s χ

2
+
∑

x

∫
[dϕ] H′e−S

∫
[dϕ] e−S

.

Doing the Gaussian integrations in the first term we obtain

〈H〉 = − ı

2
Nd−1

L + 〈H′〉,

where H′ is the H that corresponds to H′. In other words, we see that the expec-
tation values of H and H′, calculated respectively according to the definition of the
observables in the canonical formalism and according to the usual definition of the
observables, differ by a quantity which is divergent in the limit NL → ∞, except
in the case d = 1 of quantum mechanics. Observe however that this is a constant
quantity, in the sense that it does not depend on the parameters and dynamical
variables of the model, being therefore of little physical relevance.

We may proceed now to the complete calculation of the energy of the vacuum,
by evaluating the second term of the expression above. Writing this term explicitly
we have

〈H′〉 = − ı

2

∑

x

∫
[dϕ] e−S

[
−(∆0ϕ)

2 +
∑

i

(∆iϕ)
2 + α0ϕ

2

]

∫
[dϕ] e−S

.

In order to simplify the calculation, we will use translation invariance along the
time direction, which is equivalent to a kind of internal conservation of energy. This
invariance exists by construction in the vacuum state of the model we are dealing
with. We may define a new observableHb, related to the energy, through the average
of H over a temporal block, which might be the whole lattice,

Hb =
1

NT

∑

t

H.
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The invariance by temporal translation implies that Hb and H have the same ex-
pectation value, but they are really two conceptually different observables. Observe
that, in the spirit of the discussion in section 4.3, it is not possible to measure an
energy at a perfectly well-defined instant, that is, on a vanishing temporal inter-
val ∆t, so that in any real situation we will always be making an average over a
temporal block when we measure the energy. In our case here we simply adopted
a maximal block, making an average over the whole extent of the lattice. Getting
back to our calculation, due to the temporal translation invariance we may add over
the temporal direction and then divide by NT , without any change in the result,
thus obtaining

〈H′
b〉 = 〈H′〉 = − ı

2NT

∫
[dϕ] e−S

∑

s

[
−(∆0ϕ)

2 +
∑

i

(∆iϕ)
2 + α0ϕ

2

]

∫
[dϕ] e−S

.

We may now use Fourier transforms in d dimensions to calculate this in a simple
way, writing the expression in the form

〈H′〉 = − ı

2
Nd−1

L

∫
[dϕ̃] e−S

∑

p

(
−ρ20 +

∑

i

ρ2i + α0

)
|ϕ̃|2

∫
[dϕ̃] e−S

,

where the action S may be written in momentum space as

S =
Nd−1

L NT

2

∑

p

(
ρ2 + α0

)
|ϕ̃|2,

with ρ2 =
∑

µ ρ
2
µ, that, in the general case in which we have NL 6= NT , may be

written explicitly as

ρ2 = ρ20 +
∑

i

ρ2i + α0

= 4 sin2

(
k0π

NT

)
+
∑

i

4 sin2

(
kiπ

NL

)
+ α0,

so that the expectation value of |ϕ̃|2 is given by

〈|ϕ̃|2〉 = 1

Nd−1
L NT

1

ρ2 + α0
,

leading therefore to the result for the term we are examining,

〈H′〉 = − ı

2NT

∑

p

−ρ20 +
∑

i

ρ2i + α0

ρ2 + α0

.
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With this result we can assemble the final expression for the dimensionless energy,

E = − ı

2NT
Nd−1

L NT − ı

2NT

∑

p

−ρ20 +
∑

i

ρ2i + α0

ρ2 + α0

= − ı

2NT

∑

p




ρ20 +
∑

i

ρ2i + α0

ρ20 +
∑

i

ρ2i + α0

+

−ρ20 +
∑

i

ρ2i + α0

ρ20 +
∑

i

ρ2i + α0




= − ı

NT

∑

p

∑

i

ρ2i + α0

ρ20 +
∑

i

ρ2i + α0

,

where we used the facts that Nd−1
L NT =

∑
p 1 and that ρ2 = ρ20 +

∑
i ρ

2
i . We may

now write the final result for the dimensionfull form E = E/a of the energy,

E = − ı

T

∑

k0

∑

ki

(
∑

i

ρ2i + α0

)

ρ20 +

(
∑

i

ρ2i + α0

) . (5.1.5)

In order to better understand this result it is necessary to examine the behavior
of the sums it contains. For this it is useful to examine first the case d = 1,
which corresponds to the quantum mechanics of a harmonic oscillator with angular
frequency ω, in which case we have α0 = ω2a2 = ω2T 2/N2

T and we may write

E = − ı

T

∑

k0

α0

ρ20 + α0

= − ı

T

kM∑

k0=−km

ω2

ω2 + 4

(
NT

T

)2

sin2

(
k0π

NT

) , (5.1.6)

where km and kM are the minimum and maximum values of k0 on lattices with a
given NT . Note that the term k0 = 0 of this sum, unlike all the others, is simply
equal to 1 and does not depend on ω, while all the others go to zero for ω → 0. It
follows that in this limit the sum goes to 1 and we have, therefore, E = −ı/T for
ω = 0. Since 1/T is the energy scale associated to the temporal size of our box, we
see that this effect is due to the infrared cutoff established by the box. In the limit
in which we make the box infinite in the temporal direction this effect disappears
and we have E = 0 for ω = 0.

In order to determine the exact value of this sum in the opposite case, when
instead of ω = 0 we have ω ≫ 1/T , it is necessary to make a numerical evaluation.
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It is possible, however, to establish analytically upper and lower bounds to the sum
(problems 5.1.2, 5.1.3 and 5.1.4), showing that, for even NT ,

ω

2

√
(2NT )2

(ωT )2 + (2NT )2
≤ ıE ≤ 1

T
− ω2T

(ωT )2 + (2NT )2
+

ω

2

√
(2NT )2

(ωT )2 + (2NT )2
,

a relation that, in the limit NT → ∞, results in

ω

2
≤ ıE ≤ ω

2
+

1

T
.

In order to examine the case ω ≫ 1/T we may make an approximation of the sum
by an integral, which is a good approximation for large NT . In this case we have for
the minimum variation of the momentum dp = 2π/T , so that we get

E = − ı

T

T

2π

∫ NT π/T

−NTπ/T

dp
ω2

ω2 + p2

= − ıω

π

∫ NT π/(ωT )

0

dξ
1

1 + ξ2

= − ıω

π
arctan

(
NTπ

ωT

)
.

In the limit NT → ∞ with finite ω and T the arc-tangent tends to π/2 and hence
we obtain the expected result for the harmonic oscillator,

ıE =
ω

2
.

Note that this is the exact result only in the case in which the temporal box is
infinite, with T → ∞, so that the approximation by an integral is not sufficient to
show the infrared effects due to the finite temporal box.

For a more detailed examination of the complete behavior of the energy as a func-
tion of NT and ωT it is necessary to calculate the sum numerically (problem 5.1.5).
The results of such a calculation appear in figures 5.1.1 and 5.1.2. The graph in
figure 5.1.1 shows the energy in the continuum limit, as well as the upper and lower
bounds that it is possible to establish analytically for it, in this limit. Besides the
result in an infinite temporal box, the result in a finite box is also shown, to illus-
trate the infrared effects that exist in this case. In this graph the central straight
line corresponds to the continuum limit in an infinite temporal box, that is, to the
case NT → ∞ and T → ∞. The other straight lines correspond to the upper and
lower bounds which are proposed as problems to the reader. The lower straight line
corresponds to the lower bound to which problem 5.1.2 makes reference, while the
improved lower bound proposed in problem 5.1.3 coincides with the central straight
line. The curved line corresponds to the numerical result for NT = 1000.

The graph in figure 5.1.2 shows the energy in the continuum limit and on various
finite lattices, illustrating the way in which these results approach their limit when
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Figure 5.1.1: The energy as a function of the variable ωT . The curved line corre-
sponds to the numerical result for NT = 1000. The central straight line corresponds
to the continuum limit in an infinite temporal box. The other straight lines corre-
spond to the upper and lower bounds which are mentioned in the text and proposed
as problems to the reader.

NT → ∞. Note that, for each finite lattice, the lattice result is above the continuum
limit for ωT sufficiently small, but falls below it above a certain value of this variable.
We are seeing here an ultraviolet effect: if we increase sufficiently the frequency ω,
decreasing therefore the corresponding wavelength until it is of the order of the lattice
spacing a, we start to see clearly the distortions cause by the discrete character of
the lattice. The numerical evidence indicates clearly that ıE = ω/2 is the exact
result for the energy in the continuum limit within an infinite temporal box, but it
seems that it is rather difficult to obtain this result analytically.

We may now return to the discussion of the d-dimensional case for d ≥ 2, whose
result for the energy is given in equation (5.1.5), which we may rewrite as

E = − ı

T

∑

ki

(
∑

k0

A2

ρ20 + A2

)
, (5.1.7)
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Figure 5.1.2: The energy as a function of the variable ωT . The straight line cor-
responds to the continuum limit in an infinite temporal box, that is, to the case
NT → ∞ and T → ∞. The curved lines correspond to the numerical results in pro-
gressively larger lattices, from NT = 10 to NT = 1000, showing how they approach
the continuum result in the limit NT → ∞.

where A2 =
∑

i ρ
2
i + α0. Note that the sum in k0 has the same form of the sum

that we just discussed in the case of quantum mechanics. However, the continuum
limit of this sum behaves in a way that is very different from what happens in the
case d = 1, due to the way in which the quantity A, which contains the spacial
components ρi of the dimensionless momentum, scales in the limit, for d ≥ 2. In
fact, the quantity ıET diverges in this case, when we make NT → ∞ and NL → ∞.

One can understand this fact by observing that the result above is a sum, of
something similar to the energy of the ground state of a harmonic oscillator, over all
the Nd−1

L degrees of freedom of a (d− 1)-dimensional section of the lattice, so that
this sum is certainly divergent at least as Nd−1

L . In addition to this, the harmonic
oscillators over which we are adding have all the possible frequencies in the temporal
direction of the lattice, so that their ground state energies vary from values of the
order of 1 to values of the order of NT . For this reason, the quantity ıET diverges
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Figure 5.1.3: The energy per site as a function of N in the symmetrical case NT =
NL = N . Each pair of curves corresponds to a different dimension d, converging to
the value (d−1)/d in the limit N → ∞. In each pair the curve that converges faster
is the one that corresponds to m0 = 1.

in fact as Nd−1
L NT . We can verify this fact doing a numerical evaluation of the sums

involved (problem 5.1.6). Since the sums diverge, it is more convenient to evaluate
the energy per site e = E/(Nd−1

L NT ),

ıeT =
1

Nd−1
L NT

∑

k0

∑

ki

∑

i

ρ2i + α0

ρ20 +
∑

i

ρ2i + α0

, (5.1.8)

The graph in figure 5.1.3 shows the result of such a calculation, done in the symmet-
rical case NT = NL = N . As one can see, the quantity ıeT converges quite rapidly
to the value (d − 1)/d, in each dimension, when we make N → ∞, for any value
of the mass m0. In fact, one can demonstrate that this quantity can be written
(problem 5.1.7) as
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ıeT =
d− 1

d
+

α0

d
σ2(NT , d, α0),

where σ2 is the local width of the field, a quantity that was extensively discussed
in section 4.1. Since for d ≥ 2 this quantity does not diverge faster than or as fast
as N2

T in the NT → ∞ limit, while α0 = m2
0/N

2
T , the second term goes to zero

because α0 goes to zero for finite m0. The convergence is progressively faster for
progressively smaller values of m0.

Observe that, if we make T → ∞ while we take the continuum limit, thus
eliminating the infrared effects due to the finite size of the temporal box, the energy
ceases to diverge as Nd

T and becomes divergent as Np
T , with a power p in the range

d− 1 < p < d. This is due to the fact that we can make T go to infinity as N q
T only

with 0 < q < 1, since q = 0 would of course correspond to keeping T finite, while
q = 1 would imply that the lattice spacing a would be kept finite, in which case the
limit NT → ∞ would would no longer be a continuum limit.

In the traditional formalism of quantum field theory the result for the energy
of the vacuum is constructed as the sum of a collection of quantum-mechanical
ground-state results, one for each mode. We can try to obtain, from the result for
the energy shown in equation (5.1.7), a somewhat clearer relation between the results
of quantum mechanics and of the quantum theory of fields. However, we will see
that this relation cannot be established in a completely exact and precise form, for
reasons related to the order in which the limits involved are to be taken, a subject
that will turn out to be very important later on. In order that we be able to sketch
an argument to this effect, it is necessary that we consider the symmetrical limit in
which NT = NL = N . The result obtained in the case of quantum mechanics for
the sum over k0 that appears in equation (5.1.7), in the NT → ∞ limit, for a large
temporal box, implies that we have

∑

k0

A2

ρ20 + A2 ∼ NTA

2
,

so that we may write for the energy of the vacuum

E ∼ − ıNT

2T

∑

ki

√∑

i

ρ2i + α0 ∼
−ı

2

∑

ki

√∑

i

p2i +m2
0,

where we used the fact that α0N
2
T /T

2 = m2
0 and that, for large NT = NL = N ,

ρiNT/T ≈ pi = 2πki/T , the dimensionfull linear momentum. In short, we may
write that

ıE ∼ 1

2

∑

ki

√
p2 +m2

0,

which is a sum of the relativistic energies of free particles with rest mass m0 and
linear momentum p, with an overall factor of 1/2, there being one term in the sum
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for each Fourier mode existing within a (d − 1)-dimensional box. This is the sum
of the so-called zero-point energies, the energies of the ground states of each one of
the Nd−1

L uncoupled harmonic oscillators that are associated to each one of these
(d− 1)-dimensional modes.

However, this argument cannot do more than to give us a general but imprecise
idea about the relation between the case d = 1 and the case d ≥ 2 since, in order to
make the argument rigorous, it would be necessary to first take the limit NT → ∞,
thus reducing the problem to the quantum mechanics of a system with a finite
number of degrees of freedom in its (d − 1)-dimensional section, taking only after
that the limit NL → ∞. However, the fact is that the results of the d = 1 case that
were used above are not valid if we take the limits over NT and NL separately in
this order. This is due to the fact that the quantity A2 =

∑
i ρ

2
i +α0 which appears

in the denominator of the sum over k0 in equation (5.1.7) behaves in a way that is
different from the behavior of the corresponding quantity in the case of quantum
mechanics, α0 = (wT/NT )

2. We should recall that the complete expression of A2 is

A2 = α0 +
d−1∑

i=1

4 sin2

(
kiπ

NL

)
,

where we have NL within the argument of the sine function, not NT . While N2
Tα0

has a finite limit when we make NT → ∞, the quantity

N2
T sin2

(
kiπ

NL

)

does not have a finite limit, but instead of that diverges as N2
T . If we had NT = NL,

that is, the symmetrical limit, then the sine function would go to zero as N−1
T ,

compensating for this divergence, but it is not possible to take the limit NT → ∞
while NL is kept finite and still obtain finite results. In addition to this, in this case
we cannot say that ρiNT/T approaches pi = 2πki/T as we did above.

As an exercise to illustrate the difference between the results of the two for-
malisms, starting from the result of the traditional formalism for the energy of the
vacuum,

ıE =
1

2

∑

ki

√
p2 +m2

0,

we may translate it to the lattice, writing a corresponding result for the energy per
site, valid for the case NT = NL = N in the limit N → ∞,

ıeT =
1

2Nd−1

∑

ki

√∑

i

ρ2i + α2
0,

and then calculate numerically, for large values of N , the sum which appears in the
resulting expression (problem 5.1.8). One verifies that the result obtained in this
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way is always larger that the result of the lattice formalism, for any value d ≥ 2
of the dimension. In d = 4, for example, we obtain approximately 1.1938 for this
result, to be compared to the lattice result (d− 1)/d = 3/4 = 0.75.

We see in this way that the results of the quantum theory of fields have the
potential to depend in a significant way on the order of the limits over NT and NL.
In our case here this fact is of only secondary importance, because the energy of the
vacuum diverges anyway, whatever the order of the limits, having therefore no direct
physical relevance. We will see later on that, in order to define an energy that makes
physical sense, it will be necessary to consider only the variations of the energy with
respect to the energy of the vacuum, not the absolute value of the energy, a procedure
that corresponds to what is called a subtractive “renormalization” of all the energies,
exactly as is done in the traditional presentation of the theory. However, we see here
that the usual argument of the traditional presentation, that this divergence is due
to the sum of an infinite number of zero-point energies of harmonic oscillators,
cannot be taken as more than an approximate intuitive argument, without exact
mathematical validity.

Problems

5.1.1. Using the calculational techniques illustrated in the text, calculate the value at
a give site s of the observable 〈[π̄(s)− ı∆0ϕ(s)]

2〉, obtaining the result shown
in the text. You will have to perform some Gaussian integrations. Remember
that the extremes of integration of the integrals on χ = π̄ − ı∆0ϕ depend on
ϕ until one makes the deformation of the integration contour in the complex
χ plane.

5.1.2. Consider the expression of the energy derived in the text for the case of quan-
tum mechanics, that is for d = 1, which is shown in equation (5.1.6). It
contains the sum

Σ =

kM∑

k0=−km

1

1 +

(
2NT

ωT

)2

sin2

(
k0π

NT

) .

Consider the case in which NT is even, for which the limits of k0 are km =
1−NT /2 and kM = NT/2. Show that this sum satisfies the inequalities

Σ ≥ −1 +
(ωT )2

(ωT )2 + (2NT )2
+

ωT

2

√
(2NT )2

(ωT )2 + (2NT )2
,

Σ ≤ 1− (ωT )2

(ωT )2 + (2NT )2
+

ωT

2

√
(2NT )2

(ωT )2 + (2NT )2
.
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In order to do this you should consider in separate the terms k0 = 0 and
k0 = NT/2 of the sum and observe that all the others can be organized in
pairs. In this way, rewrite the sum in terms of a sum of a monotonically
decreasing function. After that, compare the sum with the integral of this
function taken in an appropriate interval. Making a graph of the function,
including the points of the sum and the integral, may help a lot. You will have
to look up in a table of integrals the value of the definite integral

∫ π/2

0

1

1 + A2 sin2 x
.

Take the NT → ∞ limit of these relations and show that

ωT

2
− 1 ≤ Σ ≤ ωT

2
+ 1.

5.1.3. The lower bound derived in problem 5.1.2 can be improved. Re-examine the
comparison between the sum and the integral in this case and take into consid-
eration the collection of triangles that can be fitted between the graph of the
integral and the graph of the sum. Once more, drawing the graph with some
care may help a lot. Calculate exactly the sum of the areas of these triangles
and show that sum Σ satisfies the inequality

ωT

2

√
(2NT )2

(ωT )2 + (2NT )2
≤ Σ,

which is tighter than the previous one. You will have to show that the graph
of the monotonically decreasing function that appears inside the sum has its
concavity turned upwards along all the domain of the integral. You can do
this calculating the second derivative of the function and showing that the first
derivative is also a monotonic function, in this case an increasing function.
After that take the limit NT → ∞ and show that

ωT

2
≤ Σ.

Show also that the value obtained for the lower bound of the sum in the limit
NT → ∞ is larger than the value of the lower bound of the sum for finite NT ,
that is, show that taking the NT → ∞ limit tightens the lower bound.

5.1.4. Repeat the analysis made in problems 5.1.2 and 5.1.3 and determine upper and
lower bounds for the sum Σ in the case in which NT is odd, in which the limits
of k0 are km = −(NT − 1)/2 and kM = (NT − 1)/2. Write the corresponding
inequalities for ıE and verify that they are compatible with the inequalities
obtained for the case of even NT .
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5.1.5. Write a program to calculate numerically the sum that appears in the expres-
sion of the energy in the case of quantum mechanics, given in equation (5.1.6).
Use your program to reproduce the data that are shown in the graphs of fig-
ures 5.1.1 and 5.1.2. Use lattices with sizes between 10 and 1000 and calculate
ıET for ωT from 0 to 20.

5.1.6. Write programs to calculate numerically the sum that appears in the expression
of the energy per site for the cases d ≥ 2, given in equation (5.1.8). Remember
that in the quantum theory of fields we have α0 = m2

0/N
2 and consider only

the symmetrical case NT = NL = N . Use your programs to reproduce the
data that are shown in the graph of figure 5.1.3.

5.1.7. Show analytically that the sum that you calculated in problem 5.1.6 tends to
the value (d − 1)/d in the limit N → ∞. Your demonstration does not have
to be strictly rigorous and you may consider the case m0 → 0 it this simplifies
things. However, be careful, because there is a term of the sum (the zero
mode) which diverges for m0 = 0. You can demonstrate this result by first
showing that the energy per site may be written as

ıeT =
d− 1

d
+

α0

d
σ2(N, d, α0),

where σ2 is the local width defined in section 4.1, which has a finite limit in
the continuum limit for d ≥ 3. The case d = 2 has to be examined in separate,
refer to the section mentioned in order to verify the behavior of σ2 in this case.

5.1.8. Write a program to calculate numerically the sum that appears in the result
of the traditional formalism for the energy per site,

ıeT =
1

2Nd−1

∑

ki

√∑

i

ρ2i + α2
0,

where ρi = 2 sin(kiπ/N). Remember that in the quantum theory of fields we
have α0 = m2

0/N
2. Use your program for progressively larger values of N and

try to show that, in d = 4, the limiting value for this result is approximately
1.1938. Try to relate the fact that this result is larger than the corresponding
result in the lattice formalism (0.75) with the behavior in the limit of the sum
that appears in the lattice formalism in the case d = 1, which is shown in the
graph of figure 5.1.2.
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5.2 Energy and States of Particles

In possession of the concept of energy within the lattice formalism, we will now
discuss in considerable more detail the concept of state. This discussion will lead us
to the construction within this formalism of states with a given number of particles
and, therefore, to the concept of particle itself. This is a central concept within the
structure of the theory, which is directly connected with the fundamental issues of
the observation of physical phenomena and of the process of measurement.

Up to now we have been defining and developing a formalism that allows us to
define and calculate, at least in principle, any observables within any given model of
quantum field theory. We have been doing this through the use of a statistical model
in which we define a certain statistical distribution of probabilities that applies to
each and every one of the possible configurations of the fields. This distribution is
the Boltzmann distribution, which can be expressed in terms of the action functional
S of a given model as

|0〉 ∼ [dϕ] e−S[ϕ]

∫
[dϕ] e−S[ϕ]

,

or, if we wish to use the canonical formalism, as

|0〉 ∼ [dϕ][dπ̄] eı
∑

s[π̄∆0ϕ−H(ϕ,π̄)]

∫
[dϕ][dπ̄] eı

∑
s[π̄∆0ϕ−H(ϕ,π̄)]

.

The symbolism of Dirac “bras” and “kets” that we use here expresses the fact
that our interpretation of the structure that we are building is that this statistical
distribution is a representation of the vacuum state of the theory, for this particular
model.

It is a difficult task to define a-priori what the vacuum might be. The classical
idea that it is a situation in which there is total absence of any physical content is not
very useful in the context of the quantum theory, due to the concept of uncertainty
that is inherent to such a theory. We will simply say that this state defines completely
the physical situation in the region of space-time where it is realized, and accept its
introduction as part of the definition of the quantum theory. We will also see that
it is a state that contains no particles, that is, no observable amount of energy. This
does not mean that there is nothing in it, because there is the field, which fluctuates
permanently in a rather violent way. One might say that the vacuum is the state
that contains nothing but the minimum mount of uncertainty which is inherent to
the quantum theory.

This idea which we introduced above, that physical states are connected with
certain statistical distributions, immediately suggest the generalization of its appli-
cation to other stated besides the vacuum. Strictly speaking this is not necessary for
the measurement of observables, since we can measure any observables using only
the vacuum state. This is a remarkable characteristic of this structure of ours, it is
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enough to define a single state in order for us to be able to define and calculate all
the relevant observables of the theory, that is, all the correlation functions and any
other observables, related to other functionals of the fields. However, the introduc-
tion of the direct representation of other states enriches our structure and permits
a better understanding of its functioning.

In this section we are using the word “state” with a very general meaning, as a
representation of the physical situation in a given region of space-time. We are going
to make here no attempt to establish a definite formal relation with the concept of
states as vectors in a Hilbert space. In fact, we are not going to talk at all about
Hilbert spaces or the operators that exist in these spaces. We are going to talk
only about physical states and observables. Later on we will see to what extent it
is possible to establish a relation between our structure and the Hilbert spaces of
quantum mechanics.

Very well, based on the experience we have with the traditional formalism it is
not difficult to guess at the form that a one-particle state should have. Pushing
ahead the connection between states and statistical distributions, we introduce the
state of one particle with momentum ~k through the definition of a new statistical
distribution of configurations,

|1, ~k〉 ∼ [dϕ] |ϕ̃~k|2e−S[ϕ]

∫
[dϕ] |ϕ̃~k|2e−S[ϕ]

,

or, in terms of the canonical formalism,

|1, ~k〉 ∼ [dϕ][dπ̄] |ϕ̃~k|2eı
∑

s[π̄∆0ϕ−H(ϕ,π̄)]

∫
[dϕ][dπ̄] |ϕ̃~k|2eı

∑
s[π̄∆0ϕ−H(ϕ,π̄)]

,

expressions where there appears the Fourier component of the field ϕ associated to
the momentum-space mode ~k. Observe that any expectation value of an observable
on this state can be reduced to the ratio of two expectation values on the vacuum,
by the simple division of both numerator and denominator by the normalization
factor of the vacuum distribution,

〈O〉1,~k =

(∫
[dϕ] O |ϕ̃~k|2e−S[ϕ]

∫
[dϕ] e−S[ϕ]

)

(∫
[dϕ] |ϕ̃~k|2e−S[ϕ]

∫
[dϕ] e−S[ϕ]

) =
〈O |ϕ̃~k|2〉0
〈|ϕ̃~k|2〉0

,

where the index 0 on the expectation values indicates that they are taken on the
vacuum state. Hence we see that in fact the vacuum is sufficient for the calculation
of any observables, a fact which is of great important, for example, to permit the
computational calculation of the expectation values of observables on other states
by reduction to expectation values on the vacuum state.
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Figure 5.2.1: Qualitative diagram of the probability distribution exp(−x2) of the
Fourier components of the field in the vacuum state, showing the point of maximum
at 0.

Before we begin to examine some properties of this new distribution let us em-
phasize here that, while we are proposing a relation between states of the quantum
theory of fields and statistical distributions of the fields, we are absolutely not stat-
ing that any such statistical distribution is related to a physical state of the theory.
There are many distributions that are clearly not related to physical states, such as,
for example, any “delta-functional” distribution, that attributes the probability 1 to
a certain configuration and the probability 0 to all others, because this would trans-
late into a physical situation in which the fundamental field does not fluctuate at all,
which is a classical, not a quantum situation. We will postpone to a future opportu-
nity a more detailed discussion of the conditions that the distributions must satisfy
in order to be associated to states, and will limit ourselves here only to the comment
that such conditions are related to the principle of uncertainty and to the issues of
observation and measurement. Our difficulties with the “ab-initio” definition of the
vacuum will have to be resolved in the context of this future discussion, possibly
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Figure 5.2.2: Qualitative diagram of the probability distribution x2 exp(−x2) of the
Fourier component of the field that is singled out in the one-particle state with a
given momentum vector ~k, showing the point of maximum at 1.

through the criterion that the vacuum is the lowest-energy state that satisfies such
conditions.

For the time being, we will limit ourselves to the examination of distributions
containing the Boltzmann factor exp(−S) and powers of the Fourier components
of the fields. Note that the effect of the introduction of the factor |ϕ̃~k|2 in the
distribution is intuitively clear. While the distribution given by the exponential
exp(−S), where S is quadratic on all the Fourier components, concentrates the
probabilities around the value 0, where it has its maximum value, as one can see in
the graph of figure 5.2.1, the introduction of the factor |ϕ̃~k|2 causes the displacement
of this point of maximum to a finite and non-vanishing value, around which the
probabilities become concentrated, as shown in the graph of figure 5.2.2. We will
see that in the case of the state of n particles this maximum will be displaced to a
value proportional to

√
n. Since this happens only for the part of the distribution

related to the mode ~k, through the introduction of the factor |ϕ̃~k|2 we are favoring
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the configurations that have a larger component of plane wave with momentum ~k.
In order to calculate the energy of this new state, we will use the canonical

definition and the form of the dimensionless Hamiltonian defined in section 5.1,

H = − ı

2

∑

x

[
π̄2 +

∑

i

(∆iϕ)
2 + α0ϕ

2

]
.

With these ingredients we obtain (problem 5.2.1) for the expectation value of the

Hamiltonian in the state of one particle with momentum ~k,

〈H〉1,~k = − ı

2
Nd−1

L +

∫
[dϕ] |ϕ̃~k|2H′e−S[ϕ]

∫
[dϕ] |ϕ̃~k|2e−S[ϕ]

,

where H′ is, as before, the expression of H with π̄ substituted by ı∆0ϕ, showing once
more that the difference between the canonical definition and the initial definition
is just a constant that diverges in the continuum limit. Repeating procedures used
before in section 5.1 we may write explicitly for the energy

ıE1,~kT =
NTN

d−1
L

2

+
NTN

d−1
L

2

∫
[dϕ̃] e−S[ϕ̃]|ϕ̃~k|2

∑

~q

[
−ρ20(~q ) +

∑

i

ρ2i (~q ) + α0

]
|ϕ̃~q|2

∫
[dϕ̃] |ϕ̃~k|2e−S[ϕ̃]

,

where we recall that we have for S[ϕ̃] written in momentum space

S[ϕ̃] =
NTN

d−1
L

2

∑

~k

(ρ2~k + α0)|ϕ̃~k|2,

with

ρ2~k = 4 sin2

(
k0π

NT

)
+
∑

i

4 sin2

(
kiπ

NL

)
.

For the terms of the sum over the momenta ~q such that ~q 6= ±~k the calculation
proceeds as in the case of the calculation of the energy of the vacuum, but for
~q = ±~k there are differences, because in this case we have the expectation value of
a larger power of the Fourier component ϕ̃~k of the fields. Taking into account the
symmetries by exchange of the sign of ~q in the sum, we may write

ıE1,~kT =
NTN

d−1
L

2
+

1

2

∑

~q 6=±~k

−ρ20(~q ) +
∑

i ρ
2
i (~q ) + α0

ρ2~q + α0

+NTN
d−1
L

[
−ρ20(

~k) +
∑

i

ρ2i (
~k) + α0

]
〈|ϕ̃~k|4〉0
〈|ϕ̃~k|2〉0

,
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where we already used in the second term the result

〈|ϕ̃~k|2〉0 =
1

NTN
d−1
L

1

ρ2~k + α0

.

For the other expectation value, which appears in the third term, we have

〈|ϕ̃~k|4〉0 =
2

(
NTN

d−1
L

)2
1

(
ρ2~k + α0

)2 ,

where we used the factorization relations given in section 3.4, for the case ~k 6= ~0,
since the case ~k = ~0 would correspond to particles without any energy and without
any (d − 1)-dimensional momentum, being therefore of no interest. We may use
these results in the third term and reorganize the terms in order to complete the
sum of the second term in such a way that it runs over all possible values of ~q,
obtaining, after some manipulation,

ıE1,~kT =
∑

~q

∑
i ρ

2
i (~q ) + α0

ρ20(~q ) +
∑

i ρ
2
i (~q ) + α0

+
−ρ20(

~k) +
∑

i ρ
2
i (
~k) + α0

ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

.

One observes here that the first term is precisely the energy of the vacuum E0, a
quantity that diverges in the continuum limit. We may now define the quantity

∆E1,~k = E1,~k − E0,

in which we subtracted from the energy its value in the vacuum state, obtaining

ı∆E1,~kT =
−ρ20(

~k) +
∑

i ρ
2
i (
~k) + α0

ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

. (5.2.1)

Observe that this definition makes irrelevant the difference between the canonical
definition and the usual definition, since this difference will always cancel out in
the expression of ∆E. It is this quantity, the additional energy with respect to the
energy of the vacuum that is contained within the state, that we will interpret as
the physical energy to be associated to the state. This is equivalent to saying that
the observable associated to the physical energy is a modified Hamiltonian,

∆H = H− 〈H〉0,

so that the dimensionless physical energy is given in terms of the expectation values
of this observable,

∆E = 〈∆H〉,

on any state, while the dimensionfull energy is related to this dimensionless quantity
by ∆E = ∆E/a = NT∆E/T .
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As we will see later on, we may extend the definition of our states to arbitrary
numbers of particles but, before we do that, let us discuss the physical meaning of
the expression we obtained for the energy in the continuum limit. Our definition of
the one-particle state is in fact the definition of a collection of states, one for each
d-dimensional mode ~k existing on the lattice, each one of them having its energy
given in terms of ~k by the expression in equation (5.2.1). If we write the version of
this result in Minkowski space, thus de-Euclideanizing the result, we obtain

∆E1,~k =
−1

T

ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

−ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

.

There are, in fact, two limits to discuss here, the continuum limit in which we
make N → ∞, and the T → ∞ limit in which we make the box infinite in the
temporal direction. We will discuss the first limit in the symmetrical case, making
NT = NL = N → ∞ while we keep T finite, leaving for later on the discussion of
other ways to take this limit. In this case we may multiply both the denominator
and the numerator by N2/L2, take the limit and write the result as

∆E1,~k =
−1

T

p20(
~k) + p2(~k) +m2

0

−p20(
~k) + p2(~k) +m2

0

,

where m2
0 = α0N

2/L2 and the (d− 1)-dimensional momentum p is defined by

p2
~k
= lim

N→∞

N2

L2

∑

i

ρ2i (
~k) = lim

N→∞

4N2

L2

∑

i

sin2

(
kiπ

N

)
=
∑

i

(
2πki
L

)2

.

Let us consider now the limit T → ∞, with L either kept fixed or not. Since
T appears in the denominator, our expression for the energy of a particle goes to
zero, unless the momentum-dependent expression in the denominator vanishes in
the limit. This takes us to the on-shell condition, that selects a subset of all possible
d-dimensional modes. In order to see this we may rewrite the expression as

∆E1,~k =
−1

T

p20(
~k) + p2

~k
+m2

0[
−p0(~k) +

√
p2
~k
+m2

0

] [
p0(~k) +

√
p2
~k
+m2

0

] .

Observe that we can obtain a finite and non-vanishing limit only so long as in the
limit one of these two relations holds,

p0(~k) =
√

p2
~k
+m2

0 or p0(~k) = −
√

p2
~k
+m2

0.

We thus obtain the on-shell condition that relates the energy, the momentum and
the rest mass of a relativistic particle. We see also that we may have some limits
in which the energy is positive as well as other limits in which it is negative, as
mentioned in section 5.1. Besides the two possibilities presented by the two factors
in the denominator, in each case it is possible to take the limit in which p0 approaches
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±
√

p2 +m2
0 either by smaller values or by larger values, thus changing the sign of

the energy. The issue of the positiveness of the energy will remain open here because
it cannot be solved in a theory of electrically neutral particles with spin zero as is
the case for the real scalar fields we use here as an example. The resolution of this
problem will have to wait until we are able to introduce into the structure of the
theory other essential elements.

Observe that if our system is inside a box in which both T and L are finite then
it may not be possible to satisfy an on-shell condition such as this one for arbitrary
values of the mass m0, because in this case both the values of p0 and the values of p
are quantized at discrete values, and there is no continuous variable except the mass
that we may vary so that the equality can be satisfied. This problem disappears
when we make T go to infinity, as we must, since in this case p0 becomes a variable
that can be varied continuously, and therefore it is always possible to satisfy the
on-shell condition by varying p0. If in addition to the limit T → ∞ we also take the
limit L → ∞ then both p0 and p become continuous variables and we obtain the
usual on-shell condition for particles in infinite space-time.

If we keep L finite then the discrete character of p will be reflected, through the
on-shell condition, on a corresponding discretization of the values of p0. Thus we
see here a simple example of the mechanism that leads to the appearance of energy
quantization for bound states, which are confined to a finite region of the (d − 1)-
dimensional space. Note that making T → ∞ while L is kept fixed is equivalent to
taking the non-relativistic limit, since with T ≫ L only phenomena involving very
small velocities will have world-lines that fit into the d-dimensional box. We therefore
see here a very important fact, that the interpretation of relativistic particles as
excitations of the modes of the d-dimensional cavity is reduced, in the non-relativistic
limit, by means of the on-shell condition, to the association of physical particles to
the energies and modes of the corresponding (d− 1)-dimensional spacial cavity.

Adopting arbitrarily the first of the two possibilities above, we may impose that
the T → ∞ limit be taken in such a way that we have in this limit

T
[
−p0(~k) +

√
p2
~k
+m2

0

]
= A,

for some finite, dimensionless and constant number A, so that

p0(~k) = −A

T
+
√

p2
~k
+m2

0.

We see here that, for finite T , the on-shell condition is modified, that is, that the
energy of each mode is modified by a term proportional to 1/T , exactly as we verified
for the energy of the vacuum in the case of quantum mechanics. This is, therefore,
an infrared effect due to the finite size of the temporal box, exactly as before. Note
that this comparison to the quantum-mechanical case already seems to indicate that
the natural value for A is −1. We may now substitute this relation for p0(k) in the
expression of the energy, obtaining in the T → ∞ limit

∆E1,~k =
−1

A

√
p2
~k
+m2

0.
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We see therefore that, in order for the expectation value of the energy to coincide
numerically with the temporal component of the vector ~k, we should impose that
the T → ∞ limit be such that A = −1. Note that this arbitrariness in the value of
A is equivalent to the arbitrariness in the choice of units for the energy.

It is interesting to discuss here the case d = 1 and thus verify that we obtain the
correct results for the harmonic oscillator in quantum mechanics. In this case the
on-shell condition within a finite temporal box reduces, already making A = −1, to

p0 =
1

T
+m0,

that is, except for the infrared effects due to the finite size of the temporal box, the
energy parameter p0 reduces to the mass parameter m0. Since in this case we do
not have the components pi, this relation determines completely p0 and, therefore,
k0. If we recall that we have α0 = m2

0a
2 and that this same parameter α0 relates

to the angular frequency ω of the harmonic oscillator by α0 = ω2a2, we see that we
have m0 = ω, so that we may write

p0 = ω +
1

T
= ω

(
1 +

1

ωT

)
.

We may now substitute this value for p0 in the expression of the expectation value of
the Hamiltonian, obtaining, after some manipulation and keeping only the first-order
corrections in 1/T , in the limit of very large T ,

∆E1 = ω

(
1 +

1

2ωT

)
,

showing that this quantity also suffers infrared deviations, is a way similar to p0.
With a slightly different choice for A, making A = −1+1/(2ωT ) rather thanA = −1,
we can make p0 and ∆E1 approach their limits in exactly the same way. In any case,
in the T → ∞ limit we have the result

∆E1 = ω,

which is the correct result for the difference between the energies of the first ex-
cited state and of the fundamental state of a one-dimensional harmonic oscillator in
quantum mechanics.

We may now extend our definition of particle states to arbitrary numbers of
identical particles. The state of n particles with momentum ~k can be defined by
means of the distribution

|n,~k〉 ∼ [dϕ] |ϕ̃~k|2ne−S[ϕ]

∫
[dϕ] |ϕ̃~k|2ne−S[ϕ]

,

or, in terms of the canonical formalism,
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|n,~k〉 ∼ [dϕ][dπ̄] |ϕ̃~k|2neı
∑

s[π̄∆0ϕ−H(ϕ,π̄)]

∫
[dϕ][dπ̄] |ϕ̃~k|2neı

∑
s[π̄∆0ϕ−H(ϕ,π̄)]

.

One may now calculate the energy (problem 5.2.2), obtaining, as physically expected,
the result

ı∆En,~kT = n
−ρ20(

~k) +
∑

i ρ
2
i (
~k) + α0

ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

.

We see therefore that we obtain in fact a “ladder” of states, whose energies are integer
multiples of a finite quantity, even on finite lattices, where both the dimensionless
quantities NT and NL and the dimensionfull quantities T and L are finite. This
ladder survives the continuum limit within an infinite temporal box so long as the
on-shell condition is satisfied in the limit. For modes of the lattice that do not
satisfy the on-shell condition the ladder collapses in the continuum limit and its
steps become of vanishing height, so that all the collection of states related to it
becomes energetically degenerate with the vacuum, not corresponding therefore to
states of physically observable particles.

It is interesting to note here that the existence of this ladder of energies for the
particle states in the non-linear λϕ4 model, in d = 4, can be verified directly without
too much difficulty by numerical means [3]. The rules for the construction of the
Hamiltonian and of the particle states in the case of that model are exactly the same
that we used here, the results being different, of course, but only due to the different
form of the action. The measurement of the energies of the particle states on finite
lattices can be made with great precision, leading to a very precise verification of
the proportionality of the energy with the number n of particles. However, the
determination of the energy of a particle in the continuum limit and the verification
of the on-shell condition are much more difficult from the computational point of
view and so far have been done only in a very rough and qualitative way. Whether
or not the existence of such ladders of states is related to the phenomenon of the
triviality of that model is currently unknown.

We will end this section showing that there exists in our structure an observable
that gives, as its expectation values, the number of particles of a given state. This
turns out to be the action of the model itself, which functions as a “number of
particles” observable, so long as we subtract from it its expectation value on the
vacuum, in analogy with what we did for the energy. Recalling once more that the
form of the action of our free model in momentum space is

S[ϕ̃] =
NTN

d−1
L

2

∑

~k

(ρ2~k + α0)|ϕ̃~k|2,

it is easy to calculate directly its expectation value on the vacuum, which has already
been done as a problem proposed in a previous section, with the result
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〈S〉0 =
NTN

d−1
L

2
.

One might interpret this result as one half the number of degrees of freedom of the
d-dimensional lattice, but this is of no direct physical importance. What is most
interesting to us is the calculation of the expectation value of S on the state of one
particle with momentum ~k, which can easily be done (problem 5.2.3), resulting in

〈S〉1,~k =
NTN

d−1
L

2
+ 1,

and, in general, on a state of n particles with momentum ~k

〈S〉n,~k =
NTN

d−1
L

2
+ n,

Hence, the observable

N = S − 〈S〉0

gives us the number of particles of a given state. This can be extended to states
for arbitrary numbers of particles with various different momenta, in which case it
gives us the total number of particles (problem 5.2.4). Note that this observable is
not sensitive to whether or not the particles correspond to modes that satisfy the
on-shell condition.

It is interesting to note here that the definition of this observable is quite general
and does not depend on any particularity of our simple model here. In fact, it is
possible to verify numerically that the observable N gives us the number of particles
even in non-linear models such as, for example, the λϕ4 model. Not only one verifies
that the expectation value of this observable is always proportional to the number
n of particles, whatever the values of the parameters of the model may be, but
one also verifies that the value of the increment ∆〈N 〉 between the states of n and
n+ 1 particles approaches the value 1 in the immediacy of the critical region in the
space of parameters of the model, indicating that this increment tends to 1 in the
continuum limit. The existing numerical results, still of a somewhat limited quality
due to the limitations of the available resources, can be found in [3].

In a linear model such as our standard example here it is possible to define, ad-
ditionally, observables that function like projection operators, returning the number
of particles with a given momentum ~k that exist on the state. The definition of
these observables is simple,

N~k =
1

2

[
NTN

d−1
L

(
ρ2~k + α0

)
|ϕ̃~k|2 − 1

]
.

It is easy to verify (problem 5.2.6) that we have for this observable
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〈N~k〉n,~k = n,

while for ~q 6= ±~k

〈N~k〉n,~q = 0,

showing that the observable is, in fact, a projector for particles with momentum ~k.
Using these observables one can, for example, separate real particles, corresponding
to modes satisfying the on-shell condition, from virtual particles corresponding to
other modes. In non-linear theories it is not clear whether or not it is possible to
define observables like this one in a general way.

Observe that we are not able to distinguish states of particles with momentum
~k from states of particles with momentum −~k, both with respect to the number
of particles and with respect to the energy. This is due to the real nature of the
scalar field of our simple model, which corresponds to particles without electrical
charge. Both with respect to the positivity of the energy of the physical states and
with respect to the complete definition of the observables that give us the number
of particles, it is clear that, in order to go ahead with the physical interpretation of
the theory, it would be necessary to introduce into it complex fields corresponding
to charged particles, as well as the gauge fields of electrodynamics.

Problems

5.2.1. Calculate the expectation value of the Hamiltonian H on the state of one
particle with momentum ~k. During the calculation consider carefully the cases
in which ϕ̃(~k) is real and those in which ϕ̃(~k) has a non-vanishing imaginary
part.

5.2.2. Calculate the expectation value of the Hamiltonian ∆H on the state of n
particles with momentum ~k. During the calculation consider carefully the cases
in which ϕ̃(~k) is real and those in which ϕ̃(~k) has a non-vanishing imaginary
part.

5.2.3. Calculate the expectation value of the action S on the state of n particles with
momentum ~k. During the calculation consider carefully the cases in which
ϕ̃(~k) is real and those in which ϕ̃(~k) has a non-vanishing imaginary part.

5.2.4. Calculate the expectation value of the observable N on a state having n1 parti-
cles with momentum ~k1 and n2 particles with momentum ~k2, which is obtained
by multiplying the Boltzmann factor by the appropriate factors involving the
Fourier components of the fields relative to these two momenta,

|n1, ~k1;n2, ~k2〉 ∼
[dϕ] |ϕ̃~k1

|2n1 |ϕ̃~k2
|2n2e−S[ϕ]

∫
[dϕ] |ϕ̃~k1

|2n1 |ϕ̃~k2
|2n2e−S[ϕ]

.
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5.2.5. Calculate the expectation value of the Hamiltonian ∆H on the state having n1

particles with momentum ~k1 and n2 particles with momentum ~k2 considered
in problem 5.2.4. Show in this way that the energy is additive, that is, that
the total energy of the state is the sum of the energies of the particles that it
contains.

5.2.6. Calculate the expectation value of the observable N~k on a state having n

particles with momentum ~q. Consider in separate the cases in which ~q 6= ±~k
and the case in which ~q = ~k.

5.3 Relation with Hilbert Spaces

In possession of the concept of energy and having constructed the states of particles
within the structure of our theory, we will now examine another concept which is
of central importance in the traditional formalism, the concept of the eigenstates
of an observable. In the traditional formalism the observables are represented by
Hermitian operators in a Hilbert space and the physical states are represented by
vectors in this space. In that formalism the eigenstates of an observable are the
eigenvectors of the corresponding operator. Our first problem here is to determine
how to characterize the property of a state being or not being an eigenstate of an
observable.

In order to build this characterization of the concept of eigenstate in our formal-
ism, it is necessary to think in terms of expectation values, as it is in terms of the
direct definition of these values that our formalism is built. Let us start by recalling
that, if a state |e〉 is an eigenstate of an observable O with eigenvalue ω, then we
have in the traditional formalism

Oop|e〉 = ω|e〉,

where Oop is an operator and ω a number. In terms of expectation values we can
write this in the form

〈e|Oop|e〉 = ω,

where we used the fact that the states are normalized, 〈e|e〉 = 1. As a consequence
of the relations above we also have

O2
op|e〉 = Oopω|e〉 = ωOop|e〉 = ω2|e〉,

so that we may write a relation between expectation values,

〈e|O2
op|e〉 = ω2〈e|e〉 = ω2,

or, in other words,
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〈e|O2
op|e〉 = 〈e|Oop|e〉2.

This is the statement that the dispersion or width of the distribution of values of
the operator Oop on the state |e〉 is zero,

σ2
O = 〈e|O2

op|e〉 − 〈e|Oop|e〉2 = 0.

In other words, the value of the observable O on the state |e〉 is completely well-
defined, without fluctuations. This is a representation of the concept of eigenstate
that we can translate directly to the lattice formalism,

σ2
O = 〈O2〉e − 〈O〉2e = 0.

Of course, in the representation of the structure on the lattice, one does not expect
that the dispersion of the observable on its eigenstates is necessarily zero on finite
lattices, but only that it goes to zero in the continuum limit, and possibly only if
we take, besides this one, the T → ∞ limit as well. For example, for the action per
site s0, an observable which was examined in the problems proposed in section 4.2,
we know that this is true for the vacuum state, since we have that 〈s0〉0 = 1/2 and
that the dispersion goes to zero in the limit NT = NL = N → ∞. Of course, that
observable is of no direct physical interest in the context of our discussion in this
section.

We have then our criterion to determine whether or not a given state is an eigen-
state of a given observable: it suffices to calculate the dispersion of the observable
on the state and verify whether or not the result vanishes in the continuum limit.
It is possible to define very singular statistical distributions for which the dispersion
of any given observable is zero, even on finite lattices (problem 5.3.1), but these
distributions do not correspond to physical states and are of little interest to us in
the context of the quantum theory of fields. What we should verify is whether or not
the vacuum state represented by the Boltzmann distribution is an eigenstate of the
modified Hamiltonian ∆H, in the continuum limit. The same should be done with
the observable number-of-particles N . We should therefore calculate the dispersions
of these observables in the vacuum state.

We will start by calculating the dispersion of the observable N and, therefore, of
the action, because the calculations are simpler in this case, since these observables
do not depend on π̄ and we may, therefore, use directly the usual definition for the
expectation values. In addition do this, these are dimensionless observables, which
makes it simpler to take the continuum limit. Since we have that N = S− 〈S〉0, we
can easily show that the dispersion of N is equal to the dispersion of S,

〈N 2〉 − 〈N〉2 = 〈(S2 − 2S〈S〉0 + 〈S〉20)〉 − (〈S〉 − 〈S〉0)2
= 〈S2〉 − 2〈S〉〈S〉0 + 〈S〉20 − 〈S〉2 + 2〈S〉〈S〉0 − 〈S〉20
= 〈S2〉 − 〈S〉2,
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for any state in which we may be measuring the dispersion. This is a general fact
which is important for us: the addition of a constant to an observable, be it finite
or divergent in the limit, does not change the dispersion of the observable. In order
to calculate the dispersion of S on the vacuum, we first obtain (problem 5.3.2) the
results

〈S〉0 =
NTN

d−1
L

2
,

and

〈S2〉0 =
(
NTN

d−1
L

2

)2

+
NTN

d−1
L

2
,

so that we have for the dispersion

〈S2〉0 − 〈S〉20 =
NTN

d−1
L

2
,

that is, we have

σN = σS =

√
NTN

d−1
L

2
,

which, instead of vanishing in the continuum limit, diverges, thus showing that the
vacuum is not an eigenstate of the observable number-of-particles. Note that this
dispersion is small by comparison with the value of 〈S〉0 = NTN

d−1
L /2, so that we

have

√
〈S2〉0 − 〈S〉20

〈S〉0
=

√
2

NTN
d−1
L

−→ 0,

that is, the relative dispersion goes to zero in the continuum limit, but the dispersion
itself is not small by comparison to the finite value of 〈N 〉0. Hence, the observable
N gives us the correct number of particles in each state, including the value 0 for
the vacuum, but the vacuum is not an eigenstate of this observable.

With a little more work we can repeat these calculations for the states of n
particles with momentum ~k which we introduced in section 5.2 (problem 5.3.3). In
this case we obtain the preliminary results

〈S〉n,~k =
NTN

d−1
L

2
+ n,

and

〈S2〉n,~k =
(
NTN

d−1
L

2

)2

+NTN
d−1
L

(
n+

1

2

)
+

(
n+

1

2

)2

− 1

4
,
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so that we have for the dispersion

〈S2〉n,~k − 〈S〉2
n,~k

=
NTN

d−1
L

2
+ n,

which diverges in the continuum limit in the same way as before. Note that these
results diverge even in the case d = 1, which corresponds to quantum mechanics.
However, this fact does not cause much preoccupation because the concept of the
observable number-of-particles does not play any fundamental role in quantum me-
chanics. For the case d > 1 it is also possible to calculate the dispersion of the
operators N~k (problem 5.3.4), which are given by

N~k =
1

2

[
NTN

d−1
L

(
ρ2~k + α0

)
|ϕ̃~k|2 − 1

]
,

each one of which measures the number of particles with momentum ~k. In this case
we obtain, on the state of n particles with momentum ~k,

〈N~k〉n,~k = n,

and

〈N 2
~k
〉n,~k = n2 + n +

1

2
,

so that we obtain for the dispersion

〈N 2
~k
〉n,~k − 〈N~k〉2n,~k = n+

1

2
.

In this case the result does not diverge, but we still have a value for the dispersion
that does not vanish in the continuum limit, showing once more that the states of
particles are not eigenstates of these observables.

In short, none of our states of particles are eigenstates of any of the observables
that give, as their expectation values in these states, the corresponding numbers of
particles. We will now proceed to the examination of the behavior of the observables
related to the energy, which are the most important ones from the physical point of
view. The observable of greatest relevance to us is the modified Hamiltonian

∆H = H− 〈H〉0,

recalling that the dimensionless physical energy is given by

∆E = 〈∆H〉,

and that the physical energy relates to this dimensionless quantity by

∆E = ∆E/a = NT∆E/T.
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We can calculate the expectation values of H2 and (∆H)2 both by the canonical
definition and by the usual definition. Since these observables depend on π̄ the
results of these two calculations will be different. In any case, since ∆H and H are
related by the addition of a constant quantity, we know beforehand that both will
have the same dispersion. Because of this, we may calculate directly the dispersion
of H. Besides the question of using the canonical definition or the usual definition,
it is also necessary to consider in detail the question of the temporal average, which
we used before to facilitate the calculations. To take this average is equivalent to
defining an average Hamiltonian over a temporal block, which we denote as

Hb =
1

NT

∑

t

H.

As we observed before, the invariance of the lattice model by discrete temporal trans-
lation implies that Hb and H have the same expectation value, but these are two
conceptually different observables. The observable H corresponds to the measure-
ment of the energy at a perfectly well-defined instant of time, while the observable
Hb constitutes a type of block variable and we should expect that its fluctuations
will be smaller than those of H, due to the average over the temporal block. Since
the dispersions of the observables are a measure of the average magnitude of the
fluctuations that they undergo, the dispersions will be different. We may, in fact,
predict that the dispersion ofHb will be smaller than that ofH, as it is characteristic
for block variables.

We see therefore that we have several calculations to do, including two possi-
bilities for the definition of the observable and two possibilities for the definition of
the averages. We will present here the calculation of the dispersion of Hb, which is
simpler and sufficient for our purposes, leaving the case of H for the problems of this
section (problems 5.3.5, 5.3.6 and 5.3.7). Besides, we will start with the canonical
definition of the averages, showing, first of all, the relation of the result obtained by
means of this definition with that obtained by means of the usual definition. Let us
recall that the Hamiltonian density is given by

H = − ı

2

[
π̄2 + (∆iϕ)

2 + α0ϕ
2
]
,

where summation over i is implicit, so that we have the Hamiltonian

H =
∑

x

H = − ı

2

∑

x

[
π̄2 + (∆iϕ)

2 + α0ϕ
2
]
.

Calculating the temporal average of this quantity we obtain the blocked Hamiltonian

Hb =
1

NT

∑

t

H =
1

NT

∑

~x

H = − ı

2NT

∑

~x

[
π̄2 + (∆iϕ)

2 + α0ϕ
2
]
.

We will now calculate the dispersion of Hb, which involves the calculation of the
expectation values of 〈Hb〉 and 〈H2

b〉. We will do the calculation starting by the



208 THE CONCEPT OF ENERGY

canonical definition of the observables. So that it be a positive quantity, recalling
that Hb is purely imaginary in our formalism, we define the dispersion σHb

by means
of

−σ2
Hb

= 〈H2
b〉 − 〈Hb〉2.

As we saw in section 5.1, using the canonical definition of the expectation values we
have for 〈H〉 = 〈Hb〉 the result

〈Hb〉 = − ı

2
Nd−1

L − ı

2NT

∑

~k

−ρ20 + ρ2i + α0

ρ2 + α0

,

with

ρ2 = 4 sin2

(
k0π

NT

)
+
∑

i

4 sin2

(
kiπ

NL

)
+ α0,

so that we have for the square of this quantity

〈Hb〉2 = − 1

4N2
T


(Nd−1

L NT

)2
+ 2Nd−1

L NT

∑

~k

−ρ20 + ρ2i + α0

ρ2 + α0

+


∑

~k

−ρ20 + ρ2i + α0

ρ2 + α0




∑

~q

−ρ20 + ρ2i + α0

ρ2 + α0




 , (5.3.1)

where it is understood that the variables within each sum have as their argument
the argument of the sum. Let us now calculate 〈H2

b〉, starting by the integrals over
π̄,

〈H2
b〉 = − 1

4N2
T

〈{
∑

~x

[
π̄2 + (∆iϕ)

2 + α0ϕ
2
]
}{

∑

~y

[
π̄2 + (∆iϕ)

2 + α0ϕ
2
]
}〉

,

where, once more, it is understood that the variables within each sum have as their
argument the argument of the sum. We may write this explicitly as

〈H2
b〉 = − 1

4N2
T

∑

~x

∑

~y

1∫
[dϕ][dπ̄] eı

∑
s(π̄∆0ϕ−H)

∫
[dϕ][dπ̄] eı

∑
s(π̄∆0ϕ−H)

×
{
π̄2
~xπ̄

2
~y + 2π̄2

~x

[
(∆iϕ)

2 + α0ϕ
2
]
~y
+
[
(∆iϕ)

2 + α0ϕ
2
]
~x

[
(∆iϕ)

2 + α0ϕ
2
]
~y

}
,

where the indices ~x e ~y indicate the dependencies with each one of these two sites,
and we have used our freedom to interchange ~x and ~y within the sums. Recalling
that the exponential can be written as

eı
∑

s(π̄∆0ϕ−H) = e−
1
2

∑
s(π̄

2−2ıπ̄∆0ϕ)e−
1
2

∑
s[(∆iϕ)2+α0ϕ2]
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we make the shift

χ = π̄ − ı∆0ϕ =⇒ π̄2 − 2ıπ̄∆0ϕ = χ2 + (∆0ϕ)
2,

so that we may write, reconstituting the complete form of the action in the exponent,

〈H2
b〉 = − 1

4N2
TZ

∑

~x

∑

~y

∫
[dϕ][dχ] e−

1
2

∑
s χ

2

e−S

×
{
(χ+ ı∆0ϕ)

2
~x(χ+ ı∆0ϕ)

2
~y + 2(χ+ ı∆0ϕ)

2
~x

[
(∆iϕ)

2 + α0ϕ
2
]
~y

+
[
(∆iϕ)

2 + α0ϕ
2
]
~x

[
(∆iϕ)

2 + α0ϕ
2
]
~y

}
,

where S is the action and

Z =

∫
[dϕ][dπ̄] eı

∑
s(π̄∆0ϕ−H) =

∫
[dϕ][dχ] e−

1
2

∑
s χ

2

e−S

is the denominator that normalizes the expectation values. We may now expand
the terms inside the brackets, collecting powers of χ, making exchanges of ~x and
~y, and recalling that terms with odd powers of χ at a given site vanish due to the
symmetry of the integration, in order to arrive at the expression

〈H2
b〉 = − 1

4N2
TZ

∑

~x

∑

~y

∫
[dϕ][dχ] e−S e−

1
2

∑
s χ

2

×
[
χ2
~xχ

2
~y + 4ıχ2

~xH′
~y − 4δd~x,~yχ

2
~x(∆0ϕ)

2
~x − 4H′

~xH′
~y

]
,

where

H′ = − ı

2

[
−(∆0ϕ)

2 + (∆iϕ)
2 + α0ϕ

2
]

is, as usual, the Hamiltonian density with π̄ substituted by ı∆0ϕ. We may now use
the known results

∫
dχ χ2 e−

1
2
χ2

∫
dχ e−

1
2
χ2

= 1 and

∫
dχ χ4 e−

1
2
χ2

∫
dχ e−

1
2
χ2

= 3,

as well as the result, which can be easily obtained,

∑

~x

〈(∆0ϕ)
2〉 =

∑

~k

ρ20
ρ2 + α0

,

in order to do the integrations and write

〈H2
b〉 = −1

4
N

2(d−1)
L − 1

2

Nd−1
L

NT

− ıNd−1
L 〈H′

b〉+
1

N2
T

∑

~k

ρ20
ρ2 + α0

+ 〈H′
b
2〉,
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where we used the expression of the Hamiltonian with π̄ substituted by ı∆0ϕ,

H′
b =

1

NT

∑

t

H′ =
1

NT

∑

~x

H′.

We now observe that the result of equation (5.3.1) can be written in terms of H′
b as

〈Hb〉2 = −1

4
N

2(d−1)
L − ıNd−1

L 〈H′
b〉+ 〈H′

b〉2,

so that we may write for the dispersion of Hb

−σ2
Hb

= 〈H2
b〉 − 〈Hb〉2 = 〈H′

b
2〉 − 〈H′

b〉2 −
1

2

Nd−1
L

NT

+
1

N2
T

∑

~k

ρ20
ρ2 + α0

.

We can manipulate the last two terms of this expression and verify that they are
proportional to the expectation value of H′

b,

〈H′
b〉 = − ı

2NT

∑

~k

−ρ20 + ρ2i + α0

ρ2 + α0

,

so that we can write the dispersion of Hb in terms of the dispersion of H′
b as

−σ2
Hb

= 〈H2
b〉 − 〈Hb〉2 = 〈H′

b
2〉 − 〈H′

b〉2 −
ı

NT
〈H′

b〉 = −σ2
H′

b
− ı

NT
〈H′

b〉,

that is,

σ2
Hb

= σ2
H′

b
+

ı

NT
〈H′

b〉.

We see here that the dispersions of Hb and of H′
b, that is, the dispersions of Hb

according to the canonical definition and according to the usual definition, are not
too different, since the extra term is damped by a factor of 1/NT and should not
have much importance in the continuum limit.

We must now calculate, in explicit form, the dispersion of H′
b, for which it is

necessary to calculate 〈H′
b
2〉. For this end it is convenient to first write H′

b in terms
of the Fourier transforms of the fields,

H′
b = − ı

2NT

∑

~x

[
−(∆0ϕ)

2 + (∆iϕ)
2 + α0ϕ

2
]
= − ı

2
Nd−1

L

∑

~k

(−ρ20 + ρ2i + α0)|ϕ̃|2.

With this we can write for the expectation value of H′
b
2

〈H′
b
2〉 = −N

2(d−1)
L

4

∑

~k

∑

~q

(−ρ20 + ρ2i + α0)~k(−ρ20 + ρ2i + α0)~q〈|ϕ̃~k|2|ϕ̃~q|2〉.
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In order to calculate the indicated expectation values it is necessary to consider in
detail and separately the cases in which ~k = ±~q and the cases in which ~k 6= ±~q. In
addition to this it is necessary to recall that the expectation values of products of four
fields have different behaviors when the Fourier components are real, in comparison
to the case in which they have non-vanishing imaginary parts. For simplicity of the
argument, let us consider explicitly the case in which N is odd, in which the only
real Fourier component is the zero mode, ~k = ~0. As usual in this type of calculation,
once the answer is obtained in terms of complete sums over the modes in momentum
space, we may lift the restriction that N be odd without affecting the validity of
the answer. Under these conditions we have the following four mutually exclusive
possibilities:

~k = ~q = ~0, ~k = ~q 6= ~0, ~k = −~q 6= ~0, ~k 6= ±~q.

Each pair (~k, ~q ) which is possible is exclusively in one of these four categories, while
the union of the four exhausts all the possibilities for the pairs. With this we can
write for our expectation value

〈H′
b
2〉 = −N

2(d−1)
L

4


α2

0〈|ϕ̃~k=~0|4〉+ 2
∑

~k 6=~0

(−ρ20 + ρ2i + α0)
2〈|ϕ̃|4〉

+
∑

~k 6=±~q

(−ρ20 + ρ2i + α0)~k(−ρ20 + ρ2i + α0)~q〈|ϕ̃~k|2|ϕ̃~q|2〉


 .

The expectation values involving different momenta can be factored and, in addition
to this, we can use the known results

〈|ϕ̃~k=~0|4〉 = 3〈|ϕ̃~k=~0|2〉,
〈|ϕ̃~k 6=~0|4〉 = 2〈|ϕ̃~k 6=~0|2〉,

〈|ϕ̃~k|2〉 =
1

Nd−1
L NT

1

ρ2 + α0
,

to write

〈H′
b
2〉 = − 1

4N2
T


3 + 4

∑

~k 6=~0

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

+
∑

~k 6=±~q

(−ρ20 + ρ2i + α0

ρ2 + α0

)

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)

~q


 .

One of the three units in the first term and two of the four units in the second term
may now be joined with the third term in order to complete the sum that appears
in this last one, resulting in
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〈H′
b
2〉 = − 1

4N2
T


2 + 2

∑

~k 6=~0

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

+
∑

~k

∑

~q

(−ρ20 + ρ2i + α0

ρ2 + α0

)

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)

~q


 .

The two remaining units in the first term may now be joined with the second term
in order to complete the sum that appears in this one, resulting in

〈H′
b
2〉 = − 1

2N2
T

∑

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

− 1

4N2
T


∑

~k

−ρ20 + ρ2i + α0

ρ2 + α0




2

We observe now that the last term may be written in terms of 〈H′
b〉 and we obtain

〈H′
b
2〉 = − 1

2N2
T

∑

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

+ 〈H′
b〉2.

With this we finally obtain for the dispersion of H′
b

−σ2
H′

b
= 〈H′

b
2〉 − 〈H′

b〉2 = − 1

2N2
T

∑

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

,

and, consequently, for the dispersion of Hb

−σ2
Hb

= 〈H2
b〉 − 〈Hb〉2 = − 1

2N2
T

∑

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

− 1

2N2
T

∑

~k

−ρ20 + ρ2i + α0

ρ2 + α0
.

We may join the two sums that appear in this expression into a single sum, thus
obtaining

−σ2
Hb

= 〈H2
b〉 − 〈Hb〉2 = − 1

N2
T

∑

~k

(ρ2i + α0)(−ρ20 + ρ2i + α0)

(ρ2 + α0)2
,

that is,

σ2
Hb

=
1

N2
T

SHb
,

with the definition of a symbol for the sum over the momenta,

SHb
=
∑

~k

(ρ2i + α0)(−ρ20 + ρ2i + α0)

(ρ2 + α0)2
.

Although this sum is not manifestly positive, it is in fact positive, as can be verified
numerically. If we think about the symmetrical limit NL = NT it becomes clearer
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Figure 5.3.1: The sum SHb
that appears in the expression of the dispersion of Hb,

calculated according to the canonical definition of the expectation values, in the case
d = 1.

that the positive terms predominate in the only factor which is not manifestly pos-
itive, the second factor in the numerator of the sum. This is due to the fact that
there is an implicit sum over i in ρ2i , so that we have d− 1 positive terms and only
1 negative term in the sum of the ρ’s. Since the possible values for each ρi and for
each ρ0 are the same, we arrive at the conclusion that the sums are predominantly
positive for sufficiently large dimensions d. The only case which raises some doubt,
if we recall that α0 → 0 in the continuum limit, is the case d = 2, but in this case
it is possible to rewrite the sum in a manifestly positive form (problem 5.3.8).

The issue now is to determine how these sums behave in the continuum limit.
Since the term that is being added is homogeneous of order zero on the ρ’s, and
therefore typically of the order of 1, it is to be expected that the sums behave as
Nd−1

L NT or, in the symmetrical limit, as Nd, which is the number of terms in the
sum. One exception should be the case d = 1, in which all the ρi’s disappear and
the situation changes qualitatively. We can easily evaluate these sums numerically
in the symmetrical case, obtaining what is seen in the figures from 5.3.1 to 5.3.5. In
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Figure 5.3.2: The sum SHb
that appears in the expression of the dispersion of Hb,

calculated according to the canonical definition of the expectation values, divided
by Nd, in the case d = 2.

all cases we have that SHb
= 1 for N = 1. In figure 5.3.1 we see that the case d = 1

differs from the others, because in this case the sum has a finite limit of the order
of 1. In all the other cases the sum behaves as Nd, so that it is the ratio SHb

/Nd

that is plotted in the graphs of figures from 5.3.2 to 5.3.5, a ratio which approaches
a finite limit of the order of 1 in these cases.

Thus we see that the case d = 1 of quantum mechanics is the only one in which
the vacuum is an eigenstate of the time-blocked Hamiltonian Hb. It suffices to
observe that in this case we have for the dimensionfull dispersion ΣHb

= σHb
/a,

which is the one that corresponds to the dimensionfull physical energy, the behavior
in the limit of large NT ,

Σ2
Hb

∼ 1

T 2
,

so that it is enough to make T → ∞ for the dispersion to vanish. Note that we
may take first the limit NT → ∞ and only after that make T go to infinity. In
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Figure 5.3.3: The sum SHb
that appears in the expression of the dispersion of Hb,

calculated according to the canonical definition of the expectation values, divided
by Nd, in the case d = 3.

this particular case we can verify that this result is still obtained if we use the non-
blocked Hamiltonian H instead ofHb, but is a much weaker form, since we are forced
to adopt a particular way to take the limits for the dispersion to vanish in the limit
(problem 5.3.9).

To complete the discussion we may also examine the corresponding results for
H′

b, that is, calculated according to the usual definition of the expectation values,
instead of the canonical definition. In this case the result can be written as

σ2
H′

b
=

1

N2
T

SH′
b
,

where the sum is defined by

SH′
b
=

1

2

∑

~k

(−ρ20 + ρ2i + α0

ρ2 + α0

)2

.

The results of the numerical evaluation of the sums SH′
b
, in the case of the symmet-

rical limit, can be seen in the figures from 5.3.6 to 5.3.10. The only case in which
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Figure 5.3.4: The sum SHb
that appears in the expression of the dispersion of Hb,

calculated according to the canonical definition of the expectation values, divided
by Nd, in the case d = 4.

there is a qualitative difference in the results is the case d = 1, whose sum no longer
has a finite value as was the case for the canonical definition. Note that figure 5.3.6
shows the dispersion per site, not simply the dispersion like figure 5.3.1 does. We see
that according to the usual definition of the expectation values the sums behave as
Nd in any dimension. All that one can conclude form these results, based on what
happens in the case d = 1, is that the most sensible way to calculate the dispersion
of the Hamiltonian is the canonical way. But there is no qualitative change in the
situation in the case d ≥ 2.

Note that in the case of quantum mechanics, although the sum now diverges as
NT , this still does not prevent us from making the dimensional dispersion go to zero
in the limit, since in this case we have for ΣH′

b
= σH′

b
/a

Σ2
H′

b
∼ NT

T 2
,

so that we can make the dispersion go to zero in limits in which we make T increase
with NT is a sufficiently fast way. This type of limit is the same that we are
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Figure 5.3.5: The sum SHb
that appears in the expression of the dispersion of Hb,

calculated according to the canonical definition of the expectation values, divided
by Nd, in the case d = 5.

forced to use if we try to employ the non-blocked Hamiltonian H with the canonical
definition of the expectation values (problem 5.3.9). Limits of this type will be
discussed in detail in a little while, for the case of the quantum theory of fields.
On the other hand, if we try to use the non-blocked Hamiltonian H and the non-
canonical definition of the expectation values, then we verify that it is not possible
to make the dispersion go to zero in the limit even in the case of quantum mechanics
(problem 5.3.10).

In order to discuss in a more direct way the physical significance of these results, it
is necessary to first translate these dimensionless results in terms of the dimensionfull
physical energy, as we did above for the case of quantum mechanics. We will use
in this discussion the results obtained according to the canonical definition of the
expectation values. The dispersion Σ2

Hb
= σ2

Hb
/a2 of the dimensionfull energy is

given by

Σ2
Hb

=
1

T 2
SHb

,
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Figure 5.3.6: The sum SH′
b
that appears in the expression of the dispersion of H′

b,
that is, the dispersion of Hb calculated according to the usual definition of the
expectation values, divided by Nd, in the case d = 1.

where we recall that T is the temporal size of the box. We see that in the case
d = 1, since SHb

tends to a constant, the dispersion goes indeed to zero when we
make T → ∞, so that in this case the vacuum state is indeed an eigenstate of the
blocked Hamiltonian. However, in all other cases the fact that the sum SHb

diverges
as Nd means that we have Σ2

Hb
∼ Nd/T 2, so that it is not possible to make the

dispersion go to zero in the limit, and therefore in all these cases the vacuum state
is not an eigenstate of the Hamiltonian. The borderline case is the case d = 2, in
which we have

Σ2
Hb

∼ N2

T 2
.

We see here that, if we make T increase in the continuum limit in a sufficiently fast
way, in order to compensate the increase of N , we end up preventing the limit from
being in fact a continuum limit, since in order to cause the dimensionfull width to
vanish it is necessary to make a → ∞ instead of a → 0. We can see this if we recall
that T = Na, so that the expression above can be written as
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Figure 5.3.7: The sum SH′
b
that appears in the expression of the dispersion of H′

b,
that is, the dispersion of Hb calculated according to the usual definition of the
expectation values, divided by Nd, in the case d = 2.

Σ2
Hb

∼ 1

a2
.

For larger dimensions the situation gets progressively worse. So long as we limit
ourselves to taking the continuum limit in the symmetrical way, the situation seems
to be that the concept of eigenstate and, ultimately, the concept of Hilbert space,
only apply to the case of quantum mechanics, and not to the case of the quantum
theory of fields.

We will therefore examine what happens if we take the continuum limit in a non-
symmetrical way, which obviously only makes sense for d ≥ 2. The most extreme
case in this context is to take first the limit NT → ∞ with fixed NL, as in the case of
quantum mechanics, and only after that take the limit NL → ∞. The effect of this
procedure is to first reduce the system to the quantum mechanics of an arbitrary
but finite number of degrees of freedom, and only after that make the number of
degrees of freedom increase without limit. In this case all the sums SHb

and SH′
b



220 THE CONCEPT OF ENERGY

0 20 40 60 80 100 120

Number of Vertices N

0

0.1

0.2

0.3

0.4

0.5

Usual Dispersion per Site in d=3

Figure 5.3.8: The sum SH′
b
that appears in the expression of the dispersion of H′

b,
that is, the dispersion of Hb calculated according to the usual definition of the
expectation values, divided by Nd, in the case d = 3.

for d ≥ 2 behave simply as NT when we take the first limit. In fact, examining the
behavior of the terms of the sums in the limit we can see that the sums tend to the
value Nd−1

L NT . Writing explicitly the general term t(~k) of the sum for the case of
SH′

b
we have

t(~k) =



−4 sin2

(
k0π
NT

)
+
∑

i 4 sin
2
(

kiπ
NL

)
+ α0

4 sin2
(

k0π
NT

)
+
∑

i 4 sin
2
(

kiπ
NL

)
+ α0




2

.

Recalling that α0 = m2
0a

2 for some finite mass m0, which implies that N2
Tα0 = m2

0T
2,

as well as that for finite k0 and NT → ∞ the argument of the sine function goes
to zero, so that we may approximate it by its argument in the first terms in the
numerator and in the denominator, we may multiply numerator and denominator
by N2

T and write, for most terms in the sum, that
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Figure 5.3.9: The sum SH′
b
that appears in the expression of the dispersion of H′

b,
that is, the dispersion of Hb calculated according to the usual definition of the
expectation values, divided by Nd, in the case d = 4.

t(~k) −→



−(2πk0)

2 +N2
T

∑
i 4 sin

2
(

kiπ
NL

)
+ (NT/NL)

2m2
0L

2

(2πk0)2 +N2
T

∑
i 4 sin

2
(

kiπ
NL

)
+ (NT /NL)2m2

0L
2



2

.

Now, since 1/NL does not go to zero, the sine function that appears in the second
terms in the numerator and in the denominator does not become small, so that these
terms diverge like N2

T , as do the third terms. Hence, the only difference between
the numerator and the denominator, which is the sign of the first term, tends to
disappear, so that we obtain, in the limit NT → ∞ with fixed NL and finite T ,

SH′
b
−→

∑

~k

1 = Nd−1
L NT .

The same is true if we make T → ∞ together with NT → ∞, since T has to increase
slower than NT in order to guarantee that a → 0, that is, that we have in fact a
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Figure 5.3.10: The sum SH′
b
that appears in the expression of the dispersion of

H′
b, that is, the dispersion of Hb calculated according to the usual definition of the

expectation values, divided by Nd, in the case d = 5.

continuum limit. It follows that the term involving m0 always becomes negligible in
the limit, besides the fact that its presence would not change, in any case, the fact
that the terms of the sum SH′

b
tend to 1. As one can see, in this type of asymmetrical

limit all the sums tend to Nd−1
L NT in the limit, diverging, therefore, as NT in the

first limit involved. The same type of behavior can be verified for the sum SHb

(problem 5.3.14).

Note that this argument for the evaluation of the sums is not completely rigorous,
because it is clear that there are always some terms of the sums for which k0 is of
the order of NT and for which we cannot approximate the sine function by its
argument. If one examines the behavior of these terms one realizes that we may
have over-evaluated the sums. However, with basis on the fact that these terms
were not enough to avoid the divergent behavior of the sums as Nd−1

L NT even in the
case of the symmetrical limit, in which they are relatively more important, we may
expect that they do not change the divergent behavior of the sums in our limit here.
At most, we may expect a change in the multiplicative constant, to the effect that
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the sums behave as

SHb
,SH′

b
−→ C(d)Nd−1

L NT ,

with, in each dimension, some positive constant C(d), smaller than and of the order
of 1. However, in order to check these facts beyond any doubt, it is necessary to
evaluate numerically these sums in this type of asymmetrical limit (problem 5.3.15).

Let us observe that in this type of limit we have for the dimensionfull dispersions,
both for ΣHb

and for ΣH′
b
, in dimensions d ≥ 2, the behavior

Σ2
Hb

∼ Nd−1
L

NT

T 2
.

This allows us to make the dispersion vanish in the limit, it suffices to make T go
to infinity sufficiently fast as a function of NT , in order to compensate the increase
of NT . We can do this by relating T to some finite temporal length T (something
like a mean life) by means of

T = Np
TT .

There are limits for the possible values of the power p. In order for T to go to
infinity in the limit, we must have p > 0. On the other hand, we must remember
that T = NTa and that there is also the need to make a go to zero in the limit, so
that it be in fact a continuum limit. Combining this condition with the equation
above we obtain

T = NTa = Np
TT =⇒ T = N1−p

T a,

so that in order that we have T finite with a → 0 it is necessary that 1 − p > 0,
that is, that p < 1. Joining these two conditions we see that p must be inside the
open interval (0, 1). Writing now the dispersion ΣHb

in this type of limit we obtain

Σ2
Hb

∼ Nd−1
L

NT

T 2N2p
T

=
Nd−1

L

T 2
N1−2p

T .

In order for this to vanish in the limit we must have 1 − 2p < 0, that is, p > 1/2.
This set of conditions over p can be satisfied by values of p in the open interval
(1/2, 1), for example p = 3/4.

As another way to define asymmetrical limits, we can also generalize the symmet-
rical limits to the case in which both NL and NT increase in the limit, but with NT

increasing faster than NL, thus establishing an asymmetry. We will call this type of
limit the “simultaneous asymmetrical limits”. It suffices to establish between these
two quantities a relation of the type

NL = N q
T .

In order for NL to increase slower than NT , but so that both still increase simul-
taneously, we must have 0 < q < 1. Observe that the terms of the sums still have
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the same type of behavior that we saw before in the case of the fully asymmetrical
limits. In this case, since both NT and NL increase in the limit, all the sine functions
that appear in the terms of the sums can be approximated by their arguments. For
example, in the case of SH′

b
, which we examined before, we now have

t(~k) −→
[−(2πk0)

2 + (NT/NL)
2
∑

i(2πki)
2 + (NT/NL)

2m2
0L

2

(2πk0)2 + (NT/NL)2
∑

i(2πki)
2 + (NT/NL)2m2

0L
2

]2
.

Due to the factor (NT /NL)
2 = N

2(1−q)
T , which still diverges because q < 1 implies

that the exponent is strictly positive, it is still true that, as before, the second and
third terms of the numerator and of the denominator diverge with respect to the
first, so that the terms approach 1 for finite ~k. Combining these results with the
increase of T in the limit, as was discussed before, we obtain for the dimensionfull
dispersion ΣHb

, for example, the behavior

Σ2
Hb

∼ 1

T 2
Nd−1

L NT =
1

N2p
T T 2

N
q(d−1)
T NT =

1

T 2
N

1+q(d−1)−2p
T ,

so that in order for ΣHb
to vanish in the limit we must have 2p > 1+(d−1)q. Since

0 < p < 1 this condition results in

1 + (d− 1)q

2
< p < 1.

We may satisfy all the conditions over p and q with, for example, the choice q =
C/(d−1), with some constant C in the open interval (0, 1) and p chosen in the open
interval ((C + 1)/2, 1). The conclusion is that there is no qualitative change in the
results when we include this type of simultaneous asymmetrical limit. It is always
possible to find limits in which the dispersion of the energy goes to zero, so long as
we make NL increase slower than NT in the limit, and so long as we also make T
increase without limit in the limit.

However, none of these asymmetrical limits helps us to solve completely the
problem of how to make the vacuum state become an eigenstate of the Hamiltonian
and at the same time keep intact all the fundamental physical characteristics of the
theory. The reason for this is that any limit that is not symmetrical, that is, any
limit in which one has NL = N q

T with q 6= 1, destroys the on-shell condition and
causes the theory not to contain any states of particles with energy different from
zero, in the continuum limit. We can see this writing once more the expression, in
Minkowski space, of the energy of the state of one particle with momentum ~k which
we discussed in section 5.2,

∆E1,~k =
−1

T

ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

−ρ20(
~k) +

∑
i ρ

2
i (
~k) + α0

.

Let us recall that, since T → ∞, this energy does not go to zero only if one of the
two factors in which the denominator can be factored vanishes as 1/T in the limit.
Writing explicitly the ρ’s we have
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∆E1,~k =
−1

T

4 sin2
(

k0π
NT

)
+
∑

i 4 sin
2
(

kiπ
NL

)
+ α0

−4 sin2
(

k0π
NT

)
+
∑

i 4 sin
2
(

kiπ
NL

)
+ α0

.

We may now multiply the numerator and the denominator by N2
T and take the limit

NT → ∞ with NL = N q
T and q > 0. Note that, since in this case the momentum

~k is fixed and finite, we can approximate all the sine functions by their arguments
without introducing any imprecision of thought. When we do this we obtain

∆E1,~k ∼ −1

T

(2πk0)
2 +N

2(1−q)
T

∑
i(2πki)

2 +N
2(1−q)
T m2

0L
2

−(2πk0)2 +N
2(1−q)
T

∑
i(2πki)

2 +N
2(1−q)
T m2

0L
2
.

Since k0, ki and m0 are finite and q 6= 1, in the limit in which NT → ∞ with T → ∞
the first term becomes negligible by comparison with the other two, both in the
numerator and in the denominator, so that we are left with the relation

∆E1,~k = lim
T→∞

1

T
,

which goes to zero. Since the energy of the corresponding state of n particles is n
times this result, we see that the energies of all the particle states collapse to zero in
this type of limit. In other words, none of the states has energy different from the
energy of the vacuum state in the continuum limit, whatever the momentum-space
mode it is related to. Another way to say this is that, in this type of limit, there are
no physical states left except the vacuum, once the limit is taken. One is left with
an empty theory.

The fundamental reason causing this behavior can be identified as the underlying
relativistic invariance of the theory. It is this invariance that implies the form of the
action and therefore the form of the terms in the results for the energy, with the
sum of ρ20 and of the ρ2i , all with coefficients 1. The terms (∆0ϕ)

2, (∆iϕ)
2 and α0ϕ

2

in the action lead directly to the terms ρ20, ρ
2
i and α0 contained in our results. In

the ultimate analysis, the relativistic invariance requires that the continuum limit
be taken in a symmetrical way.

Note that this does not mean that the box inside which we are defining our model
has to be exactly cubical. We may have a fixed proportionality relation between NT

and NL, such as NT = CNL with some constant C, meaning that the temporal size
T and the spacial size L of the box may not be the same. However, it is necessary
that the continuum limit be taken in a symmetrical way, that is, that NT and NL

increase with the same speed in the limit. So long as the lattice spacing a remains
the same in all the directions of the lattice there is no change in the form of the
action and therefore no change in our results here. In other words, the requirement
of symmetry in the continuum limit is a characteristic related to the ultraviolet
regime, not to the infrared regime of the theory.
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We can improve to some extent our understanding of the difficulties that we
face in the definition of the quantum theory of fields if we once again turn our
attention to the interpretation of our lattice structure in the terms of usual quantum
mechanics. If we take the limit in the completely asymmetrical form, keeping NL

fixed, our structure is reduced to the quantum mechanics of a certain number of
degrees of freedom associated to the sites. It becomes in fact a set of coupled
harmonic oscillators with mass M , located at the sites, with frequency ω = m0 =√

K/M , whose elastic constant K is associates to the term α0ϕ
2 of the action by

α0 = ω2a2 =
K

M
a2 =

K

M

(
T

NT

)2

,

where T/NT is the lattice spacing a in the temporal direction. Note that finite M
and K imply that α0 goes to zero in the limit, as usual. On the other hand, in the
asymmetrical limit we should look at the term β0(∆iϕ)

2 of the action, with β0 = 1, as
a coupling term between two oscillators at neighboring sites, a term which naturally
depends on the difference of position (or rather of elastic elongation) ∆φ =

√
M∆x

between the two neighboring oscillators. This is an elastic interaction with spring
constant K ′ between these two neighbors, but the coefficient involved is simply

β0 =
K ′

M
a2 =

K ′

M

(
T

NT

)2

= 1,

which does not go to zero in the limit like α0 does, so that these interactions be-
tween neighbors are infinitely strong from the point of view of quantum mechanics,
corresponding to K ′ → ∞ when NT → ∞.

In order to compensate for this fact, making the elastic interactions between the
sites finite in the limit, it would be necessary to makeK ′ finite, which implies making
β0 → 0 in the limit, which is equivalent to violating completely the relativistic
symmetries of the action of the corresponding quantum theory of fields. In order
to understand the significance of all this from the point of view of field theory, let
us observe that from the point of view of that theory the introduction of β0 6= 1
is equivalent to the introduction into the system of a velocity ν different from the
velocity of light c = 1, through the relation β0 = ν2, so that we can now write the
action as

S =
1

2

∑

s

[
(∆0ϕ)

2 + β0

∑

i

(∆iϕ)
2 + α0ϕ

2

]

=
1

2

∫
ddx

[
(∂0φ)

2 + ν2
∑

i

(∂iφ)
2 +m2

0φ
2

]
.

If we consider the case of the massless theory α0 = 0, then this parameter is indeed
the velocity of propagation of waves in the system (in its de-Euclideanized version,
of course), which ceases to be c = 1 and becomes equal to ν. We now see that
our condition for the regularization of the asymmetrical limit, thus leading to a
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quantum-mechanical system of coupled harmonic oscillators with finite couplings,
which is to make β0 → 0, also implies that ν → 0, that is, leads to the total absence
of wave propagation in the continuum limit in Minkowski space.

Note that recovering the balance between the three terms of the sums in our
results for the energy, which leads to the on-shell condition, also implies making
β0 → 0 in this asymmetrical limit. This analysis can be extended to the case of the
simultaneous asymmetrical limits, with the same basic results. Any trial at recover-
ing the on-shell condition in these limits implies the absence of wave propagation in
the continuous limit in Minkowski space. With the introduction of β0 the numerator
and the denominator that appear in our results acquire the form

±4 sin2

(
k0π

NT

)
+ β0

∑

i

4 sin2

(
kiπ

NL

)
+ α0,

so that in order to compensate the factor (NT/NL)
2(1−q) that appears in the second

terms when we multiply both the numerator and the denominator by N2
T we must

make β0 → 0 in the limit, which is equivalent, from the point of view of quantum
mechanics, to making finite the couplings between sites and, from the point of view
of quantum field theory, to the absence of wave propagation in the continuum limit
in Minkowski space.

We end this section with the interesting historical observation that this is not
the first time that the existence of a useful Hilbert space for quantum field theory
is submitted for discussion. In a very interesting (but difficult to find) little book
titled “Lectures on Quantum Field Theory” [4] no lesser a figure than Dirac gave
us his views about the state of the subject. In this book one finds the following two
statements, that we take the liberty of quoting here:

The interactions that are physically important in quantum field theory
are so violent that they will knock any Schrödinger state vector out of
Hilbert space in the shortest possible time interval.

[The Schrödinger picture] is thrown out by the interactions which physi-
cists are interested in being so violent in the high frequencies, and it
doesn’t seem to be possible to get interactions satisfying relativity which
do not have this violent behaviour in the high frequencies.

These statements are by no means exactly the same that we are led by our
results to make here, since Dirac is talking about interactions between fields and
the Schrödinger picture of quantum mechanics, but the reference to the lack of
usefulness of the Hilbert space, because the dynamics of the theory does not allow
it to permanently contain the states, and the reference to relativistic invariance as
being in conflict with the usual Hilbert space structure, are both, at the very least,
extremely interesting and suggestive.

Problems
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5.3.1. Consider the delta-functional type of state, defined by a statistical distribution
that attributes to a given configuration ϕ0 of the fields the probability 1 and
to all other configurations the probability 0. In other words, we can represent
such a state by the distribution

|ϕ0〉 ∼
∏

~x

δ[ϕ(~x)− ϕ0(~x)].

Show that this state is an eigenstate of all the observables of the theory, in-
cluding the Hamiltonian. In terms of the traditional formalism you will be
showing, for example, that

ϕop|ϕ0〉 = ϕ0(~x)|ϕ0〉,

where ϕop represents the field operator, as well as

Hop|ϕ0〉 = H[ϕ0(~x)]|ϕ0〉.

Observe that a state like this corresponds to a situation in which the field does
not fluctuate at all and is, therefore, devoid of any physical meaning in the
quantum theory.

5.3.2. Calculate the dispersion of the action S on the vacuum state. Consider care-
fully and in separate the terms in which ~q 6= ±~k and those in which ~q = ~k.
Among these last ones, consider in separate the cases in which the momen-
tum vector corresponds to a real mode and those in which the mode has a
non-vanishing imaginary part.

5.3.3. Calculate the dispersion of the observable number of particles N on the state
of n particles with momentum ~k. Consider carefully and in separate the terms
in which ~q 6= ±~k and those in which ~q = ~k. Among these last ones, consider in
separate the cases in which the momentum vector corresponds to a real mode
and those in which the mode has a non-vanishing imaginary part.

5.3.4. Calculate the dispersion of the projector N~k of the number of particles with

momentum ~k on the state of n particles with momentum ~k. Consider carefully
and in separate the terms in which ~q 6= ±~k and those in which ~q = ~k. Among
these last ones, consider in separate the cases in which the momentum vector
corresponds to a real mode and those in which the mode has a non-vanishing
imaginary part.

5.3.5. Relate, in the case of the Hamiltonian without the average over the temporal
block, the dispersion σ2

H = 〈H〉2−〈H2〉 with the dispersion σ2
H′ = 〈H′〉2−〈H′2〉,

doing the integration over the variable π̄ and thus showing that

σ2
H = σ2

H′ + ı〈H′〉.
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5.3.6. Calculate, according to the usual (non-canonical) definition of the expectation
values, using the Fourier components of the fields, the dimensionless dispersion
σ2
H′ = 〈H′〉2 − 〈H′2〉, of the non-blocked Hamiltonian, obtaining

σ2
H′ =

1

2N2
T

+
1

N2
T

∑

~k

(−ρ20 +
∑

i ρ
2
i + α0

ρ2 + α0

)2

+
1

2N2
T

∑

k

∑

k0

∑

q0

∣∣∣−e
−ıπ

k0−q0
NT ρ0(k0)ρ0(q0) +

∑
i ρ

2
i (k) + α0

∣∣∣
2

[ρ20(k0) +
∑

i ρ
2
i (k) + α0] [ρ

2
0(q0) +

∑
i ρ

2
i (k) + α0]

.

5.3.7. Combine the results of problems 5.3.5 and 5.3.6 and calculate completely the
dispersion σ2

H = 〈H〉2 − 〈H2〉, obtaining

σ2
H =

1

2N2
T

+
1

2NT

∑

~k

−ρ20 +
∑

i ρ
2
i + α0

ρ2 + α0
+

1

N2
T

∑

~k

(−ρ20 +
∑

i ρ
2
i + α0

ρ2 + α0

)2

+
1

2N2
T

∑

k

∑

k0

∑

q0

∣∣∣−e
−ıπ

k0−q0
NT ρ0(k0)ρ0(q0) +

∑
i ρ

2
i (k) + α0

∣∣∣
2

[ρ20(k0) +
∑

i ρ
2
i (k) + α0] [ρ20(q0) +

∑
i ρ

2
i (k) + α0]

.

Compare your result with the dispersion of the blocked Hamiltonian Hb and
show that σ2

H > σ2
Hb
, as expected.

5.3.8. Show that the sum S2
Hb

in dimension d = 2,

SHb
=
∑

~k

(ρ21 + α0)(−ρ20 + ρ21 + α0)

(ρ20 + ρ21 + α0)2
,

can be written as a manifestly positive quantity in the case of the symmetrical
limit, in which NL = NT = N . Use the possibility of interchanging, in this
symmetrical case, the variables k0 and k1 within the sum.

5.3.9. Write the dispersion σH of the non-blocked Hamiltonian in the d = 1 case of
quantum mechanics. Evaluate the behavior in the NT → ∞ limit of the sums
that appear in this result. In order to do this, consider the expressions in the
limit α0 → 0, which is the most relevant for us because α0 in fact vanishes
in the continuum limit. Note that in this limit you must treat separately
the terms with k0 = 0 and/or q0 = 0. Use your results to show that the
corresponding dimensionfull dispersion behaves in the limit as

Σ2
H ∼ −NT

T 2
.

Find out how to define limits in which NT → ∞ and T → ∞ simultaneously
so as to guarantee that this dimensionfull dispersion vanishes in the limit.
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5.3.10. Write the dispersion σH′ of the non-blocked Hamiltonian in the d = 1 case of
quantum mechanics, using the usual, non-canonical, definition of the expecta-
tion values. Evaluate the behavior of the sums that appear in this result in
the NT → ∞ limit, just as was done in problem 5.3.9. Use your results to
show that the corresponding dimensionfull dispersion behaves in the limit as

Σ2
H′ ∼ N2

T

T 2
,

showing in this way that, in this case, it is not possible to take the limits
NT → ∞ and T → ∞ in such a way that we have both that a → 0 and that
this dimensionfull dispersion vanishes in the limit.

5.3.11. Write a collection of programs to calculate, in the symmetrical case NL =
NT = N , as a function of N , in dimensions from d = 1 to d = 5, the sums SHb

that appear in the expression of σ2
Hb
. Also do the same for the sums SH′

b
that

appear in the expression of σ2
H′

b
. Use your programs to reproduce the graphs

which are shown in the text.

5.3.12. Calculate in detail the quantity 〈H ′
b
2〉 in the case in which N is even, thus

completing the argument presented in the text, where the calculation was
presented in the case in which N is odd. Be mindful of the correct identification
and counting of all the terms of the sums over the momenta, and remember
that in this case both the value 0 and the value N/2 of the components kµ are
associated to real Fourier components of the fields.

5.3.13. Calculate the dispersion of the blocked Hamiltonian Hb on the state of one
particle with momentum ~k.

5.3.14. Show, examining the behavior of its terms, that the sums SHb
tend to Nd−1

L NT

in the asymmetrical limit, in which we make NT → ∞ with fixed NL. Do the
same in the case of the simultaneous asymmetrical limit, in which we make
NL = N q

T with 0 < q < 1. In either case assume that we can limit the
discussion to terms with finite k0.

5.3.15. Write programs to calculate, in the asymmetrical case NL 6= NT , as functions
of NT and for a fixed value of NL, in dimensions from d = 2 to d = 5, the sums
SHb

that appear in the expression of σ2
Hb
. Also do the same for the sums SH′

b

that appear in the expression σ2
H′

b
. Use your programs for values of NL from 4

to 20 and values of NT from 1 to 200, thus showing that these sums do in fact
diverge as NT in this type of asymmetrical limit.



Chapter 6

Conclusions and Outlook

In this last chapter we discuss what conclusions can be drawn from the work done
so far and presented in this book, describe some things that will be discussed in the
next volume of the series, and finally talk about the future possibilities for research
in the context of the ideas presented here. In the first section we present a fairly
complete analysis of the final situation we are faced with after the development
presented in the previous chapters. In the second section we propose a basic idea
about one of the main problems that remains open within the theoretical structure
we are building; it should be noted here that the material found in that section is of
a rather speculative character. We will close this book with a short description of
some other things that have been done, of some of the open problems and of some
possibilities for further research in the area.

6.1 Analysis of the Situation

Let us consider what has been successfully obtained within the formalism presented
in the previous chapters. First of all, in chapter 2 we obtained a complete and
correct realization of the classical theory of fields using the lattice and the continuum
limit from it. In addition to this, as was shown along chapters from 3 to 5, the
same formalism in the quantum case for dimension d = 1 succeeded in producing a
complete and correct realization of non-relativistic quantum mechanics. In the case
of dimensions d ≥ 2 we can go so far as to say that the formalism can be used to
produce a fairly complete and constructive mathematical definition of the quantum
theory of fields.

The definition of the Gaussian model on the Euclidean lattice results in the
correct set of correlation functions for that simple model. A closer examination of
the structure of the two-point function, which is the only non-trivial function of the
model, revealed some rather surprising aspects of its behavior, but these issues were
completely resolved by the introduction of block variables, leading to a completely
satisfactory physical interpretation of the correlation functions of the theory. While
it is a widely accepted position that all the observables in quantum field theory must
be averages over spacial regions or blocks, the same does not seem to be so clear with
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respect to averages over the temporal direction. However, in a relativistic theory it
is essential that the averages be over both the spacial and the temporal dimensions,
because relativistic transformations mix the spacial and temporal coordinates, so
that there can be no invariant meaning to a purely spacial average.

The introduction of external sources provided us with a solid handle to probe
into the behavior of the models, both in the classical case and in the quantum
case. It leads in the usual way to the introduction of the functional generators
of the correlation functions, which we developed directly on the Euclidean lattice,
and ultimately to the concept of the effective action. We managed to establish
a rather complete physical interpretation of the effective action, not only as the
functional generator of irreducible correlation functions, but also as a shorthand for
the response of the models to the introduction of external sources. In either capacity
the effective action can be seen as a useful condensation of the complete physical
content of the model. Due to all this the effective action helps significantly with the
interpretation of the classical limit of the quantum theory.

An exploration of the mathematical character of the dimensionless field configu-
rations that contribute in a dominant way to the most important observables of the
theory resulted in the unexpected and even surprising conclusion that these func-
tions are typically discontinuous at all the points of their domains. One may say
that the set of all continuous configurations is of zero measure within the ensemble
of the theory, in the sense that their exclusion from the ensemble would not affect
the expectation values which are physically relevant. However, most of the more di-
rect consequences of the discontinuity of the field configurations will be found only
in the second volume of this series.

Although this situation leads to the usual non-differentiable but still continuous
behavior of the paths in the path-integral approach to non-relativistic quantum
mechanics [5], in the case of quantum field theory with d ≥ 3 it leads to infinite
discontinuities of the dimensionfull field. This means that, while in the quantum-
mechanical case it is possible to represent the configurations by random walks, any
such representation in the case of quantum field theory is incorrect unless one takes
the continuum limit in one of the asymmetrical ways described in section 5.3, in
which case one looses in one fell blow both relativistic invariance and the complete
structure of particle states, as discussed in that section.

Finally, a quite complete realization on the lattice of the concept of energy was
also obtained. The situation regarding the energy of the vacuum state is qualita-
tively similar to the corresponding situation in the traditional approach. We also
managed to define a complete set of particle states, which have the correct energy
and momenta. In the continuum limit there are both virtual particles and real
physical particles, which are clearly identified by the all-important on-shell condi-
tion, which must be satisfied by states representing relativistic particles. States that
correspond to virtual particles can be shown to become energetically degenerate with
the vacuum in the limit.

In this formalism the particles are closely associated to the normal modes of oscil-
lation of the cavity represented by the lattice, and are thus more readily represented
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in momentum space than in position space. Elementary particles are therefore ex-
tended objects, not point-like objects. From a conceptual point of view the particles
should really be identified with exchanges of packets of energy between external
sources and the quantum field within the cavity. These exchanges do not happen
in a sharply localized way, but over the whole extent of the cavity. In the non-
relativistic limit, in which one makes T → ∞ while keeping L finite, this association
of relativistic particles with the d-dimensional cavity is mapped onto a correspond-
ing association of the physical particles with the modes of the (d − 1)-dimensional
cavity that is left after the limit. This is a direct consequence of the non-relativistic
limit of the on-shell condition, which establishes the expected values for the energy
of the particles in terms of the momenta of the modes of the (d − 1)-dimensional
cavity.

We see, therefore, that the construction of the theory on the lattice is successful
in many respects. There remains, however, one main issue to be dealt with, because
we arrived at the unexpected result that neither the vacuum state nor any of the
particle states are eigenstates of the blocked Hamiltonian observable, which is in
sharp contrast with the situation in the case of non-relativistic quantum mechanics,
in which we do find that the vacuum is an eigenstate of the blocked Hamiltonian.
Due to this the construction does not lead to the usual structure of states and
operators in a Hilbert space, as one might have expected it would do. Since there is
a well-known formalism due to Osterwalder and Schrader [6] dealing precisely with
the construction of a Hilbert space structure starting from the lattice structure, we
must now compare our results with those of that formalism.

It is the examination of the asymmetrical continuum limits discussed in sec-
tion 5.3, which first reduce the structure of the theory to the quantum mechanics
of a finite number of coupled degrees of freedom, and only after that may let the
number of degrees of freedom tend to infinity, that leads us to make contact with
the Osterwalder-Schrader formalism. In this formalism the authors establish neces-
sary and sufficient conditions for the construction of a positive-norm Hilbert space
from the discrete structure defined on a lattice. When one examines the develop-
ment of the argument in that formalism, one observes that it implicitly assumes
that NT = ∞ from the very beginning, so that the applicability of its conclusions
to lattice systems such as the ones discussed in this book is limited to those that
result from the asymmetrical limits.

Although the condition that NT = ∞ is not explicit within the hypothesis of
the formalism, it is implied by the operations that are performed during the devel-
opment of the argument. One of the basic hypothesis of that formalism, which is
given explicitly, is that the lattice must be separable into two disjoint sets by means
of the definition of a (d− 1)-dimensional boundary surface, which defines a moment
in time. This eliminates the possibility of the use of periodical boundary conditions
in the temporal direction of the lattice, as we have done regularly in this book. In
addition to this, during the development one requires the possibility of performing
temporal translations under which the system should be invariant. Without period-
ical boundary conditions this is only possible if the lattice is infinite in the temporal
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direction from the very beginning.

One perceives that the formalism of Osterwalder and Schrader is built around the
idea that the Hamiltonian is to be the generator of time translations, and assumes
that states and operators are to be defined at completely sharp instants of time. The
formalism assumes that there is a Hilbert space and that there is a Hamiltonian,
both with the usual properties found in non-relativistic quantum mechanics, and
proceeds to construct them. In order to do this it must require that NT = ∞ from
the start. One can have either a finite or an infinite NL, but one absolutely must have
an infinite NT . By contrast, the states defined here are intrinsically d-dimensional
objects, not (d− 1)-dimensional objects existing at a sharply defined time. On the
same token, observables can only be measured on the extent of d-dimensional boxes,
not at sharply defined times or spacial positions.

It is important to emphasize that there is in fact no conflict between the results
that we found here and those of the Osterwalder-Schrader formalism, because if we
assume that the limits are to be taken in the asymmetrical way, then it is in fact
possible to adjust things so that the vacuum becomes an eigenstate of the Hamilto-
nian, as we have shown in section 5.3. What is at issue here, due to the nature of
the results we found, is not simply the existence or not of Hilbert spaces that can be
associated to the structure of the theory, but their usefulness in representing systems
of fundamental quantum fields of physical interest, having relativistic invariance and
that contain relativistic particles with finite and non-vanishing additional energies
above the energy of the vacuum.

One is inevitably led, then, to consider how the definition of the theory could
possibly be changed in order to recover the usual Hilbert-space structure, without
violating the basic precepts relating to the definition of the mathematical structure
of a physical theory, that were discussed in the first chapter. However, it seems
that any trial at this leads to some physically unacceptable loss. Taking the asym-
metrical limit does the job, but leads to loss of relativistic invariance, and to the
collapse of the whole structure of particle states into the vacuum. This is similar
to trying to redefine states and observables at sharply defined times, as is done in
the Osterwalder-Schrader formalism, and that leads to the loss of the connection
between the particles and the modes of the d-dimensional cavity. Since this con-
nection and the on-shell condition lead naturally, in the non-relativistic limit, to a
corresponding connection between physical particles and the modes of the remaining
(d− 1)-dimensional cavities, the loss is a serious one.

It is a well-known experimental fact that physical particles are closely connected
to the modes of oscillation of the corresponding fields when they are within a cavity.
This can be shown experimentally by the introduction of excited atomic states into
high-quality electromagnetic cavities [7]. If the cavity is tuned so that none of its
modes has the frequency of the photon that the atom must emit in order to decay,
then its spontaneous decay can be very effectively delayed or prevented. If, on the
other hand, the cavity is tuned to the frequency of the photon, then the sponta-
neous decay can be stimulated, or a certain mode of decay can be stimulated at the
expense of others. This shows in a decisive way that the photons, the particles of
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the electromagnetic field, are excitations of the modes of oscillation of the electro-
magnetic field within the cavity. The photons are clearly identified with packets of
energy that are exchanged between an external source, in this case the atom, and
the modes of oscillation of the field within the cavity.

The only way in which it seems possible to keep the symmetry between the tem-
poral and spacial directions and still be within the hypothesis of the Osterwalder-
Schrader formalism is to start with lattices that are infinite in all directions. Starting
with both NT and NL infinite would be compatible with the aforementioned hypoth-
esis of that formalism, but is equivalent to giving up the constructive definition of
the theory by a limiting process from finite and discrete mathematical systems. We
regard this as philosophically unacceptable, since adopting such a definition would
rule out any truly constructive analysis of the structure of the theory. Note that it
would also rule out any type of finite computational simulation as a calculational
tool for the theory.

It seems to us that there is no reasonable way out of this situation, and that we
must accept the fact that the traditional Hilbert-space formalism is not an appropri-
ate tool for the description of relativistic quantum theory at the most fundamental
level. A constructive definition which could include such a formalism at the funda-
mental level is, it would seem, still to be exhibited. As we will see in our continued
explorations in the next volume, the usual perturbative theory can be formulated
entirely on the lattice, without any reference to Hilbert spaces, and hence all the
calculations that can be made in that formalism can also be performed within the
lattice formalism, possibly with some quantitative differences, so that not much is
lost in the perturbative front. In fact, something is gained, due to a much clearer
and more solid insight into the mathematical structure of the theory.

Note that the loss of the usual Hilbert-space formalism is not really a physical
loss, but rather a mathematical one. The fundamental physical principle underlying
the quantum theory, the principle of uncertainty, is not lost. In fact, one can say that
the exact opposite is true, and that quantum field theory contains a higher degree of
uncertainty than non-relativistic quantum mechanics, as was argued by Landau and
Peierls a long time ago [8]. This is reflected in the violent fluctuations undergone
by the fundamental field, leading to its being typically a completely discontinuous
function, and also causing the Hilbert-space formalism to cease to be an appropriate
tool for the description of the structure of the theory. It is possible, however, that
the Hilbert-space structure can be recovered as an approximation, under certain
conditions. For example, this is certainly to be expected in the non-relativistic limit
of the theory.

One situation in which one would expect that an approximate Hilbert-space
structure can be implemented would be for an effective theory using block variables
and an energy cutoff. This is made reasonable due to the fact that the behavior we
see in quantum field theory is clearly related to the large fluctuations of the fields,
and these become much smaller for the block variables. As we saw in section 4.3, the
larger the blocks, the smaller the fluctuations undergone by the block variables, so
that large blocks are associated to the classical limit of the theory. If in some specific
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circumstance we have phenomena involving only long wavelengths and long-range
correlations, then we may use large blocks in order to analyze that situation, and
hence the block variables will fluctuate very little, leading to a semi-classical or even
to a classical limit, as the case may be.

However, we do loose something with the Hilbert-space formalism, namely its
description of the temporal evolution process, in the usual way that works so well
for non-relativistic quantum mechanics. We are faced therefore with the challenge of
finding out how to define and handle the evolution in time of d-dimensional objects,
which do not correspond to sharply-defined moments of time.

6.2 Blocked Temporal Evolution

Before anything else, the reader should be warned that this section contains material
which is of a speculative nature, currently unsupported by either calculations or
simulations. We mean here only to suggest an idea of how one of the remaining
problems with the structure of the theory could be solved, thus seeding ideas for
future research. No more than some intuitive reasoning will be offered here in
support of the ideas presented.

One of the main remaining open problem in the basic structure of our formalism
is the representation of temporal evolution. Now, one must realize that the loss of the
Hilbert space formalism does not necessary imply the loss of the concept of temporal
evolution, but only the loss of its usual representation within that formalism. We
mean to propose here the substitution of the sharp-time temporal evolution of non-
relativistic quantum mechanics by a blocked-time temporal evolution, which we will
describe qualitatively on the Euclidean lattice. Of course, in order to represent
temporal evolution in Euclidean space and be able to analyze it in any kind of
detail, one would have to first understand in more detail than usual the relationship
between the dynamics of the Euclidean and Minkowskian theories. However, here
we will just propose the idea and ignore any such concerns.

On a fundamental level temporal evolution is a relationship between measure-
ments made at different times. Since all measurements can only be done in the
complete extent of d-dimensional regions of space-time, we will define the temporal
evolution in terms of d-dimensional boxes. The idea is that temporal evolution will
be a relationship between two consecutive d-dimensional regions of space-time, each
holding a copy of a local quantum state. The transmission of information between
them will be done through a (d− 1)-dimensional surface, which is the interface be-
tween the two consecutive regions. We will propose the idea in the context of two
identical lattices, each one contained in one of the two boxes, using the context of a
stochastic simulation of the resulting system as a way to illustrate the ideas.

The drawing in figure 6.2.1 may help the reader to visualize the proposed system.
In this figure the sets of 8 sites connected in circles are representations of the tem-
poral directions of two d-dimensional lattices. The spacial dimensions of the lattices
are omitted for simplicity of the drawing. In order to simplify the treatment of the
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some particle state
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the vacuum state

Figure 6.2.1: The lattice model proposed as a representation of the temporal evolu-
tion of blocked quantities.

boundary conditions we will adopt periodical boundary conditions for each lattice.
Note that there is no problem involved with the use of the periodical boundary
condition in the temporal direction within each box, because this internal temporal
variable does not represent temporal evolution. The middle arrow represents the
interface between the two lattices, connecting a (d − 1)-dimensional spacial section
of the left lattice with a corresponding spacial section of the right one.

The (d− 1)-dimensional surface interfacing the two boxes will become an arrow
of time, establishing a temporal ordering between the two boxes, in the following
way: the initial box will contain a full realization of some state of particles, that
is, a stochastic simulation of the corresponding statistical distribution; one then
takes the field that results from this distribution, on the chosen (d− 1)-dimensional
space-like surface perpendicular to the temporal variable of that box, and copies
it dynamically into a corresponding space-like surface of the final box; within the
second box one builds a direct stochastic realization of the statistical distribution
of another physical state, typically the vacuum state, at all sites except for this
(d− 1)-dimensional space-like surface, which will function as a dynamical boundary
condition for the rest of the lattice within the second box.

If the state in the first box is, say, a one-particle state with momentum ~k, then the
second box will be subject to the effect of a (d−1)-dimensional surface containing a
section of that first ensemble. This will affect the distribution within the second box,
which will no longer be simply the vacuum. In this way the physical situation within
the first box can propagate into the second box, along what we may call Monte-Carlo
time, in a type of diffusion process, leading eventually to an equilibrium situation
which represents the physical propagation of the state. The physical propagation
is expressed as the difference between what we implemented directly in the second
box (the vacuum state) and what eventually turns up within it as a consequence of
the influence of the first box (in this example, possibly a one-particle state). Note
that the cause-and-effect relationship is only from the first box to the second box,
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never the other way around, and hence we see that this scheme indeed implements
an arrow of time.

Let us now discuss why would one think that such a (d−1)-dimensional boundary
could have such a large effect, over the whole interior of the second box. The fact
is that the effect of a (d − 1)-dimensional boundary over a d-dimensional region of
space is usually very large. One can consider, for example, the classical static case of
electrical charges distributed over a two-dimensional surface: such a two-dimensional
plane of surface charge will fill homogeneously the whole three-dimensional space
with an electric field, while a line of charge and a point charge have an effect that
decays with the distance. Contrary to what seems to be the popular belief in some
quarters, the same is true in the quantum case. If a (d − 1)-dimensional surface
is covered with sources, then what is left as a propagation direction is the single
remaining dimension, and in that direction there is therefore no solid-angle, that is,
there is no angular increase with distance to promote the damping of the influence
of the sources.

In the second box the (d− 1)-dimensional boundary surface acts very much like
an external source, except for the fact that it is dynamical and not static, that is, it
is a fluctuating source with a dynamics comparable to the internal dynamics of that
lattice. Hence, what will propagate from it into the second box is not a static field
but a probability distribution of values for the field, which will therefore affect the
distribution within the second box. It is interesting to note that this is a new kind
of “fixed” boundary condition, in which the values of the field itself are not fixed,
but the distribution of the values of the field is a fixed and given one. This is the
only kind of fixed boundary condition that is physically realizable in the quantum
theory, because one can never really fix the values of the intrinsically fluctuating
fundamental field.

Although it should in principle be possible to deal with this whole scheme by
analytical means in the Gaussian model, since all distributions are Gaussian, we
currently do not know how to do this. The only treatment currently available would
be by means of stochastic simulations, which puts the subject outside the scope of
this book. But we may describe how one would go about doing this analytically.
In order to determine which probability distribution should be implemented within
the (d − 1)-dimensional boundary surface of the second box, one must take the d-
dimensional ensemble within the first box and integrate out all the variables except
those within the chosen (d − 1)-dimensional interface, thus producing an explicit
representation of the distribution over this surface, which is a consequence of the
distribution within the whole box. One can then use this distribution as a boundary
condition for the second box.

It is currently difficult to guess any details about this new type of temporal
evolution, but it is a distinct possibility that propagation into the second box may
depend on the nature of the state in the first box, for example on whether it satisfies
or fails to satisfy the on-shell condition. It is reasonable to think that only on-
shell states should propagate, specially in the continuum limit. Note that on-shell
waves necessarily correspond to modes with time-like momenta and hence have wave
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Figure 6.2.2: The lattice model proposed as a representation of a scattering process.

vectors pointing more directly through the (d − 1)-dimensional interface. However,
definite answers to any of the many questions one could ask about this idea will
have to wait for the results of further research, probably involving some large-scale
stochastic simulations of the proposed system.

If this idea turns out to work, then one can readily imagine other uses for it,
for example the direct representation of scattering processes, as illustrated in fig-
ure 6.2.2. Here we have three consecutive boxes, the initial one holding an initial
state of two particles, say with momenta ~k1 and ~k2. The middle box is an inter-
action region, where an interaction such as one finds in the λφ4 polynomial model
is turned on, and the parameters of the model are tuned so that the physical mass
of its particles is equal to the physical mass of the incoming free particles. The
third box contains the free vacuum and is a detection region, where one will look
to find out what particles with which momenta show up. This would be a discrete
realization of the scattering structure which is usually represented by asymptotic
“in” and “out” fields and states in the traditional approach to the subject.

One can go further on with ideas like this, for example proposing the definition
of thermal states, by starting with a state containing some set of many particles, and
propagating it through a large number of consecutive interaction regions, until the
set of particles finds a true thermal equilibrium distribution, that is, a distribution
of particles that no longer changes when it passes through an interaction region.
For practical reasons one could adopt the following alternative approach: instead
of a long series of interaction regions, use only one interaction region and add to
the system a feedback mechanism from the third box to the first box, that modifies
the initial distribution of particles so that it converges to the final distribution of
particles which is detected in the third box. In any case, one can see that there is
plenty of field for exploration and further research in this subject.

6.3 Problems and Possibilities

The facts about the theory found in the explorations described in this book have
some important consequences on the treatment of some other models, namely the
non-linear models of scalar fields usually referred to as the polynomial models and
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the sigma models. In the next volume of this series we intend to present what is
currently known about this. The most important consequences are related to a
new insight into and interpretation of the perturbative scheme of approximation
for such models, including a critical review of the process known as perturbative
renormalization, and the discovery of a connection of the lattice formalism with the
metrical geometry of space-time, including the phenomenon of the generation of
metric curvature by the quantum fields, under certain circumstances.

Some of the central concepts involved in the theory certainly need further re-
search and development, such as, for example, the process of passing from Euclidean
space to Minkowski space and vice-versa. Another central issue is the complete def-
inition of the concept of observables. In the development presented in this book we
established some of the necessary conditions for a quantity to be an observable, but
the sufficiency of these conditions is still open to question. This topic is certainly
related to the concept of the measurement process in the quantum theory, which
we have not touched at all, and which is probably one of the most difficult aspects
of the theory. The question of the realization of the statistical interpretation of
measurements within the structure of the theory is also related to the issue of the
process of measurement, and therefore open to further exploration and discussion.

Finally, the extension of these explorations to more realistic types of field, such
as vector fields and fermionic fields, would be a very important step towards the
completion of the structure. While the realization of vector fields on the lattice is
a very well-known subject, the same is not true for fermionic fields, which certainly
represents one the major difficulties to be faced in future developments. The work
in this area also lacks access to a sufficiently simple non-linear model that would not
suffer from the triviality characteristic of the polynomial and sigma models of scalar
fields. By the requirement of simplicity we mean a model that could be treated in
a precise and complete way with what is currently known about the realization of
fields on the lattice, which therefore must exclude fermionic fields. A model like
this, containing true interactions between particles, and yet technically manageable
on the lattice, would constitute an important tool for the further exploration and
development of the theory.

It seems to us that there is ample room for further activity along the lines pre-
sented in this book. The use of lattices and of stochastic simulations not only
establishes a practical calculational tool for the subject, it also constitutes a lan-
guage in which one can discuss in a mathematically precise yet simple and clear
way the issues and problems of the subject. This language allows for the free and
profitable use of the imagination in the exploration of the underlying structure of
the theory, followed when necessary by the computational effort needed to obtain
precise answers to the questions posed. It is currently true, and may turn out to
be the case permanently, that the routine use of computational resources on a large
scale is an essential part of the research in this area. Fortunately, we live in a time
when the availability of computer resources to the individual is increasing in an ex-
ponential way, so that the future prospects are very promising for those who acquire
the necessary skills in the world of informatics.



Bibliography

[1] Jorge L. deLyra, Timothy E. Gallivan and See Kit Foong, “Differentiability and
Continuity of Quantum Fields on a Lattice”, Phys. Rev. D43 (1991) 476–484.

[2] Richard P. Feynman, “Lectures on Physics”, volume 3.

[3] Silvana Perez, “O Conceito de Part́ıcula na Teoria Quântica de Campos na
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