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Chapter 1

The Polynomial Model

In this chapter we will examine the polynomial models of scalar fields. These are
generalizations of the Gaussian model in which one tries to introduce interactions
into the model by the addition of a new term to the action, containing a power of
the field which is greater than the power two that appears in the Gaussian model.

1.1 Definition of the Model

In the previous volume of this series [2] we studied in detail the theory of the free
scalar field. That model was sufficiently simple to allow us to calculate analytically
all the predictions of the theory. As we saw, both in the case of the classical theory
and in the case of the quantum theory this simplicity follows from the linearity of
the model. We also saw that this same linearity is responsible for the fact that the
model does not contain the concept of interactions between particles, and hence that
the only physics that it does contain is the propagation of free particles. This was
shown by the factorization of all the correlation functions in terms of the propagator,
and also by the fact that the energies of the particles are simply additive, that is,
the energy of a state containing two particles is the sum of the energies of the two
corresponding single-particle states, implying the absence of any kind of interaction
energy.

We will make here a first trial at including interactions in the theory, for which
it will be necessary to break the linearity of the model, including in the action terms
with more that two powers of the field. We will therefore examine the model defined
by

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s), (1.1.1)

which we denominate the λϕ4 polynomial model. We therefore choose to break the
linearity of the model by the introduction of a new ultra-local term into the action,
leaving untouched the term containing the derivatives. This is the simplest example
of a model that, in the classical theory, contains interacting fields. Our task here is
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2 THE POLYNOMIAL MODEL

to determine the nature of the corresponding quantum theory. This new action still
has the same symmetry of the action of the free theory, namely, it is invariant by
the sign inversion of the fields. In addition to this, it has a lower bound so long as
the parameter λ, which we call the coupling constant, is positive and not zero. On
the other hand, unlike what happened in the case of the free theory, the parameter
α may be negative in this model, so long as λ satisfies these conditions.

Note that the addition to the action of the free theory of a single cubic term is
out of the question for two reasons: it would break the symmetry and, more impor-
tantly, would cause the action not to have a lower bound. This second problem is
much more serious than the failure of the action to be invariant by the symmetry
transformations, since it would imply the non-existence of the corresponding quan-
tum theory. We could, on the other hand, include a cubic term together with the
quartic term, thus obtaining a non-symmetrical but stable theory. If we want to
have a stable theory and keep the symmetry, we should restrict the discussion to
terms with even powers of the field. We will do this here, for simplicity and ease
of presentation, and motivated by the fact that, in general, symmetries have an
important role to play in physics. We will discuss explicitly the case ϕ4, but almost
everything that we will do can also be done for the cases ϕ2p, p = 2, 3, 4, . . ., with
analogous results.

We say, in the classical theory defined by the action given above, that the field ϕ
is self-interacting. As we may see in future volumes of this series, it is also possible
to define models with fields having several components that interact with each other,
and that involve invariance by groups of symmetry transformations which are larger
and more complex than the simple sign reflections that we have in the model with
a single component. It is also possible to define manageable models with different
types of field that interact with one another, which are, of course, the most important
models for real physics. However, for our objectives here we may limit ourselves to
the model with a single field component, postponing to a future opportunity the
discussion of the more complex models.

Unlike what happened in the case of the free field, in the non-linear models there
is no known way to calculate the predictions of the quantum theory in exact an-
alytical form. In this section we will limit ourselves to the qualitative description
of the behavior of the model by means of heuristic arguments based on extensive
experience with its numerical treatment. Later on we will develop a technique of
approximate perturbative calculations that will allow us to determine in a quan-
titative and fairly reliable way some of the main characteristics of the model. In
general, in the case of the non-linear models it will always be necessary to make use
of some approximation technique or of computer simulations in order to determine
the behavior of the models.

In our approach to the subject, the computer simulations will often be the main
tool for the exploration of the models. Once one becomes well acquainted with the
technique of stochastic simulation, it can become a language for the understanding of
the models, sometimes leading one to the solution of problems, sometimes suggesting
new ideas, new observables and even new models. The ideas and techniques involved
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in the methods of stochastic simulation constitute a rather extended topic with a
very technical character, and will be developed in detail in a separate volume of this
small series of books.

The character of the classical theory determined by our action is clear, and it
is not necessary to examine it in detail. The definition of the classical theory is
the same as before, the classical solution is the configuration ϕ that minimizes the
action. The fact that it exists is guaranteed by the conditions we impose on the
parameters of the model: λ > 0 with any α or λ = 0 with α ≥ 0. We may derive, in
a way analogous to the one used before for the free theory, the corresponding classical
equation of motion, which will be, of course, a non-linear differential equation for ϕ
(problem 1.1.1). In order to begin the examination of the behavior of the quantum
theory, we recall that it is defined by the probability distribution over all possible
configurations of ϕ, given by

[dϕ] e−
∑

`
1

2
(∆`ϕ)2−

∑
s(α

2
ϕ2+ λ

4
ϕ4)

∫
[dϕ] e−

∑
`

1

2
(∆`ϕ)2−

∑
s(α

2
ϕ2+ λ

4
ϕ4)

,

where we grouped separately the term containing the derivatives and the ultra-local
part, containing the polynomial terms, both the quadratic one and the quartic one,
which we call the interaction term. If we recall that the measure [dϕ] is a product
of differentials over all the sites s, representing the fact that in this measure the
stochastic variables ϕ have uniform probability distributions, we see that we can
include the ultra-local terms in the measure, writing the distribution as

[
dϕ e−(α

2
ϕ2+ λ

4
ϕ4)

]
e−

∑
`

1

2
(∆`ϕ)2

∫ [
dϕ e−(α

2
ϕ2+ λ

4
ϕ4)

]
e−

∑
`

1

2
(∆`ϕ)2

.

In this new measure the variables ϕ no longer have uniform probability distribu-
tions, but have instead the probability distribution given by the exponential of the
potential. A typical example of such a distribution can be seen in figure 1.1.1. We
see in this way that a possible way to understand our model is to think of it as
constituted of the dynamics implemented by the derivative term, but applied in-
directly to new random variables χ located at the sites, with uniform probability
distributions, which are given in terms of the variables ϕ by the differential relation

dχ = dϕ e−(α
2
ϕ2+ λ

4
ϕ4).

This means that we may write the stochastic variable χ, which has an uniform
probability distribution within a closed interval, in terms of the stochastic variable
ϕ, which has a non-uniform probability distribution over the whole real line, as

χ (ϕ) =

∫ ϕ

0

dϕ′ e−(α
2
ϕ′2+ λ

4
ϕ′4). (1.1.2)
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Figure 1.1.1: A typical ultra-local distribution of the fields, given by the potential,
that is, by the polynomial terms of the action, in the case (α < 0, λ > 0).

In this way the theory is reduced to the study of the effect of the derivative term on
the local distributions of either χ or ϕ at each site. The inverse of relation (1.1.2),
which usually can only be obtained numerically, gives us ϕ(χ) and enables us to
obtain ϕ with the correct non-uniform distribution, starting from the variable χ with
an uniform probability distribution within a closed interval, which is not difficult to
generate numerically. In this way a part of the structure of the model, the part of the
distribution given by the ultra-local terms of the action, is implemented in an exact
way. This is, in fact, one of the ways in which one can simulate this model in practice,
by producing values of χ at each site with the correct distribution, getting from them
the corresponding values of ϕ, and simulating the dynamics of the derivative term
by the use of stochastic techniques. The use in stochastic simulations is the main
application of this decomposition, which usually is not very useful as an analytical
approach.

In a very general way, the complete local distribution that rules the fluctuating
values assumed by the fields at an arbitrarily given site is given by the combination of
the effects of the potential and of the derivative term. In order to discuss the behavior
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of the model at an intuitive level, it is very useful to invert the decomposition
described above, representing the effect of the derivative term by the Gaussian local
distribution that it implies, which was studied in detail in the first volume of this
series of books, and considering directly the effects that the potential term may
have on it. This allows us to use in the analysis of the model our classical intuition
concerning the behavior of an object within the potential, by extending the object
from a simple point body to a fluctuating statistical distribution. In this way we
are able to build an almost-classical intuition in order to understand the behavior
of the model.

We can imagine that we draw a copy of the potential at each site and that we put
inside it the value of the field at that site, while the terms (∆`ϕ)2 interconnect each
pair of neighboring sites. The stochastic dynamics implemented by these derivative
terms will cause the values of the fields to fluctuate at each site, so that we will
actually have a distribution of values within each potential. In the theory of the
free field these local distributions are simple Gaussians, whose width σ0 is a number
of the order of 1 for any lattice size, a number that determines the value of the
physical mass (also called the renormalized mass), which in the case of the free
theory is simply mR = m0. In our current model the complete local distributions
also have a width σ ≈ σ0 of the order of 1, but their format may no longer be exactly
Gaussian. The renormalized mass is defined in this model, just as in the free theory,
as the inverse of the correlation length of the model, measured through the two-point
correlation function, and presumably it is also related to σ, as is the case for the
free theory. What we propose to do in this section is to understand the complete
dynamics of the model by considering directly the influence of the potential over the
Gaussian local distribution implemented by the derivative term.

Let us recall that the relation between the two-point function and the renor-
malized mass was studied in detail, in the case of the free field, in a section of the
first volume [4]. The exponential decay of the two-point function for large distances
r, given by exp(−m0r) as was studied in that section, is a general property of all
massive theories, either free or otherwise. The behavior of the two-point function of
the interacting theories for large distances is in general of this same type, except for
the exchange of the parameter m0 for another parameter mR which usually differs
from m0. In the numerical approach we usually measure this new parameter by
means of a curve-fitting process applied to the numerical propagator of the theory
in momentum space rather than position space, that is, to the Fourier transform
of the two-point function, which is technically easier to do, and also more efficient.
We do this in the expectation, to be confirmed a posteriori, that the form of this
function in the interacting models is not very different from its format in the free
theory, and it usually works very well.

In the model that we are introducing here, given values of N , α and λ, we will
have not only a resulting value for the parameter αR related to the renormalized
mass, but also some resulting value for the renormalized coupling constant λR, which
is the physical coupling constant whose nature and precise definition we will examine
in more detail later on. Unlike what happened in the free theory, in general αR will
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not be equal to α, and in addition to this neither will λR be equal do λ. In fact,
let us recall the fact that the parameter α can be negative in this model, while the
parameter αR = (mRa)

2 is necessarily non-negative, and should tend to zero in the
continuum limit. The rule of the game now is that neither α nor λ have any direct
physical meaning and that we are free to do with them whatever is necessary, within
the constraints of the stability of the theory, in order to have αR and λR assume
physically acceptable and significant values in the limit N → ∞.

Since we have two free parameters to adjust in the model, that is, two functions
α(N) and λ(N) of the increasing size N of the lattice that we may define, it may seem
at first sight that we may always choose these functions so as to obtain any physically
acceptable values of αR(α, λ,N) and λR(α, λ,N) in the limit N → ∞. However, this
is not necessarily so because, besides the stability constraints that we must impose
on the basic parameters of the theory, it may be that the dynamics of the theory
itself imposes over the renormalized parameters αR and λR other constraints, with
the consequence that not all the possibilities are actually realized in practice. In an
extreme case, it is possible that there are no choices of the functions α(N) and λ(N)
for which the values of αR and λR are physically acceptable in the limit, in which
case we say that the quantum theory of the model does not exist. In a more general
way, it may be that not all pairs of physically acceptable values for αR and λR are
reachable by means of some path [α(N), λ(N)] with increasing N , in the space of
parameters of the theory. For example, it may be that a constraint between αR and
λR is established in the limit, preventing us from choosing both of them freely, in
which case we may say that the parameters α and λ become degenerate in the limit.

In what follows we will describe a qualitative way of understanding the behavior
of the model which, despite the fact that it is purely intuitive and heuristic, based
on the phenomenology of computer simulations, will give us qualitatively correct
results, as we will verify later on by means of approximate calculations1. In order
to do this we will, as was mentioned above, represent the effect of the derivative
term of the action by the fluctuations that it implies for the values of the field ϕ at
a given site, resulting on a Gaussian local distribution of values with a width of the
order of 1. Let us recall that in the case of the free field the width σ0 did not depend
on m0 in the continuum limit. On finite lattices the width did depend on α0, but
not very strongly, so long as α0 was not zero on finite lattices. In an analogous way,
in our case here we expect the width σ not to depend on mR in the limit, while on
finite lattices it should not depend too strongly on either α or λ.

In this way, in first approximation we may imagine that the width of the local
distribution behaves like a semi-rigid body with finite dimensions which are almost
constant along the continuum limit. If the width is “squeezed” to any value below
its normal size, this gives rise to a non-zero value for the renormalized mass mR. A
zero squeezing force corresponds to zero mR, and the larger the squeeze, the larger
the renormalized mass. As the lattice size N increases the width becomes more
“rigid”, in the sense that the same squeezing force corresponds to a larger value of
mR, until it becomes infinitely rigid in the continuum limit, in which any non-zero

1This argument was originally developed in collaboration with Dr. Timothy Edward Gallivan.
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Figure 1.1.2: The potential and the local distribution due to the derivative term, in
the case of the free theory.

squeezing force gives rise to an infinite mR. Let us imagine now that we insert this
local distribution inside the potential defined by the ultra-local terms of the action
at each site, as shown in figure 1.1.2 for the case of the free theory, with a Gaussian
distribution and a quadratic potential. If we were examining the classical theory, we
would put inside the potential a point body representing the value of the classical
solution for the field, and it would come to rest at the minimum of the potential. The
examination of the behavior of the quantum theory corresponds to the introduction
into the potential well of an extended object which can be represented heuristically
by our semi-rigid body, which becomes rigid in the continuum limit in the sense
explained above.

The width of the local distribution in the absence of the potential is determined
only by the derivative term and corresponds to the value αR = 0, that is, to a zero
renormalized mass. When we put the distribution under the action of the potential
on a finite lattice what happens is that it tends to concentrate the values of the field
around the minimum, and hence squeezes the distribution, decreasing its width,
because it is statistically unfavorable for the field to exist in the positions where the
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Figure 1.1.3: The potential and the local distribution due to the derivative term, in
the case of the non-linear theory, in the symmetrical phase.

potential is larger. This squeeze of the width of the distribution gives rise to a finite
and non-zero value for α0 and hence for the renormalized mass. The decrease in the
width of the distribution is never very large, and it is still a quantity of the order of
1. The difference in width due to the squeeze goes to zero in the continuum limit
because, as we saw in the first volume of this series, in this limit it is necessary that
α0 go to zero in the free theory, making the potential well become infinitely wide
and flat at the position of the minimum. The fact is that such a vanishing effect over
the width is sufficient to give to the renormalized mass, in the limit, any positive
value we wish.

In our model with a quartic term, in the case where we have both α and λ
positive or zero, we should expect a qualitatively similar behavior, since we have
the same derivative term in the action and a potential well with a similar form,
although the detailed format of the curve is not exactly the same. In this case, in
order for the potential well to become infinitely wide in the continuum limit, thus
allowing αR to go to zero and mR to approach a finite value, it is necessary that
both α and λ tend to zero in the limit. In this way we have just made, without too
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Figure 1.1.4: The potential and the local distribution due to the derivative term, in
the case of the non-linear theory, in the broken-symmetrical phase.

much effort, a prediction with very serious consequences regarding the behavior of
the model: if we limit ourselves to the case in which α ≥ 0 and λ ≥ 0 for all N ,
it will be necessary to make both α → 0 and λ → 0 in the limit, which takes the

model back to the critical point of the Gaussian model and therefore eliminates any

possibility that λR be different from zero in limits of this type.

Except for the case d = 3, this implies that there are in fact no interactions
between particles in the quantum theory of this model, in any limits that stay within
the quadrant given by α ≥ 0 and λ ≥ 0. We say that in this case the model has only
the trivial limit, leading to the theory of the free field, or that the theory is trivial

in this sector of the space of parameters of the model. The case d = 3 is a little
different because, since in this case the physical coupling constant has dimensions
of mass, it is possible that there are interactions even if the model approaches the
Gaussian point, e phenomenon that we will discuss later on.

We conclude that, if we are to have any chance of finding an interesting limit in
this model, it will be necessary for at least one of the two parameters to be negative.
Since we cannot make λ negative due to the stability constraints, it follows that the
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parameter α fill be necessarily negative, in any continuum limit of this model that
has any chance of not being trivial. In fact, in this case something very interesting
happens, because the potential of the model acquires a double well, as shown in
figure 1.1.3, which alters completely the behavior of the model, since now a new
relevant parameter related to the potential arises, given by the distance between the
two minima, which can be easily calculated from the potential. We see that we now
have two different widths at play in the problem, the width of the local distribution
and the distance between the two minima. We also have two widths related to the
potential, the width of each one of the two wells and the total width of the two
wells, which are related by a factor of approximately two. The positions of the two
minima of the potential are given by ϕ = ±

√
−α/λ, while the value of the potential

at the minima is given by −α2/(4λ).

We see at once that now the statistical disadvantage of the rise of the potential
at each side of the double well, which tend to squeeze the distribution, can be com-
pensated by the statistical advantage due to the two local minima of the potential,
which may tend to widen the distribution. Another way to put it is to say that
the central bump of the potential tends to “un-squeeze” the distribution, working
against the squeezing tendency of the potential rises at the two sides of the double
well. If we tune our parameters in an appropriate way, it may be possible to end up
with a vanishing squeeze in the limit, without the need for an infinitely wide well. In
this way the possibility arises that we may have in this case αR = 0 without it being
necessary that α or λ approach zero in the continuum limit. In other words, the
possibility arises that there are certain non-zero pairs of values (αc, λc) that we can
approach in the continuum limit so that αR → 0 in the limit, a behavior which, as
we discussed before in the section in [5], is typical of second-order phase transitions.
Refining a little our analysis we verify that indeed such a phase transition happens
in this model, related to a process of spontaneous symmetry breaking.

As we saw, both the distance between the local minima and the width of each
one of the two wells around them are proportional to

√
−α/λ, which may be made

as large as we wish by choosing α negative and with absolute value much larger
than λ. In this way, by adjusting the parameters we can make the two potential
wells much wider than the width of the local distribution, which is always of the
order of 1, thus making it no longer statistically favorable for the distribution to
stay centered around ϕ = 0. The depth of the two wells is given by α2/(4λ) and also
increases when we make the absolute value of α larger than λ, contributing to make
it statistically favorable for the distribution to shift to one of the two sides, thus
falling into one of the two wells. Since the two wells are identical, this happens in a
random way, spontaneously to one of the two sides, which therefore spontaneously
breaks the symmetry which so far implied that the expectation value of the field had
to be zero, 〈ϕ〉 = 0. Note that the local distribution must fall to the same side at all
sites, otherwise the derivative term would make a huge unfavorable contribution to
the statistical weights. The situation of broken symmetry is illustrated qualitatively
in figure 1.1.4.

We discover in this way that a process of spontaneous symmetry breaking occurs
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Figure 1.1.5: Critical diagram of the non-linear λϕ4 model.

in this model, giving origin to two phases in the space of parameters of the model, in
each one of which the behavior of the model is of a certain type, different from the
other one. The expectation value vR = 〈ϕ〉 is the order parameter of the transition,
being equal to zero in one of the phases, the symmetrical one, and different from
zero in the other phase, the broken-symmetrical one. Since the parameter space is
part of a two-dimensional plane, we expect that the two phases be separated by
a one-dimensional curve. In fact, we can easily estimate the locus of this phase-
transition curve. The argument that leads us to verify that the two phases exist
depends crucially on the width of the potential, which is proportional to

√
−α/λ.

This quantity does not change so long as α and λ are proportional to each other,
α = −βλ, so that the location of the points where the transition occurs, separating
the two phases, should depend only on the proportionality constant β.

We can estimate this quantity assuming that at the transition the distance be-
tween the two wells is of the order of the width σ0 of the local distribution, whose
value is determined predominantly by the derivative term of the action. It is clear
that, if the distance between the wells is significantly smaller than σ0, the local
distribution will tend to remain centered around ϕ = 0, with its width somewhat
reduced, while if the distance is significantly larger than σ0, the local distribution
will tend to shift sideways and fall into one of the wells. In order to better under-
stand this argument it is useful to think about the extreme cases, the one in which
the total width of the potential is much smaller than σ0 and the local distribution
is highly squeezed within it, and the one in which the total width of the potential is
much larger than σ0 and the local distribution is completely free to move within the
potential and therefore to fall into one of the two wells. This estimate gives us the
relation σ0 ≈

√
−αc/λc for the critical values of the parameters or, more precisely,

C0σ0 =
√

−αc/λc, where C0 is some positive constant of the order of 1 that can
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only be obtained by a more complete calculation, and which means that βc = C2
0σ

2
0 .

We have therefore an equation determining the pairs of values (αc, λc),

C2
0σ

2
0λc + αc = 0,

indicating that the locus of the phase transition is a critical line with a negative
slope, which extends from the Gaussian point (α = 0, λ = 0) all the way to infinity,
within the quadrant (α < 0, λ > 0) in the parameter plane of the model. Of course
it is unlikely that the critical curve is exactly a straight line, because we did not
take into consideration, in this qualitative argument, the changes in the depth of the
wells due to the variation of the parameters, but we will see later that a straight line
is in fact quite a reasonable approximation. Observe that the symmetrical phase
occupies all the quadrant (α ≥ 0, λ ≥ 0) and part of the quadrant (α ≤ 0, λ ≥ 0),
differing therefore from the classical expectation that making α < 0 would always
break the symmetry. This is, of course, a direct consequence of the exchange of the
classical point body by an extended quantum object within the potential well.

We may now draw a critical diagram for the model, illustrating in this way the
two phases and the critical curve, like the one that can be seen in figure 1.1.5. The
half-axis (λ = 0, α < 0) and the lower half-plane λ < 0 are not included in the
diagram, of course, since the model is unstable in these regions. The choice of two
functions α(N) and λ(N) that determines a particular continuum limit of the model
corresponds to a path drawn in this diagram, which may start at any point within
the stable region but which must necessarily end at some point of the critical curve,
which is the locus where we have αR(α, λ) = 0 in the limit. These paths are called
flows, or renormalization flows of the model. The Gaussian point is the critical point
of the theory of the free field and the continuum limits of that model are represented
by flows that go along the semi-axis (λ = 0, α > 0) in the direction of α = 0. We
can see here, once again, that any limits staying within the quadrant (α ≥ 0, λ ≥ 0)
must approach the Gaussian point. Flows can approach the same point of the critical
line from either the symmetrical phase or the broken-symmetrical phase, possibly
producing different results.

The slope of the critical curve at the Gaussian point is finite and non-zero and
can be calculated by a perturbative approximation, as we shall see later in this
chapter. The slope of the curve at the asymptotic region is also finite and non-
zero, and can be related to critical points of other models of scalar fields, the so-
called non-linear sigma models, as we shall also see later on. In addition to this,
the qualitative properties of this curve can also be confirmed by means of another
process of approximation that we will examine in detail later on, namely the so-
called mean-field techniques. By and large the nature of the critical curve is rather
well established and understood in any dimension d ≥ 3, and the analysis can be
extended without any important qualitative changes to the models λϕ2p for p ≥ 3,
as well as to multi-component models which are invariant under larger symmetry
groups. In this last case the presence of more field components does introduce some
new elements into the structure, of course. Usually more precise calculations of the
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position of the critical lines will involve some rather intensive and possibly difficult
computer work.

Observe that there are many other flows that approach the Gaussian point,
besides those defined directly by the free-field model. For example, we have a class
of flows that go along the vertical half-axis (λ > 0, α = 0) in the direction of λ = 0.
This class of flows can produce trivial limits in which the resulting renormalized
mass is determined by the dimensionless coupling parameter λ, instead of by α. This
phenomenon, which we can see here in a very simple way, is also known by the name
of “dimensional transmutation”. It is also possible to approach the Gaussian point
from the broken-symmetrical phase, from under the critical curve. In this way we
may define trivial limits in which the field, although free, has non-zero expectation
values VR = 〈φ〉. Except in the case d = 3 any limits that are candidates to not being
trivial must approach some other point of the critical curve, and not the Gaussian
point. If all possible flows of the model turn out to be trivial then we say that the
model is trivial. Then, except for the introduction of the concept of spontaneous
symmetry breaking, such models are just another way to produce the theory of the
free scalar field in the continuum limit. They may still be useful test models on
finite lattices, though.

Observe that what we have obtained here is a type of critical behavior just like
the one described in the section in [5], where the quantity vR = 〈ϕ〉 plays the role
played by the magnetization in the case of statistical mechanics, as shown in the
first figure of that section. However, we can do a little better here, and continue our
heuristic argument in order to get an estimate for vR as a function of α and λ. First
of all let us point out that we should be able to get only the absolute value of vR and
not its sign, since the symmetry can break to either side. Let us therefore estimate
v2
R and not vR. It must be zero at the critical line, that is, when the squared width

of the potential, −α/λ, is equal to the squared width of the local distribution, C2
0σ

2
0 .

It must also be equal to zero whenever the potential is less wide than that, that is,

v2
R = 0 for − α

λ
≤ C2

0σ
2
0 ,

characterizing the symmetrical phase. To this we may add that, if the potential is
wider than the width of the local distribution, then the distribution should be able
to shift to one side by something like the difference between the two, giving as the
corresponding estimate for v2

R the value

v2
R = −α

λ
− C2

0σ
2
0 for − α

λ
≥ C2

0σ
2
0 ,

characterizing the broken-symmetrical phase. Note that this formula gives the cor-
rect value v2

R = 0 at the critical line. It also gives the correct value in the case of
an extremely wide potential, in which case C2

0σ
2
0, which is always of the order of 1,

can be neglected by comparison with −α/λ, and we should have the average vR of
the local distribution sitting at the minimum of the potential, that is, v2

R = −α/λ.
In short, we have for v2

R the result
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λv2
R = −(α + C2

0λσ
2
0),

whenever the quantity in parenthesis is negative, and zero otherwise. Note that the
quantity in parenthesis coincides with the equation of the critical line, thus showing
that indeed v2

R is zero over that line. Note also that the result for v2
R contains 1/λ,

possibly indicating that a calculation which is purely perturbative in λ may not be
sufficient to obtain this result.

We may also obtain estimates for the dimensionless squared mass αR, using
arguments similar to the ones above. Starting with the symmetrical phase, which
contains the possibility that λ = 0, with α > 0, we know two things about αR: first,
it must be zero over the critical line, and second it must be equal to α when λ = 0.
Since the equation of the critical line contains a term linear in α, it is clear that in
order to satisfy both these criteria we must make αR equal to that equation, thus
obtaining

αR = α + C2
0λσ

2
0 for α + C2

0λσ
2
0 ≥ 0,

where the condition is the same as before, characterizing the symmetrical phase. In
the broken-symmetrical phase we must work a little more to get the result. First
of all, let us discuss why there should be a non-zero physical mass in this case.
This is so because, after the symmetry breaks and the local distribution falls within
one of the two wells, it will become squeezed by it, leading to an increase in the
renormalized mass, is a way similar to what happens in the free theory. So it follows
that αR should have its minimum of zero at the critical line and increase when one
goes away from it on either side.

In order to estimate the value that αR should have in the broken-symmetrical
phase, let us go deeply into it, making −α � λ, so that the potential is very wide
and the local distribution is sitting around one of the two local minima. Under
these conditions we may approximate the potential in the relatively small region
where the local distribution is significantly different from zero by a parabola. If we
calculate the second derivative of the potential at the minimum, which gives the
curvature of this parabola, we get for it the value −2α, which is positive because α
is negative. By comparison with the situation in free theory we see now that deep
in the broken-symmetrical phase we should have αR = −2α. Adding to this that in
this phase αR still must be zero over the critical line, we see that we must make αR
proportional to the equation of the line, with a constant of proportionality that will
bring about the correct value in the deeply broken regime. With all this it is not
difficult to see that we must have

αR = −2(α + C2
0λσ

2
0) for α + C2

0λσ
2
0 ≤ 0,

where the condition is once again the same as before, characterizing the broken-
symmetrical phase. Note that the value −2α for the curvature of the parabola near
the minimum only goes to zero is we make α = 0 and hence go back to the Gaussian
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point. Therefore the potential never becomes infinitely flat around its local minima
in the broken-symmetrical phase, except in limits that approach the Gaussian point.
There are, therefore, no other possible continuum limits with finite masses in this
phase, except those that tend to the Gaussian point or to some other point of the
critical line.

As a last refining touch of our argument, we may point out its relation to the
question of the triviality of the model. Let us look back at figure 1.1.3 and imagine
that it represents the critical situation, in which the potential is just wide enough not
to squeeze the local distribution. This means that the local distribution is almost
free to move, but there is no space for it to actually do so. In this situation the
squeezing action of the outer walls of the potential and the spreading action of the
central bump are exactly balanced, so that the net action over the width of the local
distribution vanishes. However, even without changing the width, the potential can
tend to change the shape of the distribution. In fact, if we consider in which parts
of the local distribution the central bump and the outer walls act, we realize that
the bump tends to flatten and spread the top of the Gaussian, while the two outer
walls tend to increase the slopes on the two sides of the distribution. This change of
shape is exactly what one would expect if the local distribution tended to be more
like the function exp(−λRϕ4/4) than like a Gaussian.

In fact, one would expect λR to manifest itself by affecting the form of the com-
plete local distribution. Since αR is related to the second moment of the distribution,
its width, it is reasonable to expect that λR is correspondingly related to the fourth
moment of the distribution, and hence to the shape of the curve that describes it.
However, our experience with αR shows that, due to the derivative term of the ac-
tion, the local distribution has a very rigid character in the continuum limit, as a
consequence of the requirements of propagation, which requires αR to go to zero
in the limit. There is therefore legitimate doubt that we can have this distribution
significantly changed in shape in the continuum limit, to allow for a non-zero value
of λR, without disturbing the dynamics of propagation and thus ending up with
infinitely massive particles and no propagation. Note that if it is true that we must
have λR → 0 in the limit, then it is imperative that λR be zero exactly over the
critical line, where we already know that αR is zero, otherwise there would be no
possible continuum limits except those going to the Gaussian point.

Of course we cannot resolve this difficult matter with only heuristic arguments.
In fact, we will see that perturbation theory is also not enough to handle this issue,
and we will have to use computer simulations in order to explore it. However, we
can say that, if indeed it turns out that we must have λR → 0 in the limit, then only
theories that can be non-trivial with λR going to zero still have a chance of being
truly interacting quantum theories. This involves the scaling relations between λR
and its dimensionfull version ΛR. As is discussed in problem 1.1.8, in the classical
case, this leaves, of all polynomial models ϕ2p, p = 2, 3, 4, . . ., in all dimensions
d = 3, 4, 5, . . ., a single possibility: the λϕ4 model in d = 3.

We end this section with a short discussion of the continuum limit of the classical
theory, which requires rewriting the action of the model in terms of dimensionfull
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quantities. If we recall our discussion about the physical significance of the block
variables in the section in [6], we will see that it is the dimensionfull variables and
parameters that have a more direct physical relevance in the quantum theory. While
the dimensionless local variables and parameters, usually numbers of the order of
1 that do not scale significantly in the continuum limit, are convenient both for
establishing mathematical facts about the internal structure of the models and for
dealing with them in a practical way in computer simulations, the dimensionfull
variables include scale factors that cause them to scale in the continuum limit in the
correct way in order to represent the superpositions of the dimensionless observables
over the large and increasing numbers of sites contained within the blocks. As we
discussed in that section, such superpositions constitute the only type of quantity
within the theory that can in fact be directly observed.

The definition of the dimensionfull field in terms of the dimensionless field in
the λϕ4 model is the same as in the theory of the free field, φ = a(2−d)/2ϕ, since
it is determined only by the derivative term. We do not have in this case a mass
term properly speaking, since α can be both positive and negative, but in a way
similar to that of the theory of the free field we may introduce a parameter m
with dimensions of mass by means of the relation m2 = |α|/a2. A simple analysis
of the quartic term gives us, finally, the definition of the dimensionfull coupling
constant Λ = ad−4λ. The treatment of the sums over links and sites and of the finite
differences in the continuum limit of the classical theory, in terms of integrals and
derivatives, is identical to the one discussed in the case of the free theory, so that
we obtain for the action S[φ] in the continuum limit, in terms of the dimensionfull
quantities,

S[φ] =

∫

V

ddx

{
1

2

∑

µ

[∂µφ(~x)]2 ± m2

2
φ2(~x) +

Λ

4
φ4(~x)

}
,

where the sign of the quadratic term depends on the sign of α. Observe that the
relation existing between the parameters λ and Λ of the classical theory implies
that, since Λ must remain finite in the limit, λ must behave in different and definite
ways in each space-time dimension. For d ≥ 5 it is necessary that λ diverge to
infinity in the limit in order that Λ be different from zero, which shows that these
classical theories have a rather singular behavior in this case. For d ≤ 3, on the
other hand, it is necessary that λ → 0 in the limit in order for Λ to remain finite,
showing that in this case the behavior is the reverse of that of the previous case.
For d = 4 we have that Λ = λ and therefore in this case it is not possible to make
any definite statement of this type. Given these scaling relations between λ and Λ
it is reasonable to think that the dimensionfull renormalized coupling constant ΛR

should be defined in terms of λR in an analogous way.

Our expectation is that, just as it is the constant Λ that has physical relevance
in the classical theory, the constant ΛR should play the same role in the quantum
theory. As was already pointed out, the analysis of the block propagator of the free
theory in the section in [6] indicated that it is the dimensionfull quantities, based on
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the dimensionfull field φ, that have direct physical relevance, being directly related
to the quantities which are observable in the quantum theory. Although we have
only shown this fact in the case of the free theory, we will assume that it is true in
general, a working hypothesis that we will only be able to confirm a posteriori by
the accumulation of calculational experience, numerical or otherwise. We will see
that this relation of scale between λR and ΛR will be very useful to enable us to
understand heuristically the behavior of the quantum models. Before anything else
is done, however, it will be necessary to define in a more precise way the constant
λR of the quantum theory, which we will do in the third chapter of this book.

Problems

1.1.1. Derive the classical equation of motion for the λϕ4 model, showing that it is a
non-linear equation. Write the equation both on finite lattices, in terms of the
dimensionless field, and in the continuum limit, using the dimensionfull field.

1.1.2. Calculate the position, the depth and the bottom curvature of the potential
wells in the models λϕ2p, p = 3, 4, . . ., which are defined by the action

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

2p

∑

s

ϕ2p(s),

verifying that the spontaneous symmetry breaking situation is qualitatively
similar to that of the λϕ4 model. Sketch qualitatively the phase diagrams of
these models and estimate whether the critical curves in these cases are more
or less steep than the critical curve of the quartic model.

1.1.3. Show that the stochastic variable χ introduced in the text for the λϕ4 model
is bound within the interval [0, χmax], where χmax is a finite quantity which
depends on α and λ.

1.1.4. Define a generalization of the stochastic variable χ, which was introduced in
the text for the case of the λϕ4 model, for the case of the λϕ2p, p = 3, 4, . . .
models.

1.1.5. Estimate and sketch the positions, on the phase diagram of the λϕ4 model,
of the curves defined by αR(α, λ) = C, where C is a constant. Do it on both
sides of the critical curve. Remember that αR = 0 over the critical curve, that
αR = α for the free theory, and that αR ≈ −2α for negative α and λ ≈ 0.

1.1.6. Write the action of the λϕ4 model in terms of the Fourier transforms ϕ̃ of
the fields and show that, due to the presence of the quartic term, the Fourier
modes in momentum space do not decouple from each other when λ 6= 0.

1.1.7. Show that, in the case d = 1, the model λϕ4 is identical to the quantum
mechanics of an anharmonic oscillator.
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1.1.8. Derive the scaling relations between λ and Λ for the classical theory of the
λϕ2p, p = 3, 4, . . . models, in dimensions d from 3 to 5. Assuming only that λ
remains finite in the limit, verify in which cases it is possible to have non-trivial
N → ∞ limits, in which Λ is finite and non-zero.

1.2 Perturbation Theory

In this section we will develop in detail a perturbative approximation technique for
the λϕ4 model which we introduced in section 1.1. As we shall see later on, it will
allow us to confirm the qualitative behavior of the model, which was described in a
heuristic way in that section. Let us recall that the model is defined by the action

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s),

containing a quartic interaction term. Due to the presence of the quartic term we do
not know how to solve the model analytically. However, without this term the model
becomes Gaussian and then we are able to solve it completely. It becomes clear then
that the results of the complete model should converge to the corresponding results
of the free theory when we make λ → 0 since, in the continuum limit, this implies
that we must approach the Gaussian point in the parameter plane of the model.

The main idea of perturbation theory is to develop an expansion for the complete
model around the soluble Gaussian model. Presumably, for small values of the
coupling constant the results of the complete model are not very different from
the results of the free theory and hence we may understand the interaction term
as a small perturbation applied to the Gaussian model. In this way, maybe we
will be able to use the expansion in order to obtain useful approximations for the
complete model near the Gaussian point in the critical diagram. This is just the
usual expectation that one has for an approximation scheme, but a word of warning
is in order here. Although we will see that it is in fact possible to calculate some
useful approximations, things are not as simple as one may think at first, and the
approximation scheme does not work quite in the way that one would expect.

The first step in the development of the perturbative technique is the separation
of the action in two parts, which we shall denominate S0 and SI ,

S = S0 + SI ,

where S0 is a purely Gaussian action. For the time being we will not be very specific
about the detailed form of each one of the two parts. We have, for an arbitrary
observable O of the complete model,

〈O〉 =

∫
[dϕ]O[ϕ]e−S0e−SI

∫
[dϕ]e−S0e−SI

. (1.2.1)
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We may now write this in terms of the measure of the free theory defined by S0,
dividing both numerator and denominator by

∫
[dϕ]e−S0 and thus obtaining

〈O〉 =

〈
O e−SI

〉
0

〈e−SI 〉0
,

where the subscript 0 denotes expectation values of the theory defined by S0,

〈O〉0 =

∫
[dϕ]O[ϕ]e−S0

∫
[dϕ]e−S0

.

The term SI of the action is the one that contains the parameter λ, that we
presume to be small. However, in general SI may contain also other parameters,
so that in order to enable us to do the development of the perturbation theory in
a more organized and explicit fashion it is convenient to use, instead of λ, a new
expansion parameter ε that we introduce as follows,

f(ε) =

〈
O e−εSI

〉
0

〈e−εSI 〉0
. (1.2.2)

We have therefore that f(0) = 〈O〉0 and f(1) = 〈O〉. Perturbation theory consists of
making a series expansion, which we denominate the perturbative expansion, of f(ε)
around ε = 0, up to a certain order, followed by the use of the resulting expressions
at the point ε = 1. Of course this can only be a good approximation to the complete
theory if SI is a small quantity. Classically we can make SI small by adjusting the
values of λ and any other parameters that it may contain but, as we shall see in
what follows, this is not possible in the quantum theory. This is the basic fact that is
at the root of all difficulties with the perturbative approach to quantum field theory.

In order to understand the origin of the difficulties it is necessary to recall some
important properties of the theory of the free scalar field, since we are writing our
quantities here in terms of the expectation values of that theory. As we saw in the
section in [7], in the case of the dimensions d ≥ 3 which are the ones of interest for
quantum field theory, the quantity σ2 = 〈ϕ2〉, which we denote here by σ2

0 to record
the fact that it is a quantity relating to the free theory, is a finite and non-zero
quantity both on finite lattices and in the continuum limit. In addition to this, we
showed in the section in [8] that the quantity 〈[∆µϕ]2〉 is also finite and non-zero
both on finite lattices and in the limit, in which case it has the value 1/d. Still in
the section in [8] these facts were used to show that both the expectation value of
the kinetic part SK of the action,

SK =
1

2

∑

`

(∆`ϕ)2,

and the expectation value of the part SM of the action containing the mass term,
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SM =
α0

2

∑

s

ϕ2(s),

diverge as powers of N in the continuum limit, even if we keep the models within
boxes with finite volumes. In the case of SK we have 〈SK〉 ∼ Nd/2, while in the
case of SM we have 〈SM〉 = (m0L)2Nd−2σ2

0/2. In addition to this, it is possible to
show that in the free theory the following relation holds,

〈ϕ4〉0 = 3〈ϕ2〉20,

which is the result indicated in the problem in [9]. From these consideration it
follows that, assuming that the general form of SI is given by SV ,

SV =
∑

s

(
α

2
ϕ2 +

λ

4
ϕ4

)
,

where S = SK + SV , we have for its expectation value

〈SV 〉0 =
σ2

0

2

(
α +

3

2
σ2

0λ

)
Nd.

This means that, so long as the factor within parenthesis is not zero in the limit,
〈SV 〉0 diverges as Nd in the continuum limit.

At first sight it may seem that the expression in parenthesis may indeed vanish
in the limit, since we must remember that, as was discussed in section 1.1, α is
necessarily negative in the limit, while the factors contained in the second term of
the expression are all positive. In fact, this expression is similar to our heuristic
estimate for the equation of the critical curve, which was α+ C2

0σ
2
0λ = 0. However,

one can verify a-posteriori that the expression is not identical to the equation of
the critical curve, either by numerical means or by the the approximations in which
we will calculate the equation of the curve later on. For example, in the case of
the perturbative approximation we will verify that the two expressions differ by
the extra factor of 1/2 that appears in the second term in the parenthesis in the
expression of 〈SV 〉0.

In any case, even if the expression in parenthesis did coincide with the equation
of the critical line, it would not be equal to zero on finite lattices, but would only
approach zero in the N → ∞ limit, with some inverse power of N . Since the expres-
sion is multiplied by a factor of Nd, it would have to go to zero very fast in order to
avoid the divergence. As we saw in section 1.1 and will confirm quantitatively later
on, the equation of the critical curve is directly related to the value of αR, so that it
must go to zero exactly as N−2, which is not enough to eliminate the divergence in
the dimensions of interest, d ≥ 3. Furthermore, even if everything worked out and
〈SV 〉0 did go to zero in the limit, if we consider that we also have that 〈SK〉0 diverges
as Nd in the limit, we see that the resulting theory could not possibly fail to become



PERTURBATION THEORY 21

trivial in that case, since the interaction term would then become vanishingly small
in the continuum limit, when compared to the remaining part of the action.

The conclusion to which we are forced is that 〈SV 〉0 in fact diverges in the
continuum limit as Nd. It is important to observe once more that this divergence is
not due to an integration over an infinite volume, because we can do the complete
development of the theory within a finite box without any change in this result.
This divergence is a property of the continuum limit, an ultraviolet characteristic of
the theory, in which the influence of the high-frequency and short-wavelength modes
of momentum space predominate. It is not a property of the infinite-volume limit,
that is, of the infrared regime of the theory, in which the low-frequency and long-
wavelength modes predominate. It becomes clear, therefore, that it is not possible
to keep SV small by mere changes in the parameters α and λ, except if we make
them converge rapidly to zero in the continuum limit, which takes us back to the
Gaussian point, where all the results are already known, constituting the theory of
the free scalar field.

At this point it does not seem that this perturbative technique can end up having
any practical use but, in any case, let us proceed with our analysis of the situation.
If we consider for a moment the denominator of equation (1.2.1) it is clear that we
will have, in the continuum limit,

〈
e−SI

〉
0
→ 0,

while the perturbative expansion of this quantity, obtained by the series expansion
of the exponential function, will contain divergent terms if we keep ε finite and
non-zero when we take the limit,

〈
e−εSI

〉
0
≈ 1 − ε〈SI〉0 + . . . , where 〈SI〉0 → ∞.

We see here that a simple and naive expansion within such a singular structure can
make a vanishing quantity appear as a collection of infinities in the terms of the
expansion. We can now see that the limit of equation (1.2.1) for N → ∞ is a limit
of the form 0/0. However, it certainly exists, so long as the theory is well defined,
which we expect to be true so long as we keep the parameters of the theory within
the stable region of the critical diagram. The denominator can be understood as
the ratio of the measures of the interacting model and of the free theory,

〈
e−SI

〉
0

=

∫
[dϕ]e−(S0+SI)

∫
[dϕ]e−S0

,

so that the conclusion we arrive at is that these two measures are related in a singular
way in the continuum limit. On any finite lattice the expectation value 〈SI〉0 is finite
and we can improve the approximation by decreasing somewhat the parameters α
and λ. However, in the continuum limit the only form to avoid the divergence is to
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make both α and λ approach zero very quickly, thus making the model return to
the Gaussian point.

This behavior of SI is the basic cause that is behind all the divergences that
appear in the perturbative expansion of the model. It is directly related to the
strong fluctuations undergone by the fields in the continuum limit, as well as with
the fact that the dominating field configuration are discontinuous in the limit, as
we studied in the section in [8]. Despite all this, it is still very reasonable to think
that the observables 〈O〉 of the complete model are continuous functions of the
parameters of the model, because the observables are defined by means of statistical
averages that eliminate the fluctuations and discontinuities which are characteristic
of the fundamental field. In other words, it is reasonable to think that f(ε) is at
least a continuous and differentiable function of ε, so that there should be at least
a reasonable first-order approximation for f near ε = 0, and it could even be that f
is an analytical function of ε (problem 1.2.1).

We are faced here by a rather strange situation: on the one hand, it is reasonable
to think that there is an approximation up to some order for the observables of
the complete model in the vicinity of the Gaussian point but, on the other hand,
we see that this approximation may not be accessible by means of the perturbative
expansion starting from the definition of the quantum theory, due to the divergences
that appear. Observe that this apparent conflict is related to a exchange of order

of two limits, involving the continuum limit and the limit of the summation of the
perturbative series. We may argue that on finite lattices the perturbative series can
be summed, since all the quantities involved are finite and well-behaved in this case.
Hence, in principle we may sum the perturbative series on finite lattices and after
that take the continuum limit. However, when we write the series only up to a
certain term of finite order and then take the continuum limit, we are inverting the
order of the two limits. Although it is reasonable to think that, once the continuum
limit is taken, the resulting observables should have convergent expansions in terms
of the parameters of the model, there is no guarantee that these expansions are those
obtained by the exchange of the order of the limits. In fact, the divergences that
appear show us that the two procedures must have very different results.

At this point it is important to observe that the equation (1.2.1) which defines the
observables of the quantum theory is a ratio of two quantities involving SI and that,
due to this, it is possible that some or even all the divergences due to this quantity
end up by cancelling each other, between those coming from the numerator and those
coming from the denominator, if we make a careful expansion of the ratio, that is, a
careful expansion of f(ε). We will verify later on that it is indeed possible to obtain
in this way a useful approximation for some of the observables of the complete
model, despite the divergences that are involved in the limit, but we should keep in
mind that we are dealing with a singular expansion, so that it should come as no
surprise it not everything works out perfectly as expected. It is in this context that
the idea of renormalization appears for the first time with a recognizable meaning.
Unfortunately, this term is used for several different things in the structure of the
theory, but here it really has to do with renormalizing something in the usual sense.
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In fact, one can treat the problem at hand by making a change in the normalization
of both the numerator and the denominator of equation (1.2.1), eventually obtaining
the same results that we will obtain here in a more direct way (problem 1.2.2).

We will examine here the first-order and second-order terms in ε for the expansion
of f(ε), for which we obtain

f(ε) = f(0) + εf ′(0) +
1

2
ε2f ′′(0) + . . . ,

where the first three terms contain (problem 1.2.3)

f(0) = 〈O〉0,
f ′(0) = − [〈OSI〉0 − 〈O〉0〈SI〉0] ,
f ′′(0) =

[
〈OS2

I 〉0 − 〈O〉0〈S2
I 〉0

]
− 2〈SI〉0 [〈OSI〉0 − 〈O〉0〈SI〉0] .

Making ε = 1 we obtain

〈O〉 ≈ 〈O〉0 − [〈OSI〉0 − 〈O〉0〈SI〉0]

+
1

2

{[
〈OS2

I 〉0 − 〈O〉0〈S2
I 〉0

]
− 2〈SI〉0 [〈OSI〉0 − 〈O〉0〈SI〉0]

}
. (1.2.3)

This is the approximation for 〈O〉 up to the order ε2, that is, effectively up to the
order λ2. We will use it later on to calculate perturbative approximations for some
of the observables of the model.

Observe that it is not to be expected that this expansion may produce a con-
vergent series for the observables of the model. An alternative way to see this is
to observe that there cannot be a non-vanishing convergence radius for the series
of f(ε) around ε = 0 in the complex ε plane, because a non-vanishing convergence
disk around zero would include negative values of ε, which correspond to points in
the unstable region of the parameter plane of the model, where we know that it
does not exist. At most what we can hope to obtain are reasonable approximations
up to a certain order, which hopefully will be good enough to allow us to form
a correct qualitative idea about the behavior of the model. Note that the model
would be clearly more useful if it did not cease to exist when we exchange the sign
of the coupling constant. One is led to recall that this is the expected situation in
electrodynamics, in which we can have charges of either sign.

In order to complete the development of our perturbative ideas, we must now
return to the issue of the separation of the action S in parts S0 and SI . This sepa-
ration will depend on whether we want to perform calculations in one or the other
of the two phases of the model, the symmetrical phase or the broken-symmetrical
phase, whose existence and nature we discussed in section 1.1. In any case S0 must
satisfy the two essential conditions: it must be no more than quadratic on the fields
and it must be stable, which means that it must correspond to a well-behaved theory
of free fields, having therefore a lower bound.

The issue of stability must be examined carefully at this point. As we saw in
section 1.1, in any continuum limit that does not approach the Gaussian point the
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parameter α will become strictly negative. Therefore we cannot include the α term
in S0, because this quadratic action would become unbounded from below and the
corresponding measure well be ill-defined even on finite lattices. The alternative of
including only the derivative term in S0 and of simply including the α term in SI
is also not adequate, since the free massless theory that results from this has a zero
mode that could be absent from the complete model, leading to the possibility of
the appearance of spurious infrared divergences.

In order to avoid possible infrared problems we will introduce into the model a
new parameter α0 ≥ 0 associated to a quadratic term containing ϕ2, in such a way
that the model is not actually changed. Dealing first with the case in which we are
in the symmetrical phase, we will choose for S0 the action of the free theory as we
have studied it since the section in [10],

S0[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α0

2

∑

s

ϕ2(s).

The interaction part SI of the action will contain the remaining terms of the original
action and a term containing α0 with the opposite sign, so that the sum of S0 and
SI continues equal to the original action. It follows that in this symmetrical phase
we will have for SI

SI =
∑

s

[
α− α0

2
ϕ2(s) +

λ

4
ϕ4(s)

]
.

The parameter α0 is clearly irrelevant in the exact model and the final results should
be independent of it. We will see later on that this is indeed the case but, since α0

appears both in S0 and in SI , which will be treated in very different ways during the
development of the approximation technique, we will also see that there are some
subtleties relating to the role played by α0. Up to this point it seems that we are
free to keep the parameter α0 finite and non-zero in the N → ∞ limit, but it is not
very reasonable to do this because this procedure would correspond to a diverging
mass m0 for the distribution defined by S0 in the limit. Instead of that, we will
choose α0 = m2

0/N
2 and work with an m0 which is kept finite in the limit, rather

than diverging. What we are hinting at here is that perhaps it is possible to improve
the quality of the approximation by a suitable choice of the free parameter α0. If we
knew beforehand the value mR of the renormalized (physical) mass of the complete
model in the limit, we could even consider making m0 = mR. Although it is not
apparent at this moment that we should do this, or that we could do it, since we
do not yet know mR, we will see later on that this is, in fact, a natural and very
convenient choice.

In the broken-symmetrical phase we expect that the expectation value of the field
〈ϕ〉 will be different from zero and, in order to enable us to develop the perturbative
approximation is a simpler way, it is convenient to first rewrite the model in terms
of a shifted field ϕ′ given by

ϕ′ = ϕ− vR, ϕ = ϕ′ + vR, 〈ϕ′〉 = 0, 〈ϕ〉 = vR,
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where vR is the expectation value of the field which, in the absence of any external
sources breaking the discrete translation invariance of the lattice, as is our case here,
should be constant, having the same values at all the sites. Since vR is a constant
it follows that the derivative term of the action remains unchanged. The polyno-
mial terms which are quadratic and quartic on the fields, however, are transformed
according to the relations

ϕ2 = ϕ′2 + 2vRϕ
′ + v2

R,

ϕ4 = ϕ′4 + 4vRϕ
′3 + 6v2

Rϕ
′2 + 4v3

Rϕ
′ + v4

R.

We may neglect the constant terms, that do not depend on the field, since the
exponentials of these terms are constant factors that appear both in the numerator
and in the denominator of the ratio that defines the observables, thus cancelling off
and not affecting in any way the statistical distribution of the model. Doing this we
obtain for the complete action of the model

S =
∑

s

[
1

2

∑

µ

(∆µϕ
′)2 + vR

(
α + λv2

R

)
ϕ′ +

α + 3λv2
R

2
ϕ′2 + λvRϕ

′3 +
λ

4
ϕ′4

]
.

Since we know that α will always be strictly negative, we introduce now the param-
eter α0 ≥ 0 and separate the action into a free part

S0 =
1

2

∑

`

(∆`ϕ
′)2 +

α0

2

∑

s

ϕ′2(s) (1.2.4)

and an interaction part

SI =
∑

s

[
vR

(
α + λv2

R

)
ϕ′(s) +

α− α0 + 3λv2
R

2
ϕ′2(s)

+λvRϕ
′3(s) +

λ

4
ϕ′4(s)

]
. (1.2.5)

This is the form of the interaction term to be used in the broken-symmetrical phase
of the model. We have therefore a completely well-defined scheme for trying to
obtain approximations for the observables of the complete model in the vicinity of
the Gaussian point, both in the symmetrical phase and in the broken-symmetrical
phase. We must now perform in detail the calculation for some particular observables
of the model, always keeping in mind that this is a very singular approximation
scheme and that it may turn out that not everything will work as we might hope,
in order to verify what we may learn about the structure of the model by means of
the use of this technique.

Problems



26 THE POLYNOMIAL MODEL

1.2.1. (?) Determine whether the function f(ε) defined in equation (1.2.2) is or
is not analytical as a function of ε. In order to do this, first extend ε to
the complex plane, ε = x + ıy with real x and y, writing the function f ,
now complex, as f = u(x, y) + ıv(x, y). Verify then whether u(x, y) and
v(x, y) satisfy the two Cauchy-Riemann conditions: ∂xu(x, y) = ∂yv(x, y) and
∂yu(x, y) = −∂xv(x, y). Perform the verification both on finite lattices and in
the continuum limit.

1.2.2. (??) It is argued in the text that the problems with the perturbative expansion
originate from the fact that 〈SI〉0 diverges as Nd in the continuum limit. This
causes, for example, the denominator of equation (1.2.1), which defines the
observables, to behave in the limit as

〈
e−SI

〉
0
→ 0.

One could imagine that one way to try to get around this problem is to add to
the action a field-independent term ζ(α, λ,N), which corresponds to multiply-
ing both the numerator and the denominator of equation (1.2.1) by a number
Z(α, λ,N) = exp[ζ(α, λ,N)]. This corresponds to a renormalization of the
statistical averages that define the expectation values of the complete model
in terms of the expectation values of the free theory, leading to

〈O〉 =

∫
[dϕ]O[ϕ]e−S0eζ−SI

∫
[dϕ]e−S0eζ−SI

=

〈
O[ϕ]eζ−SI

〉
0〈

eζ−SI
〉
0

.

Naturally, this does not change the observables. However, we are now free
to choose ζ in any way we choose, and we may consider choosing it so that
the quantity ζ − SI acquires a small or even a vanishing average value, rather
than diverging as Nd in the limit. It is clear that in this case ζ will have to
be chosen so as to diverge in the limit and hence cancel the divergence of the
average value of SI . Observe however that in this way we can control only the
average value of the difference ζ − SI , we cannot control the fluctuations of
this quantity, because ζ cannot depend on the fields.

If we recall that, as was seen in the text, the large-N limit of equation (1.2.1)
is of the type 0/0, it is reasonable to think that a general criterion or renor-

malization condition for the choice of ζ would be

〈
eζ−SI

〉
0

= 1,

which causes the limit to cease to be of the type 0/0, but which is a very
complicated condition to implement. To first order, we may think that the
condition 〈ζ − SI〉0 = 0 should be sufficient, and it is a condition which is
much simpler to deal with. About this type of renormalization procedure we
have the following tasks to propose:
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(a) Show that this scheme would be sufficient to make the perturbative series
well-behaved, with finite terms in the continuum limit, so long as, besides
keeping at zero the average value of the quantity ζ−SI , we could also keep
the fluctuations of this quantity at some finite average sizes around zero.
Please note that we are not talking about the series being convergent,
but only about its individual terms not diverging in the limit.

(b) Show that it is not possible to satisfy this condition in this model. In
order to do this consider the calculation of 〈(ζ−SI)2〉0 under the condition
that ζ = 〈SI〉0, that is, calculate the quantity

〈S2
I 〉0 − 〈SI〉20

and show that it does not have a finite limit when N → ∞.

(c) Repeat the first-order calculations presented in the text, using these ideas
and the condition 〈ζ − SI〉0 = 0 in order to determine ζ , thus showing
that exactly the same results presented in the text are obtained in this
context.

1.2.3. Perform explicitly the expansion of f(ε) up to the order ε2 and derive the form
of the three terms that appear in equation (1.2.3).

1.3 Spontaneous Symmetry Breaking

Having developed in section 1.2 the ideas about the perturbative approximation for
the observables of the λϕ4 model, we will now discuss the calculation of some of the
observables of the model to first order in ε which, in the cases to be examined here,
is also known as the “one-loop” order2. The first thing that we will try to calculate
will be the position of the critical curve near the Gaussian point. In order to to this
we will examine the expectation value of the field,

vR = 〈ϕ〉,

which functions as an order parameter for the phase transition that exists in the
model. Of course, if we have in the model a non-vanishing external source j, then we
should expect that vR is also non-vanishing. The situation of spontaneous symmetry
breaking is that in which we have vR 6= 0 even when j = 0. Therefore, we will
consider here the case j = 0 and try to verify whether or not it is possible to obtain
solutions of the model with vR 6= 0 in the limit in which N → ∞. Observe that
only in this limit of large lattices one can expect to obtain a situation of phase
transition, with the existence of two distinct phases in the parameter plane of the
model, separated by a phase-transition curve.

2These calculations were developed in collaboration with Dr. André Cavalcanti Rocha Martins.
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In the symmetrical phase we necessarily have that vR = 0, while in the broken-
symmetrical phase we may have vR 6= 0. If the phase transition is of second order
with respect to this parameter, as it is to be expected, then the critical curve is
the geometrical locus in the parameter plane (α, λ) of the model where the solution
vR = 0 becomes the only possibility, when we move from the broken-symmetrical
phase to the symmetrical phase in the parameter plane. What we will do is to
determine the values of (α, λ) for which vR 6= 0 is a possibility and then impose that
vR = 0 be the only solution, so as to determine the critical curve. Along the process,
a trivial vR = 0 solution that exists in all the parameter plane will be factored out
and eliminated. In the broken-symmetrical phase this solution corresponds, to make
an analogy with the classical case, to the unstable solution in which the system is
at the local maximum of the potential at ϕ = 0.

In order to perform this calculation we must use the separation of the action
in the free and interaction parts given in equations (1.2.4) and (1.2.5), which are
those that should be used in the broken-symmetrical phase. First of all we write
the definition of vR, that is, that it is the expectation value of the original field
ϕ = ϕ′ + vR. Next we use the perturbative expansion given in equation (1.2.3)
in order to write the expectation values involved, limiting ourselves to the terms
of order zero and one. We choose arbitrarily the site of the lattice with integer
coordinates ~n = ~0 in order to do the calculation, a choice which is possible due to
the discrete translation invariance of the lattice. Doing all this we obtain

vR = 〈ϕ′ + vR〉0 − [〈(ϕ′ + vR)SI〉0 − 〈(ϕ′ + vR)〉0〈SI〉0] .

Since 〈ϕ′〉0 = 0 by construction, several terms vanish and we obtain, up to this
order, a very simple equation,

〈ϕ′SI〉0 = 0.

Is we write this in detail, substituting the expression for SI and then using all the
available symmetries in order to simplify the expression (problem 1.3.1), in particular
the fact that the expectation values of odd powers of the field are zero due to the
fact that S0 is symmetrical by reflection of the fields, we obtain

∑

s

[
vR

(
α + λv2

R

)
〈ϕ′(s)ϕ′(0)〉0 + λvR

〈
ϕ′3(s)ϕ′(0)

〉
0

]
= 0. (1.3.1)

This equation is simply the lattice version of the equation known as the “tadpole”

equation in one-loop order. Since all the terms contain at least one factor of vR, we
may now cancel out one factor of vR, which is the trivial vR = 0 solution which we
mentioned before, obtaining

(
α + λv2

R

)
〈
ϕ′(0)

∑

s

ϕ′(s)

〉

0

+ λ

〈
ϕ′(0)

∑

s

ϕ′3(s)

〉

0

= 0.

The calculation of the remaining expectation values involves only Gaussian integrals
and we obtain for the first term (problem 1.3.2)
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〈
ϕ′(0)

∑

s

ϕ′(s)

〉

0

=
1

α0

. (1.3.2)

For the other expectation value we obtain (problem 1.3.3)

〈
ϕ′(0)

∑

s

ϕ′3(s)

〉

0

=
3

Ndα0

∑

~k

1

ρ2(~k) + α0

. (1.3.3)

Observe how we avoided infrared problems in both cases, by the introduction of the
non-zero parameter α0. In these calculations all the strong divergences due to the
behavior of SI , which consist of terms proportional to Nd, cancel out. This fact
corresponds, in the usual language of the traditional approach to the theory directly
in the continuum, to the cancellation of the so-called “vacuum bubbles”, and is
a direct consequence of the fact that we are expanding a ratio of two functional
integrals. We have therefore for our tadpole equation

(α + λv2
R)

α0
+

3λ

Ndα0

∑

~k

1

ρ2(~k) + α0

= 0.

We recognize now that the sum over the momenta is our already well-known quantity
σ2

0, the square of the width of the local distribution of the fields in the measure of
S0. We obtain therefore, substituting in terms of σ2

0 and cancelling the factor of
1/α0,

λv2
R + α + 3λσ2

0 = 0. (1.3.4)

This equation gives us vR for small values of −α and λ in the broken-symmetrical
phase.

Let us consider here the issue of the dependence of this result on α0. Observe that
the result does not depend explicitly on α0, but it may depend on this parameter
through the squared width σ2

0. For finite N the width does indeed depend on α0

but, as was shows in the section in [11], in the continuum limit it does not depend
on this parameter, so long as we make it go to zero sufficiently fast. More precisely,
it suffices that we make α0 = m2

0L
2/N2, for some finite m0, for the limit to be

completely independent of the value of m0. The mass parameter m0 could even be
chosen to have the same value as the renormalized mass mR of the model, but there
is no need for this coming from this calculation, all we know up to now is that m0

must be finite. Note that the need to choose α0 dependent on N in a certain way
in order to make the results independent of m0 is already a first indication that
the perturbative expansion is not completely well-behaved, since there should be no
dependence at all on α0.

Going back to the analysis of the critical behavior of the model, if we impose
now that the only possible value for vR be zero, we obtain from equation (1.3.4), by
setting vR = 0 in it, the equation of the critical curve, to wit
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−αc = 3λcσ
2
0, (1.3.5)

where α > −3λσ2
0 corresponds to the symmetrical phase and α < −3λσ2

0 to the
broken-symmetrical phase. We see that this equation has the same form of the
heuristic estimate that we proposed in section 1.1, differing from it only by the
numerical factor

√
3 ∼ 1.73 involved in the evaluation of the relation between the

width σ0 of the local distribution and the parameter
√

−α/λ of the potential well.
In other words, the result coincides with our heuristic estimate if we choose for the
numerical constant C0 introduced in that section the value C0 =

√
3. We may now

write our perturbative result for vR in terms of the expression in the equation of the
critical line as

vR =

√
−(α + 3λσ2

0)

λ
, (1.3.6)

which is only real in the broken-symmetrical phase, as expected, and which shows
explicitly how vR goes to zero when one approaches the critical line from the broken-
symmetrical phase.

At this point it is important to point out, quite emphatically, that we have just
found one more worrisome property of the perturbative approximation technique.
We have found here a definite result for the position of the critical curve for the
model in a box with periodical boundary conditions, for any value of N , either finite
or not. In addition to this, this position of the critical curve has the curious property
of depending weakly on the irrelevant parameter α0 if N is finite, and of becoming
independent of the same parameter if N → ∞. Taken in this superficial way, our
result seems to indicate that, given a value of α0, the system displays a completely
well-defined phase transition on finite lattices with periodical boundary conditions.

However, it is a well-known fact that there is no possibility of existence of a phase
transition on finite lattices with periodical boundary conditions in systems of the
type that we are examining here. In this kind of system, with couplings only between
next-neighbors and without external borders, the phase transition can be realized
only in the N → ∞ limit. We can only presume that the curious dependence on
α0 for finite N is somehow related to this fact, effectively indicating, at best, that
there can be a kind of “approximate critical behavior” for finite N . This is one
more circumstance in which we verify that this method of approximation has rather
singular properties and that it should only be used with the greatest care.

A particularly interesting aspect of the structure of the model that we can obtain
from equation (1.3.5) is the slope ∂λc/∂αc of the critical curve near the Gaussian
point, which is given by

∂λc
∂αc

= − 1

3σ2
0

. (1.3.7)

We may ask here how close to the truth this result can be. Note that it depends
neither on α nor on λ, and let us recall that the dependence on α0 vanishes in the
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d tan(θ) θ (degrees)
3 ' 1.3189 ' 52.83
4 ' 2.1515 ' 65.07
5 ' 2.8828 ' 70.87

Table 1.3.1: Table of the slopes of the critical curves at the Gaussian point.

continuum limit. Hence, if the perturbative technique establishes at least a first-
order approximation for the result of the complete model, then this result should be
exact at the Gaussian point (problem 1.3.4). We will see later on that it is consis-
tent with the results obtained by means of mean-field techniques and of stochastic
simulations. In the case of the stochastic simulations realized so far, it has been
verified that it is particularly difficult to execute them close to the Gaussian point,
due to the fact that in that region the potential wells of the model become very
shallow, which makes it more difficult to control the statistical errors. Therefore, up
to now it has not been possible to do more than to confirm qualitatively this result
with the stochastic simulations.

Using the asymptotic values of σ2
0(N) in the dimensions d = 3 to d = 5, presented

in the section in [11], we obtain the results shown in table 1.3.1 for the slope, where
θ is the smaller angle that the tangent line to the critical curve at the Gaussian
point makes with the negative α semi-axis. It is interesting to observe that in the
cases d = 1 and d = 2, since σ0(N) diverges, the slopes go to zero in the limit and
the critical curve collapse onto the negative α semi-axis, where the model does not
exist because this semi-axis is part of the unstable region. One might consider the
interpretation that this is the perturbative way of verifying that the λϕ4 model does
not really exist as a quantum field theory for d < 3.

Our next objective is to calculate the propagator of the model, which we will do
first in the symmetrical phase. We will denote the dimensionless two-point function
of the complete model by

g(~n1, ~n2) = 〈ϕ(~n1)ϕ(~n2)〉.

To order zero we simply have that g(~n1, ~n2) = g0(~n1, ~n2), where

g0(~n1, ~n2) = 〈ϕ(~n1)ϕ(~n2)〉0,

so that in this order we have the results of the free theory, αR = α and a simple
pole with its residue equal to one (apart from the normalization factor of 1/Nd) in

the region of imaginary momenta ρ2(~k) = −αR. Note that this first-order result
is not sufficient to allow us to take the continuum limit, because we know that α
must become negative in the limit, while αR cannot be negative. In the next-order
approximation, using equation (1.2.3) up to first order, we will have a result that
we shall denote by g1(~n1, ~n2), with

〈ϕ(~n1)ϕ(~n2)〉 ≈ g1(~n1, ~n2),
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and where

g1(~n1, ~n2) = g0(~n1, ~n2) − [〈ϕ(~n1)ϕ(~n2)SI〉0 − g0(~n1, ~n2)〈SI〉0] .

The expectation values that appear here are the zero-order propagator, as we cal-
culated it before in the theory of the free field,

g0(~n1, ~n2) =
1

Nd

∑

~k

eı
2π
N
~k·(~n1−~n2) 1

ρ2(~k) + α0

,

and the expectation values containing SI . The first one of these can be easily
calculated (problem 1.3.5) in terms of expectation values that we have discussed
and calculated before in the sections in [12] and [11], yielding

〈SI〉0 =
1

2

(
α− α0 +

3

2
λσ2

0

)
σ2

0N
d. (1.3.8)

Observe that all the terms diverge strongly in the continuum limit, containing factors
of Nd. The calculation of the last expectation value (problem 1.3.6) is longer and,
after some work, we may write it in the form

〈ϕ(~n1)ϕ(~n2)SI〉0 =
1

2

(
α− α0 +

3

2
λσ2

0

)
σ2

0N
d g0(~n1, ~n2)

+(α− α0 + 3λσ2
0)

∑

~n

g0(~n1, ~n) g0(~n, ~n2). (1.3.9)

At this point we have everything written in terms of the propagator of the free
theory. Observe that here also we have terms with strong divergences, involving
factors of Nd. The sums over position space may be rewritten in momentum space
and manipulated in such a way that, when all the terms are brought together, one
verifies that all the terms with strong divergences cancel out, resulting in the final
expression for the first-order propagator in position space,

g1(~n1, ~n2) =
1

Nd

∑

~k

eı
2π
N
~k·(~n1−~n2)

{
1

ρ2(~k) + α0

− α− α0 + 3λσ2
0

[ρ2(~k) + α0]2

}
.

The expression within braces is the form of the propagator in momentum space.
Observe that this time the result depends significantly on α0. On the other hand,
we may use our freedom in principle, of choosing α0 in any way we wish within
the stability bounds, in order to simplify this expression, by eliminating the second
term, which contains a double pole. In order to do this is suffices to choose

α0 = α + 3λσ2
0.

We may do this only so long as the resulting α0 remains positive and so long as it
goes to zero in the continuum limit. Examining the expression in the right-hand side



SPONTANEOUS SYMMETRY BREAKING 33

of this equation we recognize it as the expression in the equation of the critical curve
that we calculated before, which shows that it does in fact go to zero in the N → ∞
limit, so long as we take the limit in such a way that the parameters of the theory
approach the critical curve. We therefore have here some perturbative evidence that
the phase transition of the model is indeed of second order and we see once more why
it is necessary to take the system to the critical situation in the continuum limit. In
addition to this, as we already discussed before in this section, the expression in the
right-hand side of the equation is positive in the symmetrical phase, showing that
α0 will be approaching zero by positive values and thus establishing the consistency
of this choice for α0. Observe that, with this choice for α0, we may write the result
for the propagator as

g1(~n1, ~n2) =
1

Nd

∑

~k

eı
2π
N
~k·(~n1−~n2) 1

ρ2(~k) + αR
, (1.3.10)

that is, we get a propagator with form identical to that of the propagator of the
free theory, with a renormalized mass mR, where we see that αR = α0 and the
renormalized mass is given by

m2
R = lim

N→∞
N2αR/L

2.

Formally, we may try to understand the expression αR = α + 3λσ2
0 for the

renormalized mass parameter αR as the sum of a zero-order term α and a first-order
term proportional to λ. However, in truth this is misleading, because we must recall
that the parameter α is in fact negative in any continuum limit and hence that the
first-order term cannot be considered as a small correction to the situation in the
theory of the free field, in which α must be positive. We see that, in spite of the fact
that we have developed this approximation technique in the lines of an expansion in
a perturbative series, the resulting object has a character rather different from the
expected.

We will see later on that the results of this process of approximation for the
renormalized mass agree surprisingly well with the results of the stochastic simula-
tions. In particular, note that the result indicates a unit residue for the pole of the
propagator, exactly as in the free theory, αR being the only non-trivial parameter
that appears. This unit residue is also found in all the stochastic simulations, within
the statistical errors. Judging by the form of the propagator, one would say that
the spectrum of the theory seems to be that of free particles with mass mR. One
might consider interpreting this as an indirect perturbative indication related to the
underlying triviality of the model. At least, the result for the residue is compatible
with it.

It is interesting to try to understand in clearer physical terms the nature of the
approximation technique that we have developed. The crucial point for the success
of the technique is the choice of α0, which ends up being equivalent to a preliminary
implicit choice α0 = αR, to be resolved after the end of the calculation, a possi-
bility that was suggested in section 1.2. From the very beginning we are trying to



34 THE POLYNOMIAL MODEL

approximate the expectation values of the complete model by expectation values of
a Gaussian model, which is characterized by only two independent quantities, the
expectation value of the field vR, which is related to the first-order moment (observ-
ables with a single power of the field) of the statistical distribution of the model, and
the renormalized mass m0, which is related to the second-order moment (observables
with two powers of the field). In the case in which there is a non-vanishing vR in
the complete model, the shift from the field ϕ to the field ϕ′ can be understood as a
way to make identical the first-order moments of the two distributions, that of the
complete model and that of the Gaussian model used for the approximation. In a
similar way, the choice α0 = αR can be understood as a way to make identical the
second-order moments of the two distributions. Both are implicit conditions which
are resolved in a self-consistent way at the end of the calculations.

We see therefore that what we are dealing with here is, much more than part of
a perturbative expansion, a Gaussian approximation technique, which is not at all
an expansion, but rather a single-step self-consistent type of approximation. Since
the Gaussian does not have any moments with order greater than two, we cannot
expect that this technique can be successfully used to approximate observables that
are related to the higher moments of the distribution of the complete model. In
particular, we should not expect that it will be useful to examine the issue of the
renormalized coupling constant and the phenomenon of the interaction between par-
ticles within the structure of the quantum theory, which are related to the moments
of order four and larger. In addition to this, we should not expect that it will be
possible to improve on the results obtained here by the inclusion in the calculations
of the terms of higher order of the expansion given in equation (1.2.3) since, when
we adjust the only two independent moments existing in the Gaussian distribution
so as to make them identical to the corresponding moments of the distribution of
the complete model, we are already doing the best that can be done in terms of
approximate a non-Gaussian distribution by a Gaussian distribution.

As our last objective in this section, we calculate the propagator of the model
in the broken-symmetrical phase. The calculations are all very similar to the corre-
sponding calculations in the symmetrical phase, except for the need of the use in this
case of the shifted field ϕ′. In particular, in this case the same type of cancellation of
all the terms with strong divergences takes place. After some work (problem 1.3.7)
we obtain in this phase for the first-order propagator, which we denote by g′1(~n1, ~n2),
with

〈ϕ′(~n1)ϕ
′(~n2)〉 ≈ g′1(~n1, ~n2),

the result

g′1(~n1, ~n2) =
1

Nd

∑

~k

eı
2π
N
~k·(~n1−~n2) 1

ρ2(~k) + αR
,

where the renormalized mass is now defined in terms of the dimensionless parameter

αR = −2
(
α + 3λσ2

0

)
, (1.3.11)
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which is a positive quantity in this phase. Once again the expression in the equation
of the critical curve appears, showing once more that αR will go to zero when we
approach this curve in the continuum limit, this time by the other side, from the
broken-symmetrical phase. The factor of 2 that appears in this result confirms once
more our heuristic expectations and, as we will see later on, it also matches with
surprising precision the numerical results in this phase.

Observe that, since σ2
0 is a function of αR, both this result and the result for

the symmetrical phase are not explicit solutions for αR but rather equations that
determine αR in an implicit way,

αR − α− 3λσ2
0(αR) = 0

in the symmetrical phase and

αR + 2α+ 6λσ2
0(αR) = 0

in the broken-symmetrical phase, where

σ2
0(αR) =

1

Nd

∑

~k

1

ρ2(~k) + αR
.

It is not difficult to determine the existence, the number and the character of the
solutions of these equations, if one separates from the sum in σ2

0 the term containing
the zero mode, and to find these solutions on finite lattices by numerical means
(problems 1.3.8, 1.3.9, 1.3.10 and 1.3.11). We show in figure 1.3.1 a graph with some
of the numerical solutions, illustrating their behavior for lattices of increasing size.
In this graph, instead of the usual Cartesian coordinates α and λ in the parameter
plane of the model, we use polar coordinates centered at the Gaussian point, with
the radius r given by

√
α2 + λ2, and the angle θ defined as the angle between the

radius vector (α, λ) and the negative α semi-axis.
The equation for the symmetrical phase has two solutions, but only one of them is

positive and hence physically meaningful. While the positive solution remains finite
and non-vanishing in the N → ∞ limit, the negative solution becomes identically
zero in the limit. Note that this equation has solutions over the whole parameter
plane and not only in the symmetrical phase. The curves corresponding to this
solution are the ones with their maximums at the right in figure 1.3.1. Of course
this solution only has meaning in the symmetrical phase, but since this is not a well-
defined concept on finite lattices, in order to determine the range of validity of the
solution on finite lattices, from the point of view of perturbation theory, we must first
discuss the solutions in the broken-symmetrical phase. The equation for the broken-
symmetrical phase has two positive solutions, a small one and a large one, but only
for certain values of parameters, thus defining a perturbative broken-symmetrical
phase even on finite lattices. In the complementary region of the parameter plane,
which we might call the perturbative symmetrical phase, the equation has no real
solutions. On each finite lattice the position of the curve separating these two regions
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Figure 1.3.1: Perturbative results for the renormalized mas parameter αR. The
curves on the left part are in the broken-symmetrical phase. In this graph α and λ
are represented by the equivalent parameters r and θ, which are defined in the text.
The values of the angle θ are given in degrees.

can be determined numerically, and we might call this curve the perturbative critical
curve. The small solution becomes identically zero in the N → ∞ limit, showing
that we should not attribute to it any physical meaning. Once more this seems to be
just a perturbative ghost associated to an unstable solution sitting at the maximum
that the potential has at the origin. The curves corresponding to the large solution
are the ones with their maximums at the left in figure 1.3.1.

One can see that it is the large positive solutions in either phase that carry
the expected physical meaning by noting that for θ equal to 180o we are over the
positive α semi-axis and therefore have the result for the free theory, αR = α, since
in this case α = r = 0.1. For θ close to 0o we approach the negative α semi-axis
where, as we discussed before, the two potential wells acquire a large separation
from each other and the local distribution of the fields sits at the minimum of one
of them. As we saw before, the minimum of the potential can then be approximated
by a parabola with a positive quadratic coefficient −2α, and the model once more
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approaches the free theory on finite lattices, with this new value for the dimensionless
mass parameter. As one can see in figure 1.3.1 in this case the large solution does
indeed approach αR = −2α as expected, where −2α = 2r = 0.2. Just as in the
case θ = 180o the solution seems to be exact in this case, because for θ approaching
0o we have a vanishing λ and the distribution tends to become purely Gaussian, so
that the Gaussian approximation tends to become a perfect one. It is therefore to
the two large solutions that we should attribute physical meaning, using the broken-
symmetrical solution where it exists and using the symmetrical solution where the
broken-symmetrical solution does not exist, and therefore truncating in this way the
symmetrical solution. Note that there is a discontinuity between the two solutions
at the transition point, but this discontinuity vanishes in the N → ∞ limit. In this
limit the edges of the two curves approach the value αR = 0 at the critical line.

In the N → ∞ limit σ2
0 becomes independent of αR, the critical transition

becomes completely well-defined and the relations between αR and the parameters
(α, λ) become linear, in either phase. If we define σ2

∞ = σ2
0(N → ∞), then we have

in the symmetrical phase

αR = α + 3σ2
∞λ,

and in the broken-symmetrical phase

αR = −2α− 6σ2
∞λ,

which are equations of planes over the (α, λ) parameter plane. The three-dimensional
graph of αR(α, λ) over the parameter plane is composed of pieces of two planes that
intersect within the (α, λ) plane at the critical line. The first one is a piece of the
plane defined by the critical line and the line αR = α within the vertical (α, αR)
plane, the second one is a piece of the plane defined by the critical line and the line
αR = −2α in that same vertical (α, αR) plane. The relevant part of the first plane
is the part that stands over the symmetrical phase, the relevant part of the second
plane is the part that stands over the broken-symmetrical phase.

Note that both on finite lattices and in the N → ∞ limit the perturbative
solution for the expectation value vR of the field is proportional to the value of the
renormalized mass in the broken-symmetrical phase, that is, we have

v2
R =

αR
2λ
.

Due to the extra dependence on λ, we can have independent values of the two
dimensionless renormalized quantities, vR and αR. Whether or not the same is true
for the corresponding dimensionfull quantities VR and mR depends on the dimension
d of space-time, because the dimensions of the field and therefore of VR depend on
it (problem 1.3.12).

The final conclusion of this effort is that the perturbative technique of Gaussian
approximation allows us to calculate in a useful way the observables related to the
aspects of propagation of particles and to the aspects of spontaneous symmetry
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breaking in the quantum theory of the λϕ4 model. As we shall see later on, these
results are surprisingly precise in some cases and, by and large, give us a qualitatively
correct picture of the critical behavior of the model. On the other hand, it is doubtful
that the technique can be extended in an effective way to other observables and
aspects of the model. As far as one can verify up to this point, the model seems to
contain particles of mass mR, which we may adjust freely, in addition to being able
to generate a non-vanishing expectation value vR = 〈ϕ〉 for the dimensionless field.
In the continuum limit vR vanishes, since we must approach the critical curve where
the phase transition is of second order, with vR = 0 over the curve, but it is possible
to adjust things so that the dimensionfull field has a non-vanishing expectation value
VR = 〈ϕ〉 in the limit (problem 1.3.12). Hence, up to this point the model seems to
contain only the phenomena of propagation and of spontaneous symmetry breaking.
Whether or not it contains anything beyond this is an issue for further exploration
and discussion (problems 1.3.13 and 1.3.14).

Problems

1.3.1. Write the expectation value 〈ϕ′SI〉0 in detail and derive equation (1.3.1).

1.3.2. Calculate in detail the expectation value shown in equation (1.3.2).

1.3.3. Calculate in detail the expectation value shown in equation (1.3.3).

1.3.4. Show that the result expressed by equation (1.3.5) implies that the result in
equation (1.3.7) for the slope of the critical curve at the origin is in fact exact.
In order to show this, take the limits involved with due care: take first the
limit N → ∞ under the condition α0 = m2

0/N
2 for finite m0, and then take

the limit in which αc → 0 and λc → 0 along the critical curve, and in which
the ratio λc/αc is kept finite and non-zero. Obtain the final result in the form

tan(θ) = lim
N→∞

1

3σ2
0(α0)

,

where θ is the angle between the negative α semi-axis and the tangent to the
critical curve at the Gaussian point.

1.3.5. Calculate in detail the expectation value shown in equation (1.3.8).

1.3.6. (?) Calculate in detail the expectation value shown in equation (1.3.9).

1.3.7. (?) Calculate in detail the propagator in the broken-symmetrical phase, arriv-
ing at the result shown in equation (1.3.11).

1.3.8. Show that the perturbative equation which determines the renormalized mass
parameter αR in the symmetrical phase, as a function of α and λ,
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αR − α− 3λσ2
0(αR) = 0,

were we recall that

σ2
0(αR) =

1

Nd

∑

~k

1

ρ2(~k) + αR
,

has a single positive solution for each pair of values (α, λ) in the stable region
of the parameter plane of the model. In order to do this, remember that the
parameter αR has to be positive or zero and consider the behavior of the left
side of the equation when αR → 0 and when αR → ∞. Remember that the
sum that defines the quantity σ2

0 includes the zero mode and write it as

σ2
0 = σ′2

0 +
1

NdαR
,

where σ′2
0 has a finite limit for αR → 0. Show also that there is a second

solution, which is negative (and hence destitute of any physical meaning) and
which becomes identically zero in the N → ∞ limit.

1.3.9. (?) For given α, λ and N , write a program to solve numerically the equation

αR = α+ 3λσ2
0(αR)

for αR(α, λ).

1.3.10. Show that the perturbative equation which determines the renormalized mass
parameter αR in the broken-symmetrical phase, as a function of α and λ,

αR + 2α + 6λσ2
0(αR) = 0,

has two different real and positive solutions for some pairs of values (α, λ) in
the stable region of the parameter plane of the model, and no real solutions for
other pairs of values. Use the same ideas and techniques that were suggested
in problem 1.3.8. Show that the condition on α and λ for the existence of
solutions can be written in an implicit way, which depends on αR on finite
lattices, as

(α + 3λσ′2
0 )2 ≥ 6λ

Nd
,

and interpret the meaning of this condition on the continuum limit. Show
that when the equality holds in the condition above the renormalized mass
parameter is given by αR =

√
6λ/Nd, and hence that it goes to zero at the

critical curve in the continuum limit. Show also that the smaller of the two
solutions becomes identically zero in the N → ∞ limit.
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1.3.11. (?) For given α, λ and N , write a program to solve numerically the equation

αR = −2[α + 3λσ2
0(αR)]

for αR(α, λ).

1.3.12. Verify, in dimensions from d = 3 to d = 5, whether or not there are any
continuum limits in which VR = 〈ϕ〉 is finite. If there are, identify them and
verify what values the renormalized mass mR can have in such limits. In
particular, consider limits in which it is required that both VR and mR remain
finite. Show that in d = 3 this requirement forces us to go to the Gaussian
point in the limit, that in d = 4 we can satisfy it at any point along the critical
line, and that in d = 5 it forces us to make λ tend to infinity, a limit which is
also known as the sigma-model limit.

1.3.13. (?) Calculate, using the first-order perturbative approximation scheme pre-
sented in the text, and making the choice α0 = αR, in each one of the two
phases of the model, the quantity σ4 given by σ4

4 = 〈ϕ4〉 in the symmetrical
phase and by σ4

4 = 〈ϕ′4〉 in the broken-symmetrical phase. Show that, in either
case, one obtains

σ4
4 ' 3σ4

0 − 6λS4,

where the sum S4 is given in terms of the free propagator by

S4 =
∑

~n

g4
0(~0, ~n).

1.3.14. (?) Evaluate, in each one of the dimensions d = 3 to d = 5, the behavior of
the sum S4 that appears in problem 1.3.13, using approximations by integrals
or numerical methods. Determine the conditions under which S4 goes to zero
in the continuum limit, which causes the factorization rule σ4

4 = 3(σ2
0)

2 to
hold, just as is the case of the free theory. Observe that this implies that,
to first order, 〈SI〉 = 〈SI〉0 in the continuum limit, thus showing that the
exchange of the complete distribution by the Gaussian distribution does not
affect appreciably the singular character of the action. Observe also that this
factorization shows that the local distribution of values of the field at a site
tends to become Gaussian in the continuum limit, that is, the model becomes
progressively more similar to the free theory.

1.3.15. Analyze the behavior in the continuum limit of the equations that determine
αR in the two phases of the model, discussed in problems 1.3.8 and 1.3.10,
verifying that both lead to the same critical curve.
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1.3.16. Show, using the first-order perturbative results obtained in the text, that in
the complete model the observable σ1 given by σ2

1 = 〈ϕ2〉 in the symmetrical
phase and by σ2

1 = 〈ϕ′2〉 in the broken-symmetrical phase, is equal, in either
case, to the observable σ2

0 of the free theory. Observe that this shows that the
field fluctuates in a similar way in either model, undergoing fluctuations with
the same typical size.

1.3.17. Show that it is possible to take continuum limits to the Gaussian point over
the positive λ semi-axis, that is, keeping α = 0 constant during the limit.
Determine how to take this type of limit so that the renormalized mass is finite
and non-zero, that is, discover how λ(N) must be so that mR has a finite and
non-zero limit. This type of limit, which produces a non-zero renormalized
mass without involving any parameters with dimensions of mass from the
corresponding classical theory, is related to what has been conventionally called
the phenomenon of “dimensional transmutation”.
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Chapter 2

The Sigma-Model Limit

In this chapter we will discuss the infinite-coupling limit of the polynomial models,
which is, in a way, the antithesis of the perturbative approach. We will see that in
the λ → ∞ limit there is an exact representation of the polynomial models, which
is another class of non-linear models of scalar fields, known as the sigma models.
As we will see in the simple case we will deal with here, in this limit the quantum
λϕ4 models can be identified with a simple example of these sigma models. In the
one-component models that we are examining here these sigma models reduce to the
well-known Ising models. Note that we are dealing here with an equivalence between
the quantum versions of the models, not between the corresponding classical field
theories, which are quite different from one another.

2.1 Derivation of the Ising Model

In this section we will take the λ → ∞ limit of the λϕ4 model. This can be done
for more general models than the one-component λϕ4 model we are examining here,
namely the multi-component λϕ4 models which are invariant by the SO(N) groups
of transformations. In general the λ → ∞ limit of these models will take us to the
corresponding SO(N)-invariant sigma models. In our case here, however, we will
deal only with the one-component λϕ4, which is invariant by the sign reflections.
The simple discrete set of transformations given by the identity and the reflection
also forms a group of transformations, a discrete group which is known by either O(1)
or Z2. In this case the corresponding sigma model is simply the Ising model which
was mentioned in [13]. In this way we will establish that we can use the Ising model
as a direct representation of the infinite-coupling limit of the O(1)-symmetrical λϕ4

model.
The Ising model can be obtained from the λϕ4 polynomial model in the limit

in which the coupling parameter λ tends to positive infinity over negative-slope
straight lines in the parameter plane of the λϕ4 model. These lines must exist
only for λ > 0, because otherwise they would cross the region where the model is
unstable. Also, their slopes must be strictly negative (not zero) and finite, which
rules out horizontal and vertical lines in the parameter plane. Since the slopes must

43
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Figure 2.1.1: Limits leading from the polynomial models to the sigma models by
means of negative-slope straight lines departing from the Gaussian point. Note that
lines parallel to the α and λ coordinate axes are excluded.

be strictly negative and finite, in these limits we will have α → −∞ and λ→ ∞ in
such a way that −α/λ is a positive constant. Figure 2.1.1 illustrates the situation
for lines starting from the Gaussian point. Observe that in these limits only the
slope of the lines really matters. It makes no difference whether we use λ = −C1α
or λ = −C1α + C2 for some finite constant C2, because the finite additional term
becomes irrelevant in the limit. In fact, we may take the limit over any curve that
approaches asymptotically a negative-slope straight line. An important example of
this is the critical curve of the λϕ4 model, which in the λ→ ∞ limit approaches the
critical point of the corresponding Ising model.

In order to establish this connection between the two models we start by recalling
that the action of the λϕ4 model without external sources, as it was defined in
section 1.1, is given by

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s).

As we already discussed in section 1.1, we may now separate the action of the model
in two parts, a kinetic part SK containing only the derivative terms,

SK [ϕ] =
1

2

∑

`

(∆`ϕ)2,

and a potential part SV containing the polynomial terms,

SV [ϕ] =
∑

s

V (ϕ), where V (ϕ) =
α

2
ϕ2 +

λ

4
ϕ4.
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The functional integrals that appear in the definition of the observables of the quan-
tum theory may now be written as

∫
[dϕ] e−S[ϕ] =

∫
[dϕ] e−SV [ϕ] e−SK [ϕ],

so that, including the exponential of SV in the measure of the distribution of the
model, we may write this distribution as

[dϕ] e−S[ϕ] =
[
dϕ e−V (ϕ)

]
e−SK [ϕ].

Since we may multiply this quantity by any constant independent of the fields with-
out changing the observables, we may write the measure as

[dϕ %(α, λ, ϕ)],

where %(α, λ, ϕ) is the local part of the distribution, which we thus include in the
measure, normalized as

%(α, λ, ϕ) =
e−V (ϕ)

∫ ∞

0

dϕ e−V (ϕ)

. (2.1.1)

Observe that the integration runs only over the positive values of ϕ and hence can
be interpreted as an integration over the absolute value of the field. With this the
following normalization condition for % holds,

∫ ∞

0

dϕ %(α, λ, ϕ) = 1.

The integration over the absolute value of the field, when generalized to the more
complex models having SO(N) symmetry, corresponds to the separation of the inte-
gration variables into a radial part and an angular part. In this way the arguments
being presented here can be easily generalized to that case. In general the radial
variable will be the modulus of the N-dimensional field vector in the internal sym-
metry space, which in our case here reduces to the absolute value of ϕ. Also, in our
discrete O(1)-symmetrical case the integral over the angular part reduces to a sum
over only two points, corresponding to rotations by each one of the two angles 0 and
π, and hence to the two possible signs, cos(0) = 1 and cos(π) = −1. Therefore, in
our present case the integral over all the values of ϕ at each site is being decomposed
in this way into an integral over the positive values of ϕ and a sum over the two
possible signs. Since both %(α, λ, ϕ) and V (ϕ) are even functions of ϕ, they are in
fact functions only of the absolute value of ϕ, and independent of its sign, so it is
not necessary to make their dependence on the absolute value explicit. Given all
this, we may write the functional integrals as

∫
[dϕ %(α, λ, ϕ)] e−SK [ϕ] =

∑
[ψ = ±1]

∫
[d|ϕ| %(α, λ, ϕ)] e−SK [ψϕ],
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where
∑

[ψ = ±1] represents the sum over all the possibilities for combinations
of the sign of the field at each site, over all sites. Writing this functional integral
explicitly this once, for clarity, we have

∫
[dϕ %(α, λ, ϕ)] e−SK [ϕ] =

∏

s





∑

ψ(s)=±1

∫ ∞

0

dϕ(s) %[α, λ, ϕ(s)]



 e−SK [ψϕ],

where ψ(s) is a new variable holding the sign of the field at the site s, while ϕ
assumes only positive values, due to the limits of integration adopted.

Let us now examine the behavior of %(α, λ, ϕ) when λ → ∞ and α = −βλ, for
some positive β. Note that, since lines making angles 0 and π/2 with the α coordi-
nate axis are excluded, so are the corresponding values β = ∞ and β = 0. Executing
the calculation of the integral in the denominator we obtain (problem 2.1.1), in terms
of the parabolic cylinder functions Dν ,

∫ ∞

0

dϕ e−V (ϕ) =

√
π

2

(
λ

2

)− 1

4

e
α2

8λ D− 1

2

(
α√
2λ

)
. (2.1.2)

Using the asymptotic form of D− 1

2
(problem 2.1.2) and substituting α in terms of

λ, we may write the distribution %(λ, ϕ) = %(α = −βλ, λ, ϕ), for large values of λ,
as

%(λ, ϕ) '
√
βλ

π
e−

λ
4
(ϕ2−β)2 . (2.1.3)

We see here that indeed we cannot have either β = 0 or β = ∞, because in either
case % would vanish identically and hence would cease to be a normalizable statistical
distribution. Given a finite and non-zero value of β we also see that, when λ→ ∞,
% tends to zero for all ϕ except for ϕ =

√
β, where it diverges as

√
λ. Hence, given

a continuous and limited function f(ϕ) and considering the normalization of %, one
can verify that, in the λ→ ∞ limit (problem 2.1.3),

∫ ∞

0

dϕ f(ϕ) %(λ, ϕ) = f
(√

β
)∫ ∞

0

dϕ %(λ, ϕ) = f
(√

β
)
. (2.1.4)

In other words, the distribution %(λ, ϕ) tends to a Dirac delta function,

lim
λ→∞

%(λ, ϕ) = δ
(
ϕ−

√
β

)
= 2

√
β δ(ϕ2 − β).

The conclusion is that in this limit the expectation values of the polynomial model
may be written as

〈O〉N =

∑
[ψ = ±1]

∫
[d|ϕ| δ(ϕ2 − β)] O[ψϕ] e−SK [ψϕ]

∑
[ψ = ±1]

∫
[d|ϕ| δ(ϕ2 − β)] e−SK [ψϕ]

,
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where the remaining part of the measure can be written explicitly as

[d|ϕ| δ(ϕ2 − β)] =
∏

s

d|ϕ(s)| δ[ϕ2(s) − β],

where the Dirac delta functions imply a condition of constraint on the fields, ϕ2 = β,
or ϕ =

√
β, since the sign of ϕ is being considered explicitly and hence ϕ is positive.

We may now use the Dirac delta functions to perform all the integrations over |ϕ|,
thus obtaining for the expectation values

〈O〉N =

∑
[ψ = ±1] O[

√
βψ] e−SK [

√
βψ]

∑
[ψ = ±1] e−SK [

√
βψ]

.

We may now examine the form of the action SK under these conditions, in order to
simplify it and exhibit it in a more familiar form. In terms of the new variables ψ
and the parameter β this action can be written as

SK [ψ] =
β

2

∑

`

(∆`ψ)2,

where the new field variables ψ = ϕ/
√
β satisfy the constraint ψ2 = 1, since they

are just signs, and the parameter β appears now multiplying the action, just like
the parameter β = 1/(kT ) of statistical mechanics. Although we may want to think
of β as the inverse of a fictitious temperature, in order to guide our intuition about
the behavior of the models, we should remember that our β is, in truth, related to
the mass parameter α and the coupling constant λ, and not to any truly physical
temperature related to the dynamical system we are studying. The phenomenon
that something relating to a coupling constant appears multiplying the action due
to a scaling redefinition of the fields is typical of the gauge theories, as we may see
in future volumes.

Note that, although SK [ψ] is a purely quadratic functional of ψ, the model is not

the free theory, due to the fact that the field ψ satisfies an equation of constraint, and
is not, therefore, a free real variable. This is a situation in which the non-linearities,
instead of being introduced by a term in the action, are introduced instead by the
measure of the functional integral, which is where the constraint is implemented in
the quantum theory. We may now perform one more transformation of the action of
the model, with the intention of showing in a clearer way its relation with the Ising
model of statistical mechanics. If we expand the squares of the derivatives contained
in the action, we get

(∆`ψ)2 = ψ2(`−) − 2ψ(`−)ψ(`+) + ψ2(`+),

where ψ(`−) and ψ(`+) are the fields at the two ends of the link `. Using now the
equation of constraint ψ2 = 1 we see that the two terms containing the squares are
constant, independent of the fields, which means that they can be neglected in the
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action without changing the observables. We are left, therefore, with the bilinear
term, and we write the action as (problem 2.1.4)

SK [ψ] = −β
∑

`

ψ(`−)ψ(`+). (2.1.5)

We have here an interaction between next neighbors involving the product of unit
spins, exactly like in the Ising model. Hence we see that the infinite coupling limit
of the O(1) polynomial model is indeed the Ising model. Therefore, the expectation
values of the polynomial model can be written as expectation values in this model,
by means of a simple rescaling of the variable appearing within the observable,

〈O[ϕ]〉N =

∑
[ψ = ±1] O[

√
βψ] eβ

∑
` ψ(`−)ψ(`+)

∑
[ψ = ±1] eβ

∑
` ψ(`−)ψ(`+)

.

Observe that, once the λ → ∞ limit is taken in the way explained here, this rela-
tionship between the two classes of models is exact and involves no approximations
of any kind.

It is important to discuss here the situation regarding the introduction of external
sources into the model in this limit. The Ising model inherits from the polynomial
model the introduction of external sources by means of a linear term in the action,

−
∑

s

j(s)ϕ(s) = −
√
β

∑

s

j(s)ψ(s).

It follows therefore that, apart from a rescaling of the sources by
√
β, the introduc-

tion of external sources is to be done in the usual way. In order to write this term in
the form which is customary in statistical mechanics, we define the external sources
η(s) for the Ising model as j(s) =

√
βη(s), so that the external-source term of the

action acquires the form

−
∑

s

j(s)ϕ(s) = −β
∑

s

η(s)ψ(s).

At first sight it might seem natural to include the source term of the polynomial
model in the potential part of the action, together with the α and λ terms, and then
to rework the derivation of the large-coupling limit. However, this should not be
done, for two reasons: first, the external source term does not change in the limit
and has in fact no role to play in it; second, it is not simply a polynomial term
in ϕ, because its coefficient j is not a constant like α or λ, but rather an arbitrary
function of the sites. The external-source term should therefore be left in the action,
together with the kinetic term SK , and should not be included in the measure with
the potential term SV .

When the external-source term is treated in this way, the derivation of the large-
coupling limit proceeds exactly as before, nothing changes in the derivation because
no steps in it depend on other terms that the complete action may contain, besides
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the potential term SV . We may therefore introduce external sources into the re-
sulting Ising model exactly as we would do in the original polynomial model, and
the whole functional generator formalism is made available for the analysis of the
Ising model, without any change. Hence the Ising model is in fact an exact and
complete direct representation of the infinite-coupling limit of the corresponding
λϕ4 polynomial model. This relationship can be generalized to the multicomponent
SO(N)-invariant polynomial models and the corresponding sigma models. It can
also be generalized to models with larger powers of the fields. It is possible to show
(problem 2.1.5) that the Ising model can also be obtained as the λ→ ∞ limit of the
λϕ2p polynomial models, with p = 3, 4, 5, . . ., in a way which is completely analogous
to the p = 2 case that we examined here.

Another aspect which we must examine here is the one relating to the superpo-
sition process involved in the definition of the block variables. Once again this is
inherited by the Ising model from the polynomial model, so we still have a simple
linear superposition of the fields ψ at the various sites within the block. Note that
although these fundamental fields satisfy the constraint ψ2 = 1, the same will not be
true for the block variables. If we consider the process of linear superposition of the
fields within a block, in order to define a block variable, it is evident (problem 2.1.6)
that the sum and the average of a collection of signs ψ = ±1 will not itself have unit
absolute value. If the fields are distributed is a very random way, without any ap-
preciable alignment, their average will tend to have an absolute value much smaller
than 1. Only in the opposite case, when the fields are highly aligned, the absolute
value of the average will tend to 1. The absolute value of the sum may have any
value, either larger or smaller than 1.

We see therefore that in general the introduction of external sources will cause
the block variables, which are the variables in terms of which we should interpret
the theory, to deform to any value, without respecting an equation of constraint.
In fact, they will behave much like the corresponding variables of the polynomial
models. In short, we see that the constraint that appears for the fundamental field
in the large-coupling limit does not survive the block-variable superposition process
and that the Ising model we get in the limit is not fundamentally different from the
λϕ4 polynomial model it derives from. Hence we confirm that the Ising models are
not to be seen as a completely different class of models, but as a way to examine
directly the behavior of the polynomial models in the λ → ∞ limit. Since, as was
mentioned before, the Ising models can also be obtained as the limits of the λϕ2p

polynomial models for any p ≥ 2, they become a tool for the examination of the
large-coupling limit of a large class of models.

We will finish this section with some comments about the critical behavior of
the models. As we shall see later, approximate calculations based on the mean-
field technique show that the Ising models have well-defined critical points βc for
dimensions d ≥ 3. Since they are the λ → ∞ limits of the polynomial models, we
see that the perturbative Gaussian approximation also predicts well-defined critical
points for the Ising models, although they are infinitely distant from the Gaussian
point. In fact, the two predictions do not differ very much from each other, and are
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both confirmed qualitatively by the computer simulations. In each dimension d ≥ 3
we have therefore the same situation, a critical line in the parameter plane of the
polynomial model, connecting at one end with the Gaussian point at the origin, and
connecting at the other end with the critical point of the Ising model, over the arc
at infinity.

The situation for d = 2 is very peculiar in the case of the O(1) models and
deserves to be mentioned here. In this case the polynomial model does not exist
in the vicinity of the Gaussian point, except for the Gaussian point itself. There
is, therefore, no critical line connecting the Gaussian point to the critical point of
the two-dimensional Ising model, which does exist, however, as is well known. In
the corresponding λϕ4 model there is a convergent expansion near the Gaussian
point [28], which shows that the observables are analytical functions of the param-
eters and that there is therefore no critical behavior, as our perturbative results
indicate. However, it has also been shown that there is a phase transition in the
polynomial model for sufficiently large λ [28], indicating that there should be a crit-
ical line starting somewhere within the critical diagram, away from the Gaussian
point, and extending from there to the critical point of the Ising model over the arc
at infinity. The details regarding this peculiar situation are currently unknown.

Going back to the cases d ≥ 3, besides the indications that we saw here, the
computer simulations also indicate that the Ising models have the same triviality
behavior of the polynomial models, in the sense that λR vanishes in the continuum
limit. In all these models it seems that the kinetic term of the action completely
dominates the dynamics, and that the potential terms are not sufficient to change
qualitatively the behavior dictated by the kinetic term. If even making the coupling
parameter λ tend to infinity we cannot obtain truly interacting models, it becomes
clear that a deeper structural change of the models is necessary. This is exactly
what one does when one discusses gauge theories involving vector fields, in which
the interactions are introduced precisely through the kinetic term. There still is,
however, a rather long path to follow before we get to that.

Problems

2.1.1. Calculate the integral in the denominator of equation (2.1.1), obtaining the
result given in equation (2.1.2); see for example [15].

2.1.2. Use the asymptotic form of the parabolic cylinder functions Dν in order to
write the local distribution of the Ising models in the form given in equa-
tion (2.1.3); see for example [25].

2.1.3. Show that the equation (2.1.4) for the local distribution of the Ising models is
valid in the λ→ ∞ limit. In order to do that, show that the exchange of f(ϕ)
for f(

√
β) in the left-hand side does not change the limit.

2.1.4. Expand the squares of the finite differences in the action SK , use the condition
of constraint and neglect field-independent constants, in order to write the
action in the form given in equation (2.1.5).
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2.1.5. Repeat in a qualitative way the derivation presented in the text for the case of
the λϕ4 models, in order to show that the Ising models are obtained, in limits
in which α → −∞ and λ→ ∞, with constant −α/λ, from the corresponding
λϕ2p models, for any p ≥ 3.

2.1.6. Show that the average of the field ψ over any number of sites has an absolute
value smaller than or equal to 1. Show also that the absolute value of the sum
of ψ over a block of sites may have any positive value in the continuum limit.

2.2 The Mean Field Method

In this section we will introduce the mean-field approximation method. This is an
approximation process which is not perturbative, not being based on the Gaussian
model. It is a traditional approximation method of statistical mechanics, which is
also useful for obtaining non-perturbative approximations in quantum field theory.
It is easy to use it to obtain approximations for local quantities defined on lattice
sites, such as, for example the expectation value of the field. It is a well-known fact
that the results of the method tend to improve with the increasing dimension of
the space where the models are defined. Usually the results are reasonably good in
three dimensions and even better in four dimensions, while the method often fails
completely in one and two dimensions. There are even some speculations that, for
some quantities, the method becomes exact in sufficiently large dimensions. In its
usual formulation this method does not establish a series of successive approxima-
tions, but rather a single approximation, making it difficult to evaluate the errors
involved in this approximation. We will introduce here an extension of the method,
that improves the situation and allows us to understand its bad performance for
small dimensions.

The formulation we will present is specifically for systems defined on the Eu-
clidean lattice, with interactions only between next neighbors. As we will see, it
is intimately related to stochastic simulations of the systems on finite lattices in
which one uses a certain type of fixed boundary conditions, which we denominate
self-consistent boundary conditions. These structures on finite lattices constitute an
extension of the usual mean-field method and, unlike the usual method, they give
us a whole series of successive approximations. The first of them will be the usual
approximation, while the subsequent approximations converge to the exact solution
of the models within a finite box with fixed boundary conditions, as the lattice
spacing is decreased. This extension of the method is similar, but not identical,
to other well-known extensions of the traditional method in statistical mechanics,
such as the Oguchi method and the Bethe, Peierls, Weiss and Kikuchi [29] method.
This approximation method can be used both in the polynomial models and in the
sigma models, we will assume only that we have an O(1) model of scalar fields, on a
lattice of dimension d, with the usual forms of the action. As we saw in sections 1.1
and 2.1, the action of any of these models can always be separated in two parts, a
strictly local one and one involving only interactions between next neighbors, which
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originates from the usual kinetic term and which can be written in the form of a
coupling term containing products of fields at neighboring sites. This is the type of
separation of the action that will be of interest in this section.

In its original formulation, applied to a statistical-mechanic system that does not
necessarily have to involve only interaction between next neighbors, the mean-filed
method consists of the replacement of the interactions of a given site with all the
others by an interaction between that given site and a background field that does not
undergo statistical fluctuations. In a situation like this we would be typically dealing
with the electromagnetic interactions between the charges located at a given site and
all the other charges distributed across the crystalline lattice of a solid, whose effects
on the site at issue are felt through the electromagnetic fields that each charge gives
rise to. What one does in this type of approximation is to replace the fluctuating
electromagnetic field generated by the set of all the other charges by a mean field

that does not fluctuate. This mean field is defined at each site, representing the
average collective effect of all the other sites over the charges located at that point.
Naturally, in order for this scheme to be useful it is necessary that we be able to
calculate the mean field in terms of the charges distributed across the crystalline
lattice. The calculation of this mean field clearly involves two aspects: first, there
is a sum over the volume of the lattice, in order to take into account the effect of all
the other sites, which are at various distances from the site at issue; second, there
is a temporal average in order to eliminate the statistical fluctuations of the field,
which can be exchanged for an ensemble average, according to the usual procedure
of statistical mechanics.

A realization of this idea in a model defined on the lattice, like the ones we want
to deal with here, must take into account only the interactions of a given site with
its next neighbors. On a cubical lattice, like the ones we have been using, we can
imagine that we define at each site an average field that represents the effect of
the 2d next neighbors of the site. Of course in this case we are not dealing with
electromagnetic interactions but with the self-interactions of the scalar field. Since
this mean field does not fluctuate, from the point of view of quantum field theory
it is not dynamical, and hence it should be treated like an external field jMF, that
couples to the field ϕ of the site at issue by means of an action term of the type
jMFϕ. Naturally, in order for this scheme to be useful it is necessary to adopt some
criterion to allow the calculation of the value of jMF in terms of the collection of
fields, now uncoupled, that exist at the neighboring sites. The usual mean-field
method on a lattice of arbitrary size consists of the replacement, in the action, of
the interaction terms of each site with its next neighbors by an interaction term of
the site with a non-dynamical external field, whose value is equal to the sum of the
ensemble averages of the dynamical field at the neighboring sites,

2d∑

~n`

ϕ(~n)ϕ(~n`) → ϕ(~n)
2d∑

~n`

〈ϕ(~n`)〉 = 2d ϕ(~n)〈ϕ〉,

where the sum runs over the 2d links ` that connect the site at the position ~n to its
next neighbors at the positions ~n`, and where 〈ϕ〉 is the average value of the field
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Figure 2.2.1: Lattice with N = 1 and fixed boundary conditions, related to the usual
mean-field approximation.

at any of the neighboring sites, assuming that they are all equivalent by discrete
translation invariance. This means that we are using for the external field the value
jMF = 2d〈ϕ〉. The calculation of this average value is made, in the context of this
method, a-posteriori and in a self-consistent way: one calculates the average value
at the active site located at ~n and imposes that this value be equal to the average
value at the neighboring sites.

In this way we replace the detailed interactions between the field at each site and
the fields at the neighboring sites by an interaction at each site with a background
field, which does not fluctuate, thus rendering the problem mathematically more
tractable. It is interesting to observe that the spirit of this approximation is some-
what different from the spirit of the usual approximation in statistical mechanics,
in which we consider the interaction of the dynamical variables with an external
mean field, ignoring completely that the interactions are established through the
links of the lattice. Observe that, in our case here, the dimension of the lattice ap-
pears explicitly in the approximation. However, this distinction will only be really
relevant when we consider the extension of the method to clusters of sites. For the
case discussed so far, in which only the field at a single site is kept active, that is,
undergoing statistical fluctuations, the two methods are identical. They are known
in statistical mechanics as the constant coupling method, which was developed by
Yvon, Nakamura, Kasteleijn, Van Kranendonk, Kikuchi and Callen [29].

This replacement of the interactions between next neighbors by an interaction
with a non-dynamical field that undergoes no fluctuations is clearly a very radical
change and it is rather surprising that it can produce good results, even if only
for some observables. In particular, since the dynamical fields at each site interact
only with the constant background field and no longer with each other, it is clear
that the fields at the various sites will become completely uncorrelated from each
other in this approximation, so that the calculation of correlation functions is out
of the question. There is, however, an alternative interpretation of the method,
which will allow us to extend it to clusters of active sites and hence to recover the
correlations among sites. This alternative interpretation, which changes nothing in
the mathematics involved, is that the fields at all the sites are frozen at their average
values, except for a single arbitrarily chosen site, which remains active. Since in the
traditional mean-field method all the sites are equivalent and uncorrelated from
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Figure 2.2.2: Lattice with N = 2 and fixed boundary conditions, which constitutes
the first extension of the mean-field method.

each other, any result obtained for one of them is valid for all the others. Therefore,
in the traditional method it is sufficient to keep a single active site, without any
changes in the results, which establishes the equivalence of the two interpretations.
In any of the two interpretations the dynamical fields interact only with a constant
background field, independently of how we interpret this non-dynamical field, either
as an external field or as the field of the neighboring sites.

The resulting structure, in this second interpretation, is a lattice with N = 1
and a border where the field is kept fixed at its average value, just like the lattices
with fixed boundary conditions that we have seen before in [32], [33] and [34], which
are represented as in the diagram in figure 2.2.1, including the active site and the
border sites. In any of the two interpretations the mathematical consequence of the
approximation is that the infinite-dimensional functional integral on the lattice is
replaced by a one-dimensional integral over the dynamical field at the only remaining
active site,

∫
[dϕ] O[ϕ] e−S[ϕ]

∫
[dϕ] e−S[ϕ]

−→

∫
dϕ O(ϕ) e−SMF(ϕ)

∫
dϕ e−SMF(ϕ)

, (2.2.1)

where SMF is the mean-field approximation for the lattice action and O(ϕ) is some
observable that depends only on the field at the single remaining active site. It is
usually possible to calculate analytically the resulting integral, which establishes the
usefulness of the method in its conventional form.

This second interpretation of the method suggests at once the definition of a
series of approximations of the continuous system, of which the usual mean-field
method is the first. Just consider lattices in which more than one site is left active,
within a central cluster, while the fields at the borders are kept fixed. For example,
we may consider a sequence N = 1, 2, 3, . . . of cubical lattices, such that the second
approximation, with N = 2, is given by the lattice illustrated in figure 2.2.2, with
2d sites, all in direct contact with the border.
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Figure 2.2.3: Modified lattice used in the Bethe-Peierls cluster method.

This extension of the mean-field method is similar to the method of clusters
of Bethe, Peierls, Weiss and Kikuchi in statistical mechanics, in which groups of
connected sites are considered. The first cluster considered in this method is the
Bethe-Peierls cluster, which is shaped like a diamond as shown, within the context of
our lattice representation, by the diagram in figure 2.2.3, including the border sites,
which are not part of the original cluster method. Larger clusters with formats
similar to this one may also be considered and used for analytical calculations.
However, the amount of analytical work involved is usually quite large, to achieve
only modest gains in the quality of the results obtained.

In the general case our extension is not identical to the traditional cluster method,
because in our case the interaction of the cluster with the mean field is established
only through the border, not by means of an external mean field that acts also on the
internal sites of the cluster, which have no direct contact with the border. This kind
of internal site appears in the Bethe-Peierls cluster and also in the cubical clusters
starting from N = 3, as illustrated in the diagram in figure 2.2.4. The two methods
also differ regarding the type of self-consistency condition which is imposed. In the
case of the Bethe-Peierls cluster, rather than adjusting the external mean field so
that it becomes consistent with the average value of the fields at the active sites,
what is done is to adjust it so that the average of the field at the central site is
identical to the average of the field at the other 2d sites of the cluster, which are
all equivalent to each other due to the symmetry of the cluster. Hence, what one
actually imposes in this case is that the normal derivative of the average value of
the field vanish at the border.

It is clear that the N → ∞ limit of our sequence of cubical clusters produces
exactly the continuum limit within a finite cubical box with a certain type of self-
consistent boundary conditions. Let us now discuss, in greater detail, the self-
consistency condition to be imposed on the border sites. The usual N = 1 mean-field
approximation is sufficient for the calculation of strictly local quantities, defined at
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Figure 2.2.4: Lattice with N = 3 and fixed boundary conditions, which constitutes
the second extension of the mean-field method.

a single site. These calculations may always be performed by freezing the fields at
the sites of the border at some arbitrary value, thus leaving a single active site. One
calculates then the average value of the field at the active site, by means of the
integral that appear in equation (2.2.1), using O(ϕ) = ϕ. Having done this, one
compares the result obtained, which will depend on the value that was chosen for
the fields at the border, with that value. Of course in general they will be different
and the self-consistency problem is to find the value to be used at the border that
reproduces exactly the same value for the average value of the dynamical field at
the active site. The determination of the value of the mean field by a self-consistent
procedure like this was first introduced in the case of the constant coupling method
of statistical mechanics.

In an analytical calculation one can simply impose this condition a posteriori,
so that it results in an algebraic equation for the average value of the field. Once
this equation is solved and the average value of the field is found in terms of the
parameters of the model, mean-field approximations for other quantities may also be
obtained. The same self-consistency condition can also be imposed in the context of
a Monte Carlo simulation in which the filed at the border is kept at a constant value,
without fluctuations, either for N = 1 or for larger values of N . In this numerical
approach a negative feedback mechanism can be used to slowly adjust the value of
the field at the border so that it and the average value of the field measured in the
interior of the lattice converge to a common limiting value. We denominate this
special type of fixed boundary conditions self-consistent boundary conditions.

The stochastic simulation with N = 1 is equivalent to a Monte Carlo calculation
of the integral that appears in equation (2.2.1). In this case the feedback mechanism
can be implemented is a very simple way. One puts at the border fields a tentative
value and lets the dynamical field fluctuate. One then measures the average value of
the fluctuating field at the active site. If this average value differs from the tentative
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value at the border, the value at the border is modified so as to coincide with the
value measured in the interior. This is done many times at regular intervals, so
that eventually the adjustment of the value at the border becomes negligible and
the border fields stay at the desired value. From this moment on one can start
measuring whatever observables one may be interested in. For lattices larger than
that of the case N = 1 a similar mechanism may be used, but this time there are
several possible variations of the procedure. For example, we may measure and feed
back to the border the average value calculated for the spacial average of the fields
over all the internal sites or, alternatively, we may use a spacial average over only
the internal sites which are in direct contact with the border, thus implementing a
self-consistency condition in the spirit of the Bethe-Peierls condition, involving the
normal derivative at the border.

One of the most interesting properties of these systems with fixed but self-
consistent boundary conditions relates to their characteristics of critical behavior.
Usually we build the models and their corresponding stochastic simulations on finite
lattices with periodical boundary conditions1. These systems suffer from the incon-
venience that there is no true critical behavior on finite lattices of this kind, that
is, in systems with a finite number of degrees of freedom and no external bound-
ary [30]. For example, if we calculate by means of stochastic simulations on finite
lattices the expectation value vR of the field in the Ising models, a quantity which
is analogous to the magnetization, as a function of the inverse temperature β, we
typically obtain curves vR(β) that are continuous, differentiable and monotonically
increasing. There are no sharp transitions except in the N → ∞ limit, which makes
it considerably more difficult to extract from these simulations the critical values of
the parameters of the models by means of extrapolations of the finite-lattice results
to the N → ∞ limit.

In contrast to this, the self-consistent lattice systems display sharp transitions
and complete critical behavior even on finite lattices. In the case N = 1 the fact that
the curve of the magnetization displays a sharp transition at a certain critical value
of β, a point where it is not differentiable, can be verified analytically. In numerical
simulations the sharpness of the transitions is limited, of course, by the technical and
numerical limitations of the computer simulations but, with increasing expenditure
of computer resources, the transitions can, at least in principle, be made as sharp as
one desires for any given N , quite unlike the case of periodical simulations. These
self-consistent simulations are, therefore, potentially better for the calculation of
critical quantities. With simulations for larger values of N we can not only improve
the calculation of local quantities such as the expectation value of the field, we
can also calculate significant approximations for non-local quantities, such as the
correlation functions for the theory defined within a finite box. This is, therefore, a
very useful extension of the mean-field method. Clearly, there is a numerical price

1For a more complete understanding of the rest of this section it is useful, although not com-

pletely essential, to have some knowledge of the simulation techniques and some experience with

stochastic simulations. This subject will be examined in detail in another volume of this series of

books.
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to be paid for the sharpness of the transitions obtained in this way. The feedback
mechanism can consume a large amount of computer resources if we want really very
sharp results, specially in simulations that already suffer from the notorious critical
slowing down problems near the critical region. Fortunately, there exist currently
algorithms that avoid completely this kind of problem for the scalar models that we
are examining here.

Observe that we have here a set of systems with a finite number of degrees of
freedom that still display complete critical behavior. How to reconcile this fact with
the previously mentioned fact that there is no true critical behavior in systems with
a finite number of degrees of freedom? What happens is that the relevant results
contained in [30] are not relevant for the self-consistent systems, because they assume
that one is discussing systems with a finite number of degrees of freedom and no
external couplings, which implies that one must use periodical boundary conditions
in order to avoid the border. In our fixed-boundary systems there is an additional
element, which is precisely the interaction with the border sites, for which there
is a self-consistent condition. In a heuristic and intuitive way, we may think of
these systems as finite systems that have, however, a “window to infinity”. The
self-consistent boundary conditions act in fact as a kind of semi-transparent window
opening onto an infinite outer lattice that surrounds our finite lattice, letting in
some information about the infinite lattice of which our finite lattice is a cutout.
It would be possible, in fact, to consider other types of boundary fixed conditions,
more complex, sophisticated and transparent than the one we are considering here.
For example, instead of keeping the boundary fields completely fixed at their mean
values, we might consider letting them fluctuate around the mean value in some
controllable way. In the future we may discuss in more detail a proposal along these
general lines. But before that we must illustrate the method by means of some
specific calculations with self-consistent boundary conditions.

Our extension of the method to lattices of arbitrary size provides us with an
explanation of why the usual mean-field method fails completely for most models
in dimensions d = 1 and d = 2. For this purpose it is necessary to remember that
these are models that do not display phase transition in the N → ∞ limit. In fact,
there are theorems [31] that show that models with only next-neighbor couplings
cannot have ordered phases, with oriented fields, in the N → ∞ limit, in dimension
d = 1, for any symmetry groups they may be invariant by. For dimension d = 2 the
same is true for models invariant by continuous symmetry groups, such as SO(N)
for N > 1. For discrete symmetry groups the existence of oriented phases is possible
in d = 2, as shown by the Ising model, with the discrete symmetry group O(1) = Z2.
There are no theorems like these for d ≥ 3, cases in which the models usually display
well-defined phase transitions in the N → ∞ limit.

Let us see how these theorems are realized for the models defined on finite lat-
tices of increasing size. The situation is similar in the cases of periodical boundary
conditions and of fixed boundary conditions, but it is easier to give the explanation
in the case of fixed boundary conditions. In this case one verifies that the models
always display a phase transition on finite lattices, for any model and any space-



THE MEAN FIELD METHOD 59

time dimension. In this way a certain βc(N) is defined on each finite lattice, which
is the critical point for that lattice size, assuming that we use as an example a sigma
or Ising model. In the cases in which there is a phase transition in the N → ∞
limit βc(N) tends to a finite value β∗

c when N → ∞. In the cases in which there
is no phase transition in the limit what happens is that βc(N) increases without
limit when N goes to infinity. Since in all cases we have the non-oriented phase for
β < βc, in these cases this random phase is the only one that remains in the N → ∞
limit.

Thus we see that, if there is a phase transition for some well-defined finite β∗
c

in the N → ∞ limit, then the N = 1 approximation, which also displays a well-
defined phase transition, will not be qualitatively different from the limit, although
it may be quantitatively quite different, thus giving rise to an approximation that is
interpreted as successful. In contrast to this, in the case in which there is no phase
transition in the limit N → ∞ the N = 1 approximation, because it always displays
a well-defined phase transition, becomes qualitatively different from the limit and is
thus interpreted as a complete failure. Observe that the N = 1 approximation fails
precisely in the cases in which the system does not display critical behavior in the
limit of large values of N , cases which are not, therefore, of much interest for us.

The situation regarding the realization of the theorems is not very different for
periodical boundary conditions, except for the fact that in this case there are no well-
defined critical points on finite lattices. However, in order to tackle this case, we must
first dispel a common misconception regarding finite lattice systems with periodical
boundary conditions. Although it is true that if one measures the expectation value
of the field vR in such systems one gets zero within errors, this does not really mean
that the single phase existing on finite lattices is the symmetrical phase. The reason
why one gets zero for vR in these circumstances is not that the field configurations
are typically non-oriented, but rather that the average value us washed out by the
wandering of the direction of alignment. The best way to describe what happens is
to say that the system is always in the broken-symmetrical phase on finite lattices,
and that it only becomes symmetrical in a certain region of its parameter space in
the N → ∞ limit.

One can verify this fact in at least three ways, which we now describe shortly.
First, one can include in the action a constant external action j and verify that
the resulting value of vR does not vanish in the limit in which j → 0. Second,
one can consider looking at the expectation value of the average of the field over
the lattice, which is just the zero mode, the zero-momentum Fourier transform ϕ̃(~0)
which is like the magnetization in statistical mechanics; if one measures both its
expectation value and the expectation value of its square, one gets zero for the first
but not for the second, meaning that the field configurations are typically oriented,
and that the direction of this orientation drifts. Third, one can eliminate the drift
on finite lattices by hand by freezing the zero mode of the field in an arbitrarily
chosen direction, and then verifying that one gets explicitly a non-vanishing average
magnetization; this changes nothing in the N → ∞ limit, since in this limit the drift
is frozen in any case.
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Getting back to our explanation of the realization of the theorems for the models
defined on finite periodical lattices, in this case the system is always in a single
broken-symmetrical phase, and taking due care with the drift of the zero-mode one
can measure vR as a function of β. The function vR(β) turns out to be a continuous
and differentiable function, which is never zero, being typically small in the range
of the parameters of the model where the symmetrical phase will appear in the
N → ∞ limit, and typically large in the complementary range. What happens in
the N → ∞ limit, when there is a phase transition, is that the curve vR(β) gradually
changes and thus approaches a continuous but non-differentiable curve in the limit.
The point where the curve becomes non-differentiable is the critical point and, in
this case, it appears at finite values of the parameters. In the cases in which the
system does not display a phase transition in the limit the curve not only changes
shape, but also moves to arbitrarily large values of beta, so that once more all that
remains in the limit is a symmetrical, non-oriented phase.

Finally, observe that we are not stating here that the continuum limits of the pe-
riodical systems and of the self-consistent systems are completely identical, because
some of the observables may depend on the boundary conditions adopted, which are
different in either case. These are two different classes of continuum limits, whose
properties can be somewhat different. Usually the more basic observables of the
system, such as the values of the parameters at the critical points, the renormalized
masses and the expectation values of the fields, will not depend significantly on the
boundary conditions, but observables with a subtler type of behavior, such as the
critical exponents, may very well depend strongly on the boundary conditions. In
fact, one can show that the critical exponents differ significantly in the two cases
that we are discussing here. Besides the fact that fixing the field at the border does
not make much physical sense in the context of quantum field theory, this is an-
other reason why it is important to think about generalizations of the self-consistent
boundary conditions described here, for example in order to allow the border fields
to fluctuate, as was mentioned before in this section. This subject may be discussed
in more detail in a future volume of this series.

2.3 Some Mean Field Results

We will perform in this section a few analytical calculations, in the usual mean-
field approximation with N = 1, of some observables of the scalar field models,
using the ideas presented in section 2.2. The approximations with N ≥ 2, involving
the extension of the method which was also discussed in that section, are usually
too complex for an analytical treatment and are better characterized, therefore, as
material for performing stochastic simulations, which will be discussed in a future
volume. The calculations we will present here can be understood as exact analytical
solutions for the lattice systems with a single active site. We will start with the
Ising models, in which the calculations are somewhat simpler.

A quantity of particular interest in the Ising models is the magnetization, which
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is the order parameter of these models. It can be defined as the expectation value
vR of the field, which will be pointing predominantly in the direction that we choose
arbitrarily for the symmetry breaking. This is the direction in which we will keep
oriented the fields at the border. We will calculate vR in the mean-field approxi-
mation as a function of the parameter β and of the dimension d of space-time. As
we saw before in section 2.2, the parameter β can be understood as the inverse of a
fictitious temperature. For a given value of d, the critical point βc is the value of the
inverse temperature for which the magnetization vR(d, β) ceases to be zero, when
we “cool” the system and therefore increase β. For the calculations it is convenient
to use the dimensionless field ψ that was introduced in section 2.2, so that for the
purposes of this section we will use, rather than vR = 〈ϕ〉, the quantity νR = 〈ψ〉,
where vR =

√
βνR. It is νR rather than vR that is more closely related to the stan-

dard definition of the magnetization of statistical mechanics. As was derived in that
section, the action can be written in terms of ψ as

S[ψ] = −β
∑

`

ψ(`−)ψ(`+),

while the constraint is written as

ψ2 = 1,

where the field ψ is, therefore, either +1 or −1. We now freeze all the sites except
one at the value ψ = νR, arbitrarily choosing the positive direction as the direction
of orientation of the fields. Therefore in our N = 1 mean-field approximation the
relation νR = 〈ψ〉 can be written as

νR =

∑
[ψ = ±1] ψ e2d βνRψ

∑
[ψ = ±1] e2d βνRψ

.

Since the sum is over a single site, in this simple O(1) case we can immediately write
the result as

νR =
sinh(2d βνR)

cosh(2d βνR)
, (2.3.1)

thus obtaining an algebraic equation that in principle gives us the complete solution
for νR in the N = 1 system. This equation can be solved numerically in order to
provide us with graphs of νR as a function of β (problem 2.3.2). It can also be
used to determine the value of β at which νR = 0 becomes the only possible solution
(problem 2.3.1), by the use of series expansions. However, the simplest way to obtain
the critical points is to simply expand its right-hand side around νR = 0. This is
sufficient to determine the critical points because the phase transition is of second
order in these models and, therefore, we have that νR ≈ 0 for β ≈ βc. Expanding
and keeping only up to first-order terms (problem 2.3.3) we get
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νR = 2d βνR.

A factor of νR cancels off and we are left with

1 = 2d β.

After the cancellation of the trivial solution νR = 0 we may impose the condition

νR = 0 in order to find the region where only this zero solution is possible. Observe
that the equation above does not depend on νR. Had we kept the higher-order terms
of the expansion, the condition νR = 0 would eliminate them at this point, leaving
only the equation above. Hence we obtain the mean-field approximation for the
critical points

βc(d) =
1

2d
. (2.3.2)

This technique of expansion around the critical point is useful in cases in which the
mean-field results cannot be obtained explicitly, or in which the exact solutions of
the resulting equations are difficult to determine analytically.

In four dimensions this N = 1 result is in fairly good agreement with the nu-
merical results obtained for larger values of N . The agreement is poorer in three
dimensions, very poor is two dimensions, and the result fails completely in one di-
mension, in which there is no critical point at all. Observe that the success or lack
thereof on the N = 1 approximation in reproducing well the results for large values
of N is not a diagnostic about the validity of the method itself, bur rather an indi-
cation of whether or not the results for increasing values of N accumulate around
some finite value of β. For d = 1 the values βc(N) for each lattice size diverge to
+∞ when N → ∞, so that no finite lattice can represent well the limit. In larger
dimensions the critical points βc(N) of the finite lattices converge to finite values in
the N → ∞ limit, so that in these cases the approximation of the limiting result by
the results for finite lattices makes some sense, being better or worse depending on
the speed of convergence.

Table 2.3.1 contains results for the critical points of the Ising models for dimen-
sions from d = 1 up to d = 4. For d = 4 the result was obtained by means of
extrapolations to the N → ∞ limit of the results of stochastic simulations with
periodical boundary conditions on lattices with N from 4 to 10. For d = 3 we quote
the most precise result that we know about [36]. For d = 2 we quote the well-known
result for the two-dimensional Ising model [37]. Since the estimate from periodical
simulations is obtained from the continuous and differentiable curves of the magne-
tization as a function of β, the error bars indicated are only approximate estimates.
The entry ∞ indicates the case in which the theorems about long-distance order [31]
imply that there is no phase transition, which is the same in which βc(N) → ∞ when
N → ∞ in the simulations with self-consistent fixed boundary conditions. The re-
sults of equation (2.3.2) are also included, for comparison. As one can see, in d = 4
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d N βc
periodical mean-field

1 1 ∞ 0.500
2 1 0.4406868 0.250
3 1 0.22165(4) 0.166̄
4 1 0.15 ± 0.02 0.125

Table 2.3.1: Critical points of the Ising models in dimensions from d = 1 to d = 4.

the mean-field result deviates about 17% from the numerical results, while for d = 3
it deviates by about 25%.

Calculating the magnetization in an infinitesimal neighborhood of βc one can
also obtain the mean-field approximation for the corresponding critical exponent.
The definition of this critical exponent is as follows. If we have, close to the critical
point in the broken-symmetrical phase,

νR ≈ C (β − βc)
γ (2.3.3)

for some non-vanishing constant C, then γ is the critical exponent of νR. Once
more, this can be done using the complete solution in terms of the hyperbolic func-
tions (problem 2.3.4), but the simplest way to obtain the result is to expand equa-
tion (2.3.1) to third order in νR (problem 2.3.3), thus obtaining

νR = 2d βνR − 8

3
d3β3ν3

R.

Once more a factor of νR cancels out and we obtain

1 = 2d β

[
1 − 4

3
d2β2ν2

R

]
.

Remembering that βc = 1/(2d) and considering that we are in the vicinity of the
critical point, with β ≈ βc, we may write this as

νR =
√

3
βc
β

√
β − βc
β

≈
√

3

√
β − βc
βc

= C(β − βc)
1/2. (2.3.4)

This shows that the mean-field approximation for the critical exponent is γ = 1/2,
and determines the value of the constant C =

√
3/βc. This value for the critical

exponent of the magnetization is characteristic of the mean-field calculations with
N = 1.

Another mean-field calculation of interest is that of the critical curves of the
λϕ4 polynomial models, which are given by equation of the type λ = f(α). In this
case we will use the usual dimensionless field ϕ as our variable. If we define the
magnetization for this case as vR = 〈ϕ〉 we may write, in the N = 1 mean-field
approximation,
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vR =

∫ ∞

−∞
dϕ ϕ e2d vRϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

−∞
dϕ e2d vRϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

.

If we use here our “radial-angular” decomposition of ϕ into its absolute value and
its sign, ϕ = ψ|ϕ|, with ψ = ±1, as was done in section 2.1, we may write this as

vR =

∑
[ψ = ±1]

∫ ∞

0

dϕ ψϕ e2d vRψϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∑
[ψ = ±1]

∫ ∞

0

dϕ e2d vRψϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.

We may now execute the sum over the single active site and hence get

vR =

∫ ∞

0

dϕ ϕ sinh(2d vRϕ) e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ cosh(2d vRϕ) e−[(d+α/2)ϕ2+(λ/4)ϕ4]
. (2.3.5)

In this case it is also possible to perform the integrations analytically in terms
of special functions (problem 2.3.5) but, close to the critical curve, it suffices to
calculate the right-hand side of this equation for small values of vR. Therefore, we
expand equation (2.3.5) to first order in vR and obtain

vR = 2d vR

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.

Just like before, a factor of vR cancels out and we obtain as our mean-field result an
equation giving implicitly the critical curve λ = f(α),

1

2d
=

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]
. (2.3.6)

Once more the integrations can be done, this time in terms of the parabolic cylinder
functions Dν (problem 2.3.6), but this does not help us to solve this equation in
order to write the equation of the critical curve in explicit form. The fact that
the left-hand side of this equation is equal to the mean-field value of the critical
point βc of the corresponding Ising model is not an accident, it is clearly related
to the fact that the λ → ∞ limits of the λϕ4 models converge to the Ising models
(problem 2.3.7).
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Although we are not able to solve equation (2.3.6) analytically in order to write
the equation λ = f(α) of the critical curve in explicit form, it is possible to solve
the asymptotic form of the equation, for large values of λ (problem 2.3.8). Doing
this we discover that in this limit the critical curve is asymptotic to the straight line
defined by the equation

λ(α) = − 1

βc
(α + 2d),

where βc = 1/(2d) are the critical points of the corresponding Ising models, so that
the asymptote cuts the λ axis at the point −4d2 and forms with the negative α
semi-axis an angle θ such that tan(θ) = 1/βc. Expanding equation (2.3.6) for small
values of −α and λ one can also obtain the slope of the tangent line to the critical
curve at the Gaussian point (problem 2.3.9). Doing this we obtain for this tangent
line the equation

λ(α) = − 1

βc

α

3
.

We see that the asymptotic slope is −1/βc, larger therefore than the slope at the
Gaussian point, which is −1/(3βc), by a factor of 3, thus showing that the critical
curve has its concavity turned mostly upwards.

In order to get the graphs of the critical curve we are compelled to solve the
equation by numerical means. In fact, this can be done not only for our O(1) case
here, but for the SO(N) generalizations as well. A curious fact is that it is in fact
easier to do this for N = 2 and the other even-N cases than for N = 1 and the
other odd-N cases, because in the even-N cases it turns out that the integrals can
be written in terms of the error function. For the odd-N cases we must use direct
numerical integration in order to solve the equation, which is a technique that can
be used in all cases [38]. The graphs in figures from 2.3.1 to 2.3.4 show the critical
curves obtained by such numerical means in a few cases. Each graph shows also the
tangent line at the Gaussian point and the asymptotic line for large values of λ.

Figure 2.3.1 shows the solution in the case d = 3, for fairly small values of the
parameters −α and λ, while figure 2.3.2 shows the same solution for larger values
of the parameters. Figures 2.3.3 and 2.3.4 show the corresponding data for the case
d = 4. It should be noted that, as one can see in the two graphs with the larger
values of the parameters, the asymptotic lines actually cross the critical curves.
This implies that at some location for even larger values of the parameters the
critical curves must have inflection points and reverse their concavities, presumably
approaching their asymptotes from below rather than from above. One can see,
looking directly at the data shown in the graphs, that the critical curves do in fact
slowly approach the asymptotes, but it seems that the location of the inflection
point is at very large values of the parameters, that so far have not been probed
numerically. It is interesting to observe that this behavior seems to be characteristic
of the O(1) models. In the SO(N) models with N > 1 one does not see this type of
crossing, and the critical curves seem to approach their asymptotes from above.
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Figure 2.3.1: The mean-field critical curve of the λϕ4 model with O(1) symmetry,
in d = 3, for the smaller values of the parameters.

We are led to conclude that the mean-field approximation confirms the basic
properties of the critical curves that we discussed before in sections 1.1 and 1.3.
One can improve on the comparison with the perturbative results by calculating the
mean-field approximation for the quantity σ2 = 〈ϕ2〉 over the critical curve, where
vR = 〈ϕ〉 is zero. The mean-field approximation for σ2 is given by

σ2
MF =

∑
[ψ = ±1]

∫ ∞

0

dϕ ϕ2 e2d vRψϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∑
[ψ = ±1]

∫ ∞

0

dϕ e2d vRψϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]
,

and if we execute the sum over the signs at the single active site we get

σ2
MF =

∫ ∞

0

dϕ ϕ2 cosh(2d vRϕ) e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ cosh(2d vRϕ) e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.
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Figure 2.3.2: The mean-field critical curve of the λϕ4 model with O(1) symmetry,
in d = 3, for the larger values of the parameters.

At the critical curve, where vR = 0, this reduces to

σ2
MF =

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.

Note that the right-hand side of this equation is exactly equal to the right-hand side
of equation (2.3.6), which determines the critical line, and that therefore we have

σ2
MF =

1

2d
= βc,

so that the equation of the tangent line to the mean-field critical curve at the Gaus-
sian point can be written as

λ(α) = − 1

σ2
MF

α

3
.
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Figure 2.3.3: The mean-field critical curve of the λϕ4 model with O(1) symmetry,
in d = 4, for the smaller values of the parameters.

If we now recall the perturbative result for the equation of the tangent line to the
critical curve at the Gaussian point, which can be obtained from equation (1.3.7),
and can be written as

λ(α) = − 1

σ2
0

α

3
,

we see that the two results are identical except for the exchange of σ2
0 and σ2

MF.
Therefore, the two results for the slope of the critical curve at the Gaussian point
coincide within the expected level of precision of the mean-field approximation, since
the mean-field result is just an approximation, while the perturbative result of the
Gaussian approximation is, for this particular quantity, presumably exact.

We can also calculate the critical exponent of vR in the case of the polynomial
models. In order to do this it is necessary to expand equation (2.3.5) up to a higher
order in vR, so as to allow us to write the differential of v2

R(α, λ) as a function of dα
e dλ. This is the work proposed in problem 2.3.10, and it can be shown that it is
possible to write the differential of v2

R as
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Figure 2.3.4: The mean-field critical curve of the λϕ4 model with O(1) symmetry,
in d = 4, for the larger values of the parameters.

d(v2
R) = Cα dα + Cλ dλ,

where the coefficients Cα e Cλ are finite and non-vanishing expressions in the vicinity
of the critical curve. The fact that we are able to write the differential of v2

R directly
in terms of the differentials of α and λ with coefficients that are finite and not zero
over the critical curve is sufficient to show that the critical exponent of vR is, once
more, γ = 1/2.

In conclusion, we have discovered that the mean-field method is related, through
its generalizations, to systems on finite lattices with fixed and self-consistent bound-
ary conditions. These systems define a second family of continuum limits for the
models, which does not necessarily have to be identical to the one defined by the
systems with periodical boundary conditions. Although the two families of limits
have, by and large, similar properties, many of the details are not identical and some
quantities of interest may, in fact, depend on the boundary conditions. For example,
it may be that only part of the discrepancies shown in table 2.3.1 for the critical
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points of the Ising models is due to the fact that we are using the N = 1 mean-field
approximation in the right-hand column. Another part of the discrepancies may
be due to the fact that we are comparing results for systems with very different
boundary conditions, since the left-hand column refers to systems with periodical
boundary conditions. A situation like this is probably more likely to be realized for
the finer, more delicate observables, such as the critical exponents and correlation
functions, than for the more basic objects such as the critical points.

The choice of boundary conditions is an important subject within the structure
of the quantum theory, just as it is in the classical theory. It should be noted that
there are other ways, besides the one that we examined here, to implement fixed
boundary conditions, some of which may be physically more natural and compelling
from the point of view of quantum field theory. One example of this kind of thing
was proposed in the last chapter of a previous volume of this series of books [35].
Other ideas related to that one may be discussed in future volumes.

Problems

2.3.1. Verify that νR = 0 always satisfies equation (2.3.1). In order to discover
whether there are values of β for which it is possible to have a solution νR 6= 0,
use the series expansions of the hyperbolic functions to obtain the relation

∞∑

k=0

(2d βνR)2k+1

(2k + 1)!
[(2k + 1) − 2d β] = 0.

Observe that all the factors in each term of this series are always positive
except for the last one on the right. Use this fact to determine the interval of
values of β for which it is possible to have 2d βνR and therefore νR different
from zero as a solution of this equation, and thus determine the mean-field
critical points βc of the Ising models.

2.3.2. Write a program to solve numerically equation (2.3.1) and plot graphs of νR
as a function of β for some values of d ≥ 3. Consider using the exponential
bisection method and consider the results of problem 2.3.1. Verify how close
to the exact result in the broken-symmetrical phase is the ansatz

νR =

√
3(β − βc)

3β − 2βc
,

which has the correct behavior for β close to βc and that tends to 1 for β → ∞.

2.3.3. Expand the right-hand side of equation (2.3.1) up to the third order on the
variable A = 2d βνR and show that the terms with even powers of the variable
vanish, thus obtaining the result

νR = A− A3

3
.
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2.3.4. Starting from the relation νR ≈ C (β − βc)
γ that defines the critical expo-

nent γ of νR, write the corresponding relation for the parameter A = 2d βνR
and differentiate the resulting equation with respect to β, thus obtaining an
expression for the critical exponent,

γ =
β − βc
A

dA

dβ
− β − βc

β
.

In the vicinity of the critical point we have β ≈ βc and A ≈ 0, so that we may
write for γ

γ =
β − βc
A

dA

dβ
. (2.3.7)

In order to calculate dA/dβ, differentiate equation (2.3.1) with respect to A,
and thus obtain the result

dA

dβ
=

2d sinh2(A)

sinh(A) cosh(A) − A
.

Use this in the expression for γ and expand it to second order around the
critical point, then use the result βc = 1/(2d), in order to obtain for γ the
expression

γ =
3

2C2βc
(β − βc)

1−2γ .

Note that, given the second-order nature of the phase transition in these mod-
els, we know that γ must be within the interval (0, 1]. Examine the behavior
of this expression in the cases 1/2 < γ ≤ 1 and 0 < γ < 1/2, and show by
reduction to absurd that the only possible value for the critical exponent is
γ = 1/2. Substitute this value in the equation above and obtain the value of
the constant C, thus reproducing equation (2.3.4) which was derived in the
text.

2.3.5. Use the series expansions of the hyperbolic functions sinh(B) and cosh(B),
with B = 2d vRϕ, that appear in equation (2.3.5), in order to rewrite that
equation in the form

1

2d
=

∞∑

k=0

(2d vR)2k

(2k + 1)!

∫ ∞

0

dϕ ϕ2k+2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∞∑

k=0

(2d vR)2k

(2k)!

∫ ∞

0

dϕ ϕ2k e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.
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The integrals may now be written in terms of the parabolic cylinder functions
Dν [15], so use them to write the final form of the equation

√
2λ

2d
=

∑∞
k=0

(d v)2k

k!

(
λ
2

)−k/2
D−(k+ 3

2)

(
2d+α√

2λ

)

∑∞
k=0

(d v)2k

k!

(
λ
2

)−k/2
D−(k+ 1

2)

(
2d+α√

2λ

) .

2.3.6. Use the same techniques of problem 2.3.5 in order to calculate the integrals
that appear in equation (2.3.6), and thus obtain

√
2λ

2d
=

D−(3

2)

(
2d+α√

2λ

)

D−(1

2)

(
2d+α√

2λ

) . (2.3.8)

Observe that this result is the same of problem 2.3.5 if we truncate the two
series that appear there, leaving only their first terms, those with k = 0.

2.3.7. Take explicitly the Ising-model limit of equation (2.3.6), making λ → ∞ and
α→ −∞ with α = −βλ, and show that it reduces to the known result for the
value of the critical point of the Ising model.

2.3.8. Obtain the asymptotic form of the critical curve, for large values of −α and λ,
using in equation (2.3.8) the asymptotic expansion of the parabolic cylinder
functions Dν [25], to the lowest non-vanishing order, thus obtaining the result

λ (α) = − 1

βc
(α + 2d) .

2.3.9. In order to obtain the behavior of the critical curve for small values of −α and
λ, write equation (2.3.6) in the form

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4] =
1

2d

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

and differentiate implicitly in terms of dα e dλ, applying the resulting coeffi-
cients at the Gaussian point. The integrals that appear in these coefficients
are expressible in terms of the Γ function [14], so use them to obtain

dλ

dα
= −2d

3
.

Integrate this first-order differential equation for λ(α) with the boundary con-
dition λ(0) = 0, thus obtaining the final result

λ(α) = − 1

βc

α

3
.
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Obtain the same result in another way, using in equation (2.3.8) the asymptotic
expansion of Dν [25], since for λ→ 0 the arguments of the Dν functions that
appear in that equation go to infinity.

2.3.10. In order to determine the mean-field value of the critical exponent of vR in the
λϕ4 model, write equation (2.3.5) in the form

vR

∫ ∞

0

dϕ cosh(B) e−[(d+α/2)ϕ2+(λ/4)ϕ4]

=

∫ ∞

0

dϕ ϕ sinh(B) e−[(d+α/2)ϕ2+(λ/4)ϕ4],

where B = 2d vRϕ. Then differentiate in terms of dα and dλ, keeping in mind
that vR is a function of α and λ, in order to write the differential of vR in
terms of its gradient as

dv =
C1

C0
dα +

C2

C0
dλ,

where the coefficients are given by

C0 =

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

×
{[

1 − 2d ϕ2
]
cosh(B) +B sinh(B)

}
,

C1 =
1

2

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

× [v cosh(B) − ϕ sinh(B)] ,

C2 =
1

4

∫ ∞

0

dϕ ϕ4 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

× [v cosh(B) − ϕ sinh(B)] .

Next expand the hyperbolic functions in each one of these coefficients for small
values of B, that is, in the vicinity of the critical curve. Observe that it is
enough to expand C1 e C2 to first order but that C0 must be expanded to the
next non-vanishing order, because the equation of the critical curve implies
that the terms of orders zero and one of its expansion cancel each other. In
this way, obtain the differential of v2

R as

d(v2) = Cα dα + Cλ dλ,

where the coefficients, which define the gradient of v2
R, are given by
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Cα =

1

3d

∫ ∞

0

dϕ ϕ2

(
1

2d
− ϕ2

)
e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ ϕ2

(
1 − 2d ϕ2

3

)
e−[(d+α/2)ϕ2+(λ/4)ϕ4]

,

Cλ =

1

6d

∫ ∞

0

dϕ ϕ4

(
1

2d
− ϕ2

)
e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ ϕ2

(
1 − 2d ϕ2

3

)
e−[(d+α/2)ϕ2+(λ/4)ϕ4]

.

Stating from these expressions verify that Cα and Cλ are finite and non-
vanishing numbers in the vicinity of the critical curve. This suffices to show
that the critical exponent of vR is once again γ = 1/2 when we approach the
critical curve in the parameter plane of the model, from any direction within
the broken-symmetrical phase. Verify also that these two coefficients are neg-
ative, showing that the gradient of v2

R is oriented in the expected direction.



Chapter 3

Interactions Between Particles

3.1 The Coupling Constant

Having discussed in sections 1.2 and 1.3 the behavior of the λϕ4 model with respect
to the one-point and two-point correlation functions, which are related respectively
to the phenomena of spontaneous symmetry breaking and of the propagation of
waves and particles, we will now consider the three-point and four-point functions,
which are related to the phenomena of interaction between waves or between parti-
cles within the model. Our first task will be to discuss the nature of the renormalized
(or physical) coupling constant λR, and of its dimensionfull version ΛR, relating them
to expectation values of observables of the model. In this way we will define these
quantities and determine, at least in principle, the way to calculate them.

As we will see, the renormalized coupling constant is a quantity that vanishes in
the Gaussian model and whose value measures how non-Gaussian the renormalized
ensemble of the model under study is, thus determining its true degree of non-
linearity and the existence or not, within the structure of the model, of phenomena
of interaction between waves or between particles. Note that we are not talking
here about the ensemble of the fundamental field, but rather about the ensemble
of the physical variables associated to blocks, as was discussed in the section in
reference [6], since these are the variables that are directly associated to the actual
physical observables of the theory. Hence, we should expect the quantity of greater
interest in this discussion to be the dimensionfull renormalized coupling constant
ΛR, since it is the dimensionfull quantities that scale in the correct way and thus
are related to the block-variable observables, as we saw explicitly in the case of the
propagator in the section in reference [6].

In order to be able to write the renormalized coupling constant in terms of ob-
servables of the model, we return to the discussion of the formalism of the generating
functionals and of the effective action, which were introduced in the sections in ref-
erences [39] and [45]. We saw in the section in reference [39] that the complete
Green functions g1,...,n = 〈ϕ1 . . . ϕn〉 of the theory in the absence of external sources
can be obtained by means of multiple functional differentiations with respect to j of
the functional Z[j] defined in the equation in reference [41], after which one makes

75
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j = 0. In addition to this, the connected Green functions g(c,j)1,...,n in the presence
of external sources can be obtained by means of multiple functional differentiations
with respect to j of the functional W [j] = ln(Z[j]). It is in these connected func-
tions that the true correlations of the theory are encoded, including in the case in
which we have non-vanishing external sources. The connected two-point function
was calculated explicitly in the equation in reference [42] and the calculation of the
corresponding three-point function was proposed in the problem in reference [43].
In that problem, starting from the definition of the three-point function in terms of
W [j],

d
3W [j]

dj1dj2dj3
= g(c,j)1,2,3,

one shows that this functions can be written in terms of the complete three-point
function as

g(c,j)1,2,3 = g(j)1,2,3 − g(c,j)1,2 ϕ(c)3 − g(c,j)2,3 ϕ(c)1 − g(c,j)3,1 ϕ(c)2 − ϕ(c)1 ϕ(c)2 ϕ(c)3,

which corresponds to the subtraction from the complete function of all possible
factorizations in terms of connected functions with a smaller number of points. Note
that we returned here to the notation of the section in reference [39], denoting the
expected value of the field by ϕ(c) instead of vR and the dependencies on the positions
~ni of the sites by indices, ϕ(c)(~n1) = ϕ(c)1. Observe that in any circumstances in
which ϕ(c) = 0, which naturally implies that j = 0, we have for this connected
function g(c)1,2,3 = g1,2,3, which makes the definition of the renormalized coupling
constant considerably simpler in models based on three-point interactions, as is the
case, for example, for electrodynamics.

However, the polynomial models of scalar fields, such as the λϕ4 model that we
are studying here, are based on interactions involving four or more points, so that
we must go at least up to the four-point function in order to be able to define the
renormalized coupling constant. It is necessary, therefore, to take a fourth and last
derivative of W [j] (problem 3.1.1), which results, after a long but straightforward
algebraic calculation, in a relation between the connected four-point function and
the corresponding complete function,

g(c,j)1,2,3,4 = g(j)1,2,3,4

− [g(c,j)2,3,4 ϕ(c)1 + g(c,j)1,3,4 ϕ(c)2 + g(c,j)1,2,4 ϕ(c)3 + g(c,j)1,2,3 ϕ(c)4]

− [g(c,j)1,2 g(c,j)3,4 + g(c,j)1,3 g(c,j)2,4 + g(c,j)1,4 g(c,j)2,3]

− [g(c,j)1,2 ϕ(c)3 ϕ(c)4 + g(c,j)1,3 ϕ(c)2 ϕ(c)4 + g(c,j)1,4 ϕ(c)2 ϕ(c)3

+g(c,j)2,3 ϕ(c)1 ϕ(c)4 + g(c,j)2,4 ϕ(c)1 ϕ(c)3 + g(c,j)3,4 ϕ(c)1 ϕ(c)2]

− ϕ(c)1 ϕ(c)2 ϕ(c)3 ϕ(c)4. (3.1.1)

As was the case for the three-point function, this time we also obtain, as one can
see, the subtraction from the complete function of all the possible factorizations
in terms of connected functions with a smaller number of points. The expression
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consists of a relatively small number of terms with different structures, each one
accompanied of all the possible permutations of the position indices. Observe that
in any circumstances in which ϕ(c) = 0, corresponding necessarily to j = 0, we
obtain a much simpler relation, that can be written as

g(c)1,2,3,4 = g1,2,3,4 − [g1,2 g3,4 + g1,3 g2,4 + g1,4 g2,3], (3.1.2)

since for j = 0 we have that g(c)i,j = gi,j. Just as g(c,j)i,j gives us the true two-
point correlations, g(c,j)i,j,k,l gives us the true four-point correlations of the model,
that is, those which are not just superpositions of two-point correlations. While
the two-point function is related to the propagation of waves and particles, the
four-point function is related to the interaction between these waves and between
these particles. It gives us the part of the complete four-point function which is not
just a product of two-point functions. The part of the complete four-point function
that can be decomposed into such a product of two-point functions corresponds
to two waves or particles propagating together in a region of space-time, but that
superpose linearly, passing transparently through each other, without interacting
with one another. This is in fact all that happens in the theory of the free scaler
field. One can show (problem 3.1.2) that in that theory, where everything is linear,
the connected four-point function vanishes identically, a fact which corresponds to
the lack of interactions between waves or between particles in that theory.

In order to relate this function with the renormalized coupling constant we must
go back to the discussion of the concept of the effective action, which was introduced
in the section in reference [39] and discussed in detail in the section in reference [45].
The renormalized coupling constant is one of the parameters that appears in the
expression of the effective action, it is the parameter that relates most directly to
the connected four-point function and that encodes in the most concise way the
structure of interactions of the theory. As we saw, the effective action Γ[ϕ(c)] is a
functional of ϕ(c) defined from W [j] by a Legendre transformation. As we saw in the
equation in reference [47], the double functional derivative of Γ[ϕ(c)] with respect
to ϕ(c) is related to the inverse of the propagator. Starting from that equation we
may write, with some changes of indices and an additional sum over the lattice, the
equation

∑

3,4

g(c,j)1,3 g(c,j)2,4

d
2Γ[ϕ(c)]

dϕ(c)3dϕ(c)4

= g(c,j)1,2.

If we differentiate this once more with respect to j, using then the chain rule in order
to rewrite the derivatives as derivatives with respect to ϕ(c), as we did in the deriva-
tion of the equation in reference [47], and recalling also that the double functional
derivative of Γ[ϕ(c)] is the inverse of the propagator, we obtain (problem 3.1.3)

∑

4,5,6

g(c,j)1,4 g(c,j)2,5 g(c,j)3,6

d
3Γ[ϕ(c)]

dϕ(c)4dϕ(c)5dϕ(c)6
= −g(c,j)1,2,3.
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Figure 3.1.1: Diagrammatic representation of the equation for the three-point func-
tion.

This shows that the triple functional derivative of Γ[ϕ(c)] is related to the three-
point connected function. We can see that the connected three-point function is
obtained from the triple functional derivative of Γ[ϕ(c)] by means of a type of triple
transformation in which the transformation function is the propagator. In a dia-
grammatic language, we can say that the triple functional derivative is a vertex to
which are connected three external legs representing the three propagators that act
as transformation functions, this whole set of elements being equivalent to the con-
nected three-point function. This is therefore a new type of decomposition, a way
of decomposing the connected three-point function into simpler, more fundamental
parts. These simpler parts are denominated one-particle irreducible or “1pi” func-
tions. The corresponding diagram is illustrated in figure 3.1.1. If we differentiate
this expression a fourth and last time, using the same techniques and ideas, we
obtain, after long algebraic passages (problem 3.1.4), the relation

∑

5,6,7,8

g(c,j)1,5 g(c,j)2,6 g(c,j)3,7 g(c,j)4,8

d
4Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7dϕ(c)8

= −g(c,j)1,2,3,4 +
∑

5,6

g(c,j)1,2,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)3,4,6

+
∑

5,6

g(c,j)1,3,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)2,4,6

+
∑

5,6

g(c,j)1,4,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6
g(c,j)2,3,6. (3.1.3)

This relation has an interesting diagrammatic representation, which we illustrate in
figure 3.1.2, where the symbol (c) represents the inverse of the propagator, as defined
in the equation in reference [48]. The last three parts of this diagram correspond to
all the possible ways to build a four-point process with the connected three-point
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Figure 3.1.2: Diagrammatic representation of the equation for the four-point func-
tion.
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functions and at most a single internal (c). We see therefore that the left side of
the equation corresponds to the difference between the connected four-point function
and these constructions. It is due to this that the functions generated directly by
Γ[ϕ(c)] are called “one-particle irreducible” or “1pi”, that is, they are irreducible
functions in the sense that they cannot be separated into other functions by the
elimination of an internal line of the corresponding the diagram. In somewhat more
physical terms, the 1pi four-point function is the part of the four-point interaction
that cannot be built out of two three-point interactions. The dimensionless versions
of these 1pi functions will be denoted by γ, with position variables as arguments,

d
nΓ[ϕ(c)]

dϕ(c)1 . . .dϕ(c)n

= γ(~n1, . . . , ~nn) = γ1,...,n.

These functions are also referred to as truncated, meaning that the propagators
corresponding to the external legs are absent from the functions γ1,...,n. It is for
this reason that they are also called “vertices”, meaning that they represent only
the central vertices that connect together the external legs of the diagrams, without
the inclusion of the external legs themselves. All this diagrammatic nomenclature is
mentioned here only to make contact with what one sees in the more traditional ways
to approach the theory, since it will not have much importance for our approach in
these notes.

For models with j = 0 and in which there is symmetry by the reflection of
the fields, not only we have ϕ(c) = 0 but the symmetry also implies that all the
functions with an odd number of points vanish. In particular, g(c)1,2,3 = 0 and
there are, therefore, no three-point interactions. In this case equation (3.1.3) can be
simplified to

∑

5,6,7,8

g(c)1,5 g(c)2,6 g(c)3,7 g(c)4,8

d
4Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7dϕ(c)8

= −g(c)1,2,3,4. (3.1.4)

It is clear that the four-fold functional derivative has the effect of extracting from
the quartic term of Γ[ϕ(c)] its coefficient, which will be proportional to the renor-
malized coupling constant. Therefore, the last step we must take in this sequence of
calculations it to isolate γ5,6,7,8 in the relation above between this 1pi functions and
the connected correlation function g(c)1,2,3,4, which we already know how to write
directly in terms of expectation values of products of the fields. In order to do this
we will rewrite this equation in momentum space, performing Fourier transforms on
the four variables ~n1, . . . , ~n4 which are not added over. Taking the four-fold Fourier
transform of equation (3.1.4) and using the discrete translation invariance of the
lattice (problem 3.1.5), we obtain

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4 N
4d γ̃1,2,3,4 = −g̃(c)1,2,3,4,

where we are denoting the momentum coordinates by indices and where g̃(c)1 =

g̃(c)(~k1) is the momentum-space propagator, which depends on only a single momen-
tum coordinate, due to the discrete translation invariance. Since the propagators in
momentum space are never zero, we may now isolate the 1pi function, writing it as
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Figure 3.1.3: The effective potential as a function of the classical field ϕ(c).

γ̃1,2,3,4 =
−1

N4d

g̃(c)1,2,3,4

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4

. (3.1.5)

We have here the 1pi function written in terms of expectation values of the model
in momentum space.

In order to relate this to the renormalized coupling constant, we will have to make
some assumptions about the form that the effective action Γ[ϕ(c)] may have, which
will be based on the symmetries of the model. Let us recall then that our polynomial
model is defined by the action given in equation (1.1.1), which we reproduce here,

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s).

We will be interested primarily in analyzing the low-momentum regime of the model,
because this is enough for obtaining the value of the renormalized coupling constant,
since it appears as part of a local potential, which exists even for fields which are
constant over the lattice, having therefore infinite wavelength and vanishing mo-
menta. In addition to this, we will assume that the effective action has the same
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Figure 3.1.4: The effective potential as a function of the shifted classical field ϕ′
(c).

symmetries that the fundamental action which defines the model has. Naturally,
at this point it is necessary to consider for a while the issue of the possibility of
spontaneous symmetry breaking that we know to exist in this model.

Let us recall that on finite lattices the symmetry is always broken, with vR 6= 0.
If we introduce into the model an infinitesimal constant external source δj, the field
will spontaneously orient itself in the direction of the external source, be it positive
or negative, without the system presenting any resistance to this change. For a
sufficiently small δj, this happens without any significant change in the “energy”
(in fact, the action) of the system, so that the effective potential of the theory,
the part of the effective action that does not involve derivatives of ϕ(c), must be
completely flat in a region around the point ϕ(c) = 0, as figure 3.1.3 illustrates. We
use in this figure the quantity vR without arguments as the value of vR(α, λ, j) for
j → 0 by positive values. Both αR and λR are renormalized parameters that are
related to the form of the graph of the effective potential in the regions ϕ(c) ≥ vR
and ϕ(c) ≤ −vR.

If we rewrite the effective potential in terms of the shifted classical field ϕ′
(c) =

ϕ(c)−vR, recalling that vR changes sign when δj changes sign, then we can represent
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the effective potential as shown in figure 3.1.4. Observe that in the continuum limit
we have vR → 0, since it is necessary that we approach the critical curve in the
limit, where vR = 0 since the phase transition is second-order. Hence, if we will end
up by taking the limit, we can do the analysis either in terms of ϕ′

(c) or in terms
of ϕ(c). For simplicity, we will limit ourselves here to the derivation of the relation
between λR and the observables of the model in the case in which j = 0, but it is
not difficult to generalize the result (problem 3.1.6).

Since we will assume that the effective action, when written in terms of ϕ′
(c), has

the same symmetries that the fundamental action which defines the model has, it
follows that Γ[ϕ′

(c)] must be composed of terms that have the same symmetries of

the terms existing in S[ϕ], that is, that it must have the general form

Γ[ϕ′
(c)] =

1

ζ

{
1

2

∑

`

[∆`ϕ
′
(c)]

2 +
αR
2

∑

s

ϕ′2
(c)(s) +

λR
4

∑

s

ϕ′4
(c)(s) + (others)

}
,

where we wrote explicitly the terms which are relevant for the analysis of the low-
momentum regime of the model, ζ is the residue of the pole of the propagator and
“others” indicates terms with more than four powers of the field and terms with more
than two derivatives. Terms with many derivatives do not contribute significantly
to the low-momentum regime and terms with more than four powers of the field do
not contribute to the four-point function. Based on the numerical experience with
this model, we may assume that ζ = 1, which seems to be true with significant
precision in all cases examined so far.

When taking the functional derivatives of Γ[ϕ′
(c)], and considering that we are

interested in the case j = 0, we should realize that it is implicit that we should
put ϕ′

(c) = 0 at the end of the calculations, because this is the value of ϕ′
(c) that

corresponds to the condition j = 0 in this model. It is clear that the quadratic terms
will vanish anyway when we take the derivatives, while the terms with powers larger
than four will vanish due to the condition ϕ′

(c) = 0. Therefore, we may consider only
the terms of the effective action that contain exactly four powers of the field and no
derivatives, and so we are reduced to considering only the term

V(4)[ϕ
′
(c)] =

λR
4

∑

0

ϕ′4
(c)0,

which is the term of the effective potential which is relevant for zero momentum.
Taking the first derivative we get

dV(4)

dϕ′
(c)1

= λR
∑

0

ϕ′3
(c)0δ0,1 = λRϕ

′3
(c)1.

Multiplying this equation by f1(1), where, in order to simplify the notation, we are
denoting the mode functions of the Fourier basis as

fi(j) = eı
2π
N
~ni·~kj ,
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then adding over the variable ~n1 and differentiating a second time we get

∑

1

f1(1)
d

2V(4)

dϕ′
(c)1dϕ

′
(c)2

= λR
∑

1

f1(1)3ϕ′2
(c)1δ1,2 = 3λRf2(1)ϕ′2

(c)2.

Multiplying now by f2(2), adding over the variable ~n2 and differentiating a third
time we get

∑

1,2

f1(1)f2(2)
d

3V(4)

dϕ′
(c)1dϕ

′
(c)2dϕ

′
(c)3

= 3λR
∑

2

f2(2)f2(1)2ϕ′
(c)2δ2,3

= 6λRf3(2)f3(1)ϕ′
(c)3.

Repeating the procedure a fourth and last time we get

∑

1,2,3

f1(1)f2(2)f3(3)
d

4V(4)

dϕ′
(c)1dϕ

′
(c)2dϕ

′
(c)3dϕ

′
(c)4

= 6λR
∑

3

f3(3)f3(2)f3(1)δ3,4

= 6λRf4(3)f4(2)f4(1).

Multiplying by f4(4) and adding over ~n4 we obtain for the fourth functional deriva-
tive of V4

∑

1,2,3,4

f1(1)f2(2)f3(3)f4(4)
d

4V(4)

dϕ′
(c)1dϕ

′
(c)2dϕ

′
(c)3dϕ

′
(c)4

= 6λR
∑

4

f4(4)f4(3)f4(2)f4(1).

Since this fourth functional derivative is equal to the 1pi four-point function, we
obtain

∑

1,2,3,4

f1(1)f2(2)f3(3)f4(4)γ1,2,3,4 = 6λR
∑

4

f4(4)f4(3)f4(2)f4(1).

In the left-hand side of this equation we have N4d times the four-fold Fourier trans-
form of γ1,2,3,4, while in the right-hand side, recalling that the mode functions fi(j)
are exponentials that satisfy orthogonality and completeness relations, we have Nd

times a Kronecker delta function that expresses the conservation of momentum, that
is,

N4d γ̃1,2,3,4 = 6λRN
dδd1+2+3+4.

Combining now this equation with equation (3.1.5) we obtain the final relation
between the renormalized coupling constant and the connected correlation functions,

λRδ
d
1+2+3+4 = − 1

6Nd

g̃(c)1,2,3,4

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4

. (3.1.6)

For combinations of momenta that satisfy the conservation condition ~k1 +~k2 +~k3 +
~k4 = ~0 the delta function is simply 1 and, assuming implicitly the conservation of
momentum, we may write
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λR = − 1

6Nd

g̃(c)1,2,3,4

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4

.

Naturally, since we neglected the terms in Γ[ϕ′
(c)] with larger powers of the momenta,

this relation only makes sense for small or vanishing momenta. We take, therefore,
the zero-momentum case ~k1 = ~k2 = ~k3 = ~k4 = ~0 in order to obtain, substituting the
connected functions in terms of the complete functions,

λR =
1

6Nd

3〈|ϕ̃(~0)|2〉2 − 〈|ϕ̃(~0)|4〉
〈|ϕ̃(~0)|2〉4

. (3.1.7)

If we recall the factorization relations of the free theory for the correlation func-
tions in momentum space, that were introduced in the section of reference [44], we
immediately see that this quantity vanishes identically in the free theory.

We may also write this result in terms of the dimensionfull quantities, using the
appropriate scaling relations to transform ϕ in φ and λR in ΛR, thus obtaining

ΛR =
1

6Ld
3〈|φ̃(~0)|2〉2 − 〈|φ̃(~0)|4〉

〈|φ̃(~0)|2〉4
.

This is the quantity whose value determines whether or not there exists in this
model the phenomenon of non-linear interaction between waves, or between particles.
Naturally, this quantity is of great physical interest and we will dedicate some time
to the examination of its properties.

Problems

3.1.1. Using the definition of the connected four-point correlation function

g(c,j)1,2,3,4 =
d

4W [j]

dj1dj2dj3dj4
,

in a theory with a non-vanishing external source j, show that it is related to
the complete functions of four, three and two points by the formula

g(c,j)1,2,3,4 = g(j)1,2,3,4

− [g(j)2,3,4 ϕ(c)1 + g(j)1,3,4 ϕ(c)2 + g(j)1,2,4 ϕ(c)3 + g(j)1,2,3 ϕ(c)4]

− [g(j)1,2 g(j)3,4 + g(j)1,3 g(j)2,4 + g(j)1,4 g(j)2,3]

+ 2[g(j)1,2 ϕ(c)3 ϕ(c)4 + g(j)1,3 ϕ(c)2 ϕ(c)4 + g(j)1,4 ϕ(c)2 ϕ(c)3

+g(j)2,3 ϕ(c)1 ϕ(c)4 + g(j)2,4 ϕ(c)1 ϕ(c)3 + g(j)3,4 ϕ(c)1 ϕ(c)2]

− 6 ϕ(c)1 ϕ(c)2 ϕ(c)3 ϕ(c)4.
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Substituting the complete functions of three and two points in terms of the cor-
responding connected functions, show that the connected four-point function
is related to the complete four-point function by means of

g(c,j)1,2,3,4 = g(j)1,2,3,4

− [g(c,j)2,3,4 ϕ(c)1 + g(c,j)1,3,4 ϕ(c)2 + g(c,j)1,2,4 ϕ(c)3 + g(c,j)1,2,3 ϕ(c)4]

− [g(c,j)1,2 g(c,j)3,4 + g(c,j)1,3 g(c,j)2,4 + g(c,j)1,4 g(c,j)2,3]

− [g(c,j)1,2 ϕ(c)3 ϕ(c)4 + g(c,j)1,3 ϕ(c)2 ϕ(c)4 + g(c,j)1,4 ϕ(c)2 ϕ(c)3

+g(c,j)2,3 ϕ(c)1 ϕ(c)4 + g(c,j)2,4 ϕ(c)1 ϕ(c)3 + g(c,j)3,4 ϕ(c)1 ϕ(c)2]

− ϕ(c)1 ϕ(c)2 ϕ(c)3 ϕ(c)4,

which corresponds to the subtraction from the complete function of all the
possible factorizations in terms of connected functions with a smaller number
of points.

Observe that a significant part of the long algebraic passages involved in this
problem has already been executed before in the problem in reference [40],
relative to the three-point function. A simpler alternative way to obtain the
results shown above is to start from the final result of that problem, doing an
additional differentiation and using once more the same result to substitute
the complete three-point function where necessary.

3.1.2. Show that in the theory of the free scalar field, that is, in the λϕ4 model for
the case λ = 0 and α ≥ 0, the connected four-point function given in equa-
tion (3.1.1) vanishes identically. Recall the results related to the factorization
of the correlation functions of the free theory in momentum space, discussed
in the section in reference [44], they will be very useful here.

3.1.3. Starting from the equation in reference [46] show that we can write that equa-
tion in the form

∑

3,4

g(c,j)1,3 g(c,j)2,4

d
2Γ[ϕ(c)]

dϕ(c)3dϕ(c)4
= g(c,j)1,2.

Then differentiate this equation once more with respect to j, using the chain
rule to rewrite the derivatives as derivatives with respect to ϕ(c), thus obtaining

∑

4,5,6

g(c,j)1,4 g(c,j)2,5 g(c,j)3,6

d
3Γ[ϕ(c)]

dϕ(c)4dϕ(c)5dϕ(c)6

+

+
∑

4,5

g(c,j)1,3,4 g(c,j)2,5

d
2Γ[ϕ(c)]

dϕ(c)4dϕ(c)5
+

+
∑

4,5

g(c,j)1,4 g(c,j)2,3,5

d
2Γ[ϕ(c)]

dϕ(c)4dϕ(c)5

= g(c,j)1,2,3.
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Next, use the fact that the second functional derivative of Γ[ϕ(c)] is the inverse
of the propagator and rearrange the terms in order to obtain the final relation
in the form

∑

4,5,6

g(c,j)1,4 g(c,j)2,5 g(c,j)3,6

d
3Γ[ϕ(c)]

dϕ(c)4dϕ(c)5dϕ(c)6

= −g(c,j)1,2,3.

3.1.4. Starting from the final result of equation (3.1.3), differentiate it once again
with respect to j, using the chain rule to rewrite the derivatives as derivatives
with respect to ϕ(c), thus obtaining

∑

5,6,7,8

g(c,j)1,5 g(c,j)2,6 g(c,j)3,7 g(c,j)4,8

d
4Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7dϕ(c)8

+

+
∑

5,6,7

g(c,j)1,4,5 g(c,j)2,6 g(c,j)3,7

d
3Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7

+

+
∑

5,6,7

g(c,j)1,5 g(c,j)2,4,6 g(c,j)3,7

d
3Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7
+

+
∑

5,6,7

g(c,j)1,5 g(c,j)2,6 g(c,j)3,4,7

d
3Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7

= g(c,j)1,2,3,4.

Using again the final result of problem 3.1.3 and, once more, the fact that the
second functional derivative of Γ[ϕ(c)] is the inverse of the propagator, obtain
the final relation

∑

5,6,7,8

g(c,j)1,5 g(c,j)2,6 g(c,j)3,7 g(c,j)4,8

d
4Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7dϕ(c)8

= −g(c,j)1,2,3,4 +
∑

5,6

g(c,j)1,2,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)3,4,6

+
∑

5,6

g(c,j)1,3,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)2,4,6

+
∑

5,6

g(c,j)1,4,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)2,3,6.

3.1.5. Starting from equation (3.1.4), write it in the form

∑

5,6,7,8

g(c)1,5 g(c)2,6 g(c)3,7 g(c)4,8 Γ5,6,7,8 = −g(c)1,2,3,4

and execute four Fourier transforms on the external variables ~n1, . . . , ~n4, using
the corresponding variables ~k1, . . . , ~k4 in momentum space, and recalling that,
for a function F of n position variables ~ni,
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1

Nnd

∑

1,...,n

f1(1) . . . fn(n) F1,...,n = F̃1,...,n,

where, to simplify the notation, we are denoting the mode functions of the
Fourier basis as

fi(j) = eı
2π
N
~ni·~kj ,

besides indicating the momentum coordinates by indices on the remaining
functions in momentum space, as we have done before for the position coordi-
nates. Use also the fact that, due to the discrete translation invariance of the
lattice, we have

1

Nd

∑

1

f1(1) g(c)1,2 = f2(1) g̃(c)1,

where g̃(c)1 is the propagator in momentum space, which depends only on a
single momentum coordinate, due the the discrete translation invariance, in
order to write the final result

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4 N
4d Γ̃1,2,3,4 = −g̃(c)1,2,3,4.

3.1.6. Derive the expression for λR in terms of the zero-momentum correlation func-
tions of the model, for the general case in which j 6= 0 and vR 6= 0.

3.1.7. Show that the expression of the coupling constant in terms of correlation func-
tions with a given constant momentum ~k that enters in the direction of the
vertex in two of the four external legs and goes out in the opposite direction
in the other two legs is

λR(~k) =
1

6Nd

2〈|ϕ̃(~k)|2〉2 − 〈|ϕ̃(~k)|4〉
〈|ϕ̃(~k)|2〉4

,

both in the case in which j = 0 and vR = 0 and in the general case.

3.2 Critique of Perturbative Renormalization

Using the techniques and ideas developed in section 1.2 we may try to calculate
perturbatively the renormalized coupling constant λR, which we wrote in terms of
observables of the model in section 3.1. Using equation (3.1.7) and calculating the
observables involved to first order, with the same choice α0 = αR that we used
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for the calculation of the propagator, we obtain (problem 3.2.1) the classical result
λR = λ. Naturally, this implies that ΛR = Λ to first order in ε, which means to
first order in λ, which seems to indicate, in a superficial way, that we may have a
non-vanishing renormalized coupling constant in the quantum theory. We will see,
however, that this is an excessively superficial analysis and that the real situation
is much more complex than what it indicates.

Let us recall that, in the calculation of the propagator, the calculation of order
zero in ε resulted in the classical propagator, that is, in the propagator of the
Gaussian ensemble that we are using to approximate the ensemble of the complete
theory, while the calculation to first order in ε gave us quantum corrections to
the classical result. Also, this first-order result was not a small correction of the
zero-order result, but instead was qualitatively different from it. In the case of
the coupling constant it is clear that the zero-order calculation results in λR = 0,
which is the value of this quantity in the Gaussian ensemble, while the first-order
calculation gives us the classical result. This situation is to be expected, since we
are now calculating a quantity which is, by definition, at least proportional to the
expansion parameter λ, and that vanishes when the expansion parameter vanishes,
unlike what was the case for αR. Unlike what happened in the case of αR, we are
discussing here a quantity that does not exist at all in the Gaussian ensemble of the
free theory. Just like what happened in the case of the propagator, it is possible
that passing to the next order, which takes us away from the classical results, will
make a qualitative difference.

These results that we refer to as “classical” correspond, in the traditional lan-
guage, to Feynman diagrams with zero loops, that is, to the “tree” approximation.
These results do not include the effects of the quantum fluctuations of the fields on
the observables. Hence, the zero-loop approximations do not include the quantum
effects contained in the theory, but only the effects of the classical dynamics of the
fields. In order to include the effect of the quantum fluctuations it is necessary to
do the calculations up to the lowest order of ε which includes diagrams with one
loop. In the case of mR this meant doing calculations up to the first order in ε, but
in order to explore the effects of the quantum fluctuations of the fields on the renor-
malized coupling constant it is necessary to calculate λR to second order in ε, thus
including diagrams with up to one loop. These calculations to order ε2 are consid-
erably longer and more complex than those to the first order, and involve quantities
with strong divergences that behave as either Nd or as N2d, all of which cancel out
completely from the final results. Doing the calculation in the symmetrical phase,
with vanishing momenta on the four external legs, we obtain (problem 3.2.2)

λR =

λ

[
1 − 4

αR − α0

α0
− 9λs2(α0)

]

[
1 − αR − α0

α0

]4 ,

where the dimensionless sum s2(α0) that appears here is given, in terms of the
dimensionless free propagator g0(~n, ~n

′), by
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s2(α0) =
∑

~n

g2
0(~0, ~n) =

1

Nd

∑

~k

1

(ρ2
k + α0)2

. (3.2.1)

In principle it is also possible to do the calculation in the broken-symmetrical phase
(problem 3.2.3), but currently we do not yet know the answer for that case. Making
the choice α0 = αR as before, we obtain

λR = λ[1 − 9λs2(αR)]. (3.2.2)

Observe that, since the sum is a positive quantity, the correction is always negative,
tending to decrease the magnitude of the positive classical result. We may try to
evaluate the behavior of the sum s2 for large values of N by means of approximations
by integrals, as we did before in other cases. Doing this (problem 3.2.4) we obtain
the following results, for the usual values of the dimension d:

d = 1 : s2 ≈ 1
3π(mRL)3N

3,

d = 2 : s2 ≈ 1
4π(mRL)2N

2,

d = 3 : s2 ≈ 1
2π2mRL

N,

d = 4 : s2 ≈ 1
8π2 ln(N),

d ≥ 5 : s2 ≈ Ωd

(2π)4(d− 4)
,

(3.2.3)

where Ωd is the total solid angle of d-dimensional space. We see therefore that
the second-order result is divergent for d = 3 and d = 4, and finite for d ≥ 5.
Observe that, in order for the results in d = 3 and d = 4 to make any sense, it is
necessary that we make λ → 0 in the continuum limit, thus forcing us to return to
the Gaussian point. In d = 4 this takes us back to the free theory but, curiously,
despite this limitation the result is still of some interest in the case d = 3, because
in this case the dimensionfull coupling constant is given by ΛR = λR/a = NλR/L
and we therefore have, in terms of the dimensionfull quantities, a finite expression,

ΛR = Λ[1 − 9ΛS2], (3.2.4)

where the dimensionfull quantity S2 = s2L/N has a finite limit, so long as we have
a finite and non-vanishing renormalized mass mR,

S2 =
s2L

N
≈ 1

2π2mR

.

This seems to indicate that in d = 3 there are non-trivial limits, with ΛR 6= 0, that
approach the Gaussian point, where both λ and λR are zero. We can use this d = 3
result to exhibit explicitly renormalization flows [α(N), λ(N)], in the parameter
space of the corresponding model, that approach the Gaussian point in such a way
that both mR and ΛR are different from zero in the limit (problem 3.2.5).
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Figure 3.2.1: Behavior of the sum s2 with N in the case d = 1.

Of course this type of limit constitutes a small subset of all possible alternatives,
in which we approach, in the limit, some other arbitrary point of the critical curve,
rather than the Gaussian point. About these other possibilities our perturbative
approximation has nothing to say, but note that, is we assume that there is at
least one such limit for each one of these points, in which ΛR is finite, it follows
immediately that it is necessary that λR → 0 over the whole critical curve, when
we make N → ∞. This means that it is highly likely that the ensemble of the
renormalized theory becomes Gaussian over the critical curve in the continuum
limit. Since λR is a dimensionless quantity that measures, just like αR, a moment
of the distribution of the renormalized model, it is very reasonable to think that
both should have the same particular type of behavior in the locus of the parameter
plane of the model where the critical transition takes place. In other words, it is
reasonable to think that λR should always go to zero over the critical curve in the
continuum limit, as part of the critical behavior of the model.

We may also try to extract some information of the result in equation (3.2.2)
in the case d ≥ 5. In this case our result seems to indicate that we will have a
finite and non-vanishing λR as a function of α and λ, since the sum s2 is finite and
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Figure 3.2.2: Behavior of the sum s2 with N in the case d = 2.

non-vanishing. It is very reasonable to think that the dimensionless quantities like
λR will always be finite in the limit, when we make N → ∞, since they do not scale
with N . Since we have that ΛR = ad−4λR, for dimensions d ≥ 5 we have that a finite
λR implies a vanishing ΛR in the limit. We establish in this way the expectation
that the model is completely trivial in d ≥ 5, with λR finite and ΛR vanishing over
the critical curve. Of course this conclusion depends on the higher-order terms of
the perturbative series of λR being all finite, besides the series being convergent.
Obviously, none of these two things is guaranteed. One might even imagine that
the series could end up converging to zero, a hypothesis which would not change the
physical meaning of the theory, since that meaning is defined in terms of ΛR, which
would still vanish in the limit. However, that hypothesis would make sense in terms
of the critical behavior of the dimensionless quantity λR, as we discussed above in
the case d = 3.

In the case d = 4 we cannot conclude anything about the behavior of the theory
from our results, since in this case s2 diverges logarithmically while ΛR = λR. We
can confirm our analytical estimates of the dependencies of s2 on N and calculate
approximately the relevant coefficients, performing numerically the sum on finite
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Figure 3.2.3: Behavior of the sum s2 with N in the case d = 3.

lattices (problem 3.2.6). The results obtained in this way, for mRL = 1, are shown
in the graphs found in figures from 3.2.1 to 3.2.5. Simple but good-quality curve
fittings, with only a single parameter in the cases d = 1, d = 2 and d = 3, and with
three parameters in the cases d = 4 and d = 5, give the approximate results

s2(d = 1) ≈ 1.0N3,

s2(d = 2) ≈ 1.0N2,

s2(d = 3) ≈ 1.0N,

s2(d = 4) ≈ 1.0 + 0.013 ln(0.93N),

s2(d = 5) ≈ 0.19 + 1.0
1

N
− 0.014

1

N2
.

One may also consider calculating the expectation value of the field and of the
propagator up to order ε2, which corresponds to the inclusion of diagrams with up
to two loops. In some cases one may still be able to extract from these calculations
some useful information such as, for example, for the determination of the critical
curve (problem 3.2.7) and, in some cases, for the determination of the renormalized
mass (problem 3.2.8). However, in general the results of these calculations include
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Figure 3.2.4: Behavior of the sum s2 with N in the case d = 4.

divergent sums and it is not possible to use them in a systematic way to establish a
system of successive approximations, which hopefully would be increasingly precise,
for all the observables of the theory.

Therefore, we see that we do not really have a complete expansion for the λϕ4

model, but only a set of approximations that work reasonably well in some cases.
What we have here is not a consistent and systematic series development, but only
a set of isolated approximations whose validity can only be verified, ultimately, by
direct comparison with numerical results or other non-perturbative approximations.
Observe that this behavior of the perturbative expansion is due to the exchange of
the order of the two limits involved, the continuum limit and the series summation
limit. For finite N all the terms of the expansion are finite and the series may be
convergent, or at least asymptotic, but in the N → ∞ limit the individual terms
become infinite and nothing can be done to salvage the situation in general, except
making the parameters of the model converge sufficiently fast to the Gaussian point.
In order to make use of the series it is imperative to first sum it on finite lattices
and only then take the continuum limit, one cannot invert the order of the limits.

In conclusion, we verify that in the case of the coupling constant we do not have
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Figure 3.2.5: Behavior of the sum s2 with N in the case d = 5.

a perturbative approximation as successful as in the cases of the renormalized mass
and of the expectation value of the field. It allows us to go so far as to formulate the
conjecture that, in any dimension d ≥ 3, in any limit where N → ∞, α(N) → α(c)

and λ(N) → λ(c), where (α(c), λ(c)) is a point over the critical curve, we have λR → 0.
However, it does not allow us to make concrete predictions about the behavior of
the model away from the Gaussian point, as we were able to do for the renormalized
mass and the expectation value of the field. It seems, therefore, that the discussion
of the perturbative approximation should be separated in two parts, the first one
being relative to the calculation of the quantities involving, at most, the second
moment of the distribution of the model, as is the case for vR and αR, while the
second one relates to the quantities involving the higher-order moments, such as λR.

We see that the reason why the approximation does not work so well for the cou-
pling constant is the fact that it is not possible to impose, in this case, the equivalent
of the condition α0 = αR used in the case of the renormalized mass, which trans-
formed the first-order perturbative approximation into a self-consistent Gaussian
approximation. This is due, of course, to the fact that the Gaussian model, the
only one we know how to solve exactly, has no moments of order greater than two,
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whose coefficients may be adjusted so as to reproduce faithfully the characteristics
of the ensemble of the complete model. When we choose α0 = αR we are making
the moment of order two of the Gaussian ensemble reproduce in a perfect way the
corresponding moment of the ensemble of the complete model, so that the differ-
ence between the two distributions can in fact be considered a small perturbation
of the Gaussian distribution, in so far as that observable is concerned. However,
independently of any choices of parameters, the fourth-order moment of the Gaus-
sian ensemble is always zero and cannot be adjusted to reproduce the corresponding
moment of the complete ensemble. Therefore, the fourth-order moment can never
be understood as a small perturbation when we are dealing with observables that
only exist when this moment is not zero.

It is important that we discuss here the role of the traditional scheme of pertur-
bative renormalization, in the context of the calculations on the lattice1. First of
all, there can be no doubt that the definition of the model on the lattice implies the
existence of well-defined relations αR(α, λ) and λR(α, λ) between these renormal-
ized quantities and the parameters of the model, for any values of these parameters
within the stable region of the parameter plane of the models and in any dimension
d, for finite lattices, and over the critical curve in any dimension d ≥ 3, in the
continuum limit. Analogously, for any observable O that is physically relevant we
have a well-defined relation O(α, λ), under the same conditions. What we discover
when we work out the development of perturbation theory is that the perturbative
approximations for the relations between the observables O, αR and λR and the pa-
rameters α and λ are singular, in the sense that they contain quantities that diverge
in the continuum limit.

The traditional perturbative renormalization scheme consists of giving up, at
this point, any effort of extracting from the theory the relations αR(α, λ), λR(α, λ)
and O(α, λ) that it contains. In addition to this, on each finite lattice, where all
quantities are finite, we may consider rewriting O directly in terms of αR and λR,
eliminating the parameters α and λ from the picture in favor of their renormalized
counterparts, and thus obtaining a relation O(αR, λR) that, possibly, will not contain
any quantities that diverge in the continuum limit. If it is possible to do this, then
the relation obtained is a well-behaved perturbative approximation of O in terms
of αR and λR, and we may then take the continuum limit without stumbling on
any singularities. If it is possible to do this for the perturbative calculations to
all orders, then we say that the theory is perturbatively renormalizable, and the
scheme produces a complete perturbative series in the continuum limit, with finite
individual terms, which may or may not be convergent. Since α and λ are not directly
observable, while αR and λR presumably are, the resulting function O(αR, λR) is a
direct relation between observables of the theory, so that not much seems to be lost
when one does this.

Of course, rewriting O in terms of αR and λR on finite lattices may not be easy,
in fact, it may not be possible at all in closed form, so one may be compelled to

1These arguments were developed in discussions with Dr. Timothy E. Gallivan and with

Prof. Henrique Fleming.
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re-expand the expressions that appear when one tries to do this, possibly neglecting
higher-order terms in order to keep consistent powers of the expansion parameters.
All this considerably complicates the whole argument and makes it more difficult to
understand what is really going on when one does all this. Let us try to exemplify
this in the context of the calculations that we made here, at first in a very simple
and possibly incomplete way. We have calculated one-loop approximations for αR
and λR, obtaining expressions of the form

αR = fα(α, λ) and λR = fλ(α, λ).

We saw that, while the one-loop propagator is entirely finite, the renormalized mas
parameter being given by

αR = α + 3σ2
0λ,

the one-loop coupling constant contains the divergent sum s2, being given by

λR = λ[1 − 8s2λ].

We proceed then to a change of variables, introducing a new parameter λ0 in place
of λ, defined by the relation

λ = λ0 + 9s2λ
2
0.

Note that this mixes powers of λ and corresponds, therefore, to a reorganization of
the perturbative expansion. Substituting this expression for λ in the result for λR
we verify that the divergent terms of order λ2

0 cancel out, so that we obtain

λR = λ0 − 162s2
2λ

3
0 − 729s3

2λ
4
0.

We now argue that we can neglect in this equation the terms of orders λ3
0 and λ4

0, not
because they are small, since they are clearly divergent in the limit, but under the
allegation that they will cancel out with the remaining higher-order terms that have
not yet been explicitly included in this analysis. This is the first condition involved
in the criterion of perturbative renormalizability in a weak sense, term by term in
the perturbative expansion, without preoccupation with its convergence. What we
are requiring here is that the divergent terms cancel out, not in the original series,
but after its reorganization by the change of variables from λ to λ0. Under these
conditions we have

λR = λ0,

which shows that our change of variables is in fact a change from an expansion in
terms of the basic parameter λ to another expansion in terms of the renormalized
parameter λR. If we now write λ in terms of λR,

λ = λR + 9s2λ
2
R,
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we see that λ should diverge in order for this relation to be valid. This is the opposite
of what we saw in the original perturbative expansion, where we verified that λ must
go to zero in order for the perturbative approximation to be valid. However, since
by now we have given up obtaining from the theory the relations between the basic
quantities and the renormalized quantities, we might as well just not worry about
this any more, and simply disregard the equation above. Of course, one cannot
avoid the strong impression that this whole procedure is mired with guesswork and
arbitrariness. It certainly looks like it would be very difficult to show that all the
facts assumed do indeed hold to all orders and hence to establish the results of this
procedure on a firm logical basis.

Anyway, up to this point the change of variables has not really been of any
use, since it simply introduced another parameter λ0 that ended up being another
name for λR. No additional information about the relation between λR and the
basic parameters of the model was obtained. It is important to emphasize that
this fact is no more than a limitation of the perturbative method and that this
relation undoubtedly exists in the model defined by means of the lattice. In order
to show the possible usefulness of the perturbative renormalization scheme, we may
now consider the calculation of a third observable O, at first in terms of α and λ,
resulting in a relation of the type

O = fO(α, λ),

which presumably contains some terms with divergent factors. We may now sub-
stitute λ for λ0, re-expanding the resulting expression and neglecting once more
the higher-order terms that appear. With some more manipulation we may also
substitute α for αR, thus obtaining a new relation

O = f̄O(αR, λR),

which, so long as the model is perturbatively renormalizable, should not contain any
divergences. In this way we extract from the model a well-behaved relation between
αR, λR and O, although the fundamental perturbative expansion in terms of α and
λ is not well behaved. As an example of such an observable, we may consider the
coupling constant for a non-vanishing momentum ~k, a quantity which is related
in a direct way to the scattering cross-sections. Calculating the coupling constant
for the same momentum ~k on all the four external legs, up to order λ2, we obtain
(problem 3.2.9)

λR(~k) = λ
{

1 − 3λ
[
2s2(~0, α0) + s2(~k, α0)

]}
,

where the sum s2(~k, α0) is given by

s2(~k, α0) =
1

Nd

∑

~~k1

1

[ρ2(~k1 + ~k) + α0][ρ2(~k1 − ~k) + α0]
.
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Proceeding with the substitution of λ by λ0 = λR = λR(~k = ~0) we obtain

λR(~k) = λ0

{
1 + 3λ0

[
s2(~0, α0) − s2(~k, α0)

]}
. (3.2.5)

The difference of the two sums can be evaluated for small values of the momentum
~k with the help of approximations by integrals and, doing this in d = 4 and for large
values of N (problem 3.2.10), we obtain a finite result,

λR(~k) = λR

[
1 + 24π2λR

k2

L6m6
R

]
.

We say that the theory is perturbatively renormalizable if it is possible to do this in
each order of perturbation theory, and hence to obtain predictions with arbitrarily
high precision for O, given values of αR and λR. Note that, if we imagine that the
theory is in fact trivial, then we see that this result is not wrong, but that is is simply
rather irrelevant, because in this case the only possible value for λR is zero and the
relation simply shows that λR(~k) = 0 for any ~k. We can see now that there is in fact a
rather subtle problem behind all this. When we do this kind of manipulation we are
giving up obtaining from the theory the relations between (αR, λR) and (α, λ) and,
instead of that, we implicitly assume that certain values of αR and λR are possible in
the context of the model defined in a non-perturbative way by means of the lattice.
This seems to be a very reasonable thing to do in a model which is defined with
two free parameters, and we certainly know which values are or are not possible for
α and λ. However, we do not have now any information about which values are in

fact possible for the renormalized parameter λR, according to the non-perturbative
definition of the model. Therefore, we do now know which values we may in fact
use for λR in this perturbative renormalization scheme.

It is implicitly assumed, in the traditional perturbative renormalization scheme,
that the possible values for (αR, λR) are the same which are possible for (α, λ). How-
ever, in general it is possible that this is not true, and that there are restrictions for
the images of the relations αR(α, λ) and λR(α, λ) determined by the non-perturbative
definition of the models. One restriction that we already know to exist in this model
is that αR ≥ 0, while the parameter α can be either positive or negative on finite
lattices, and must become negative in the continuum limit, as we saw in section 1.3.
Another fact, which is even more important than this one, is that there certainly
are important restrictions for λR in a model that ends up being trivial, in which
the only possible value for λR in the N → ∞ limit is zero. We can always deter-
mine beforehand which values are possible for (α, λ), but we cannot do the same
for (αR, λR). Triviality implies that the usual implicit hypothesis, that the possible
values for (αR, λR) are the same which are possible for (α, λ), is false. To continue
with the usual perturbative renormalization scheme under these conditions can only
produce fictitious results, without any physical or mathematical relevance.

The conclusion is that a model satisfying the criterion of perturbative renormal-
izability is not sufficient to guarantee the usefulness of its perturbative expansion,
renormalized in the usual way. It is also necessary to determine the values which are
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actually possible for the renormalized parameters, in terms of which one chooses to
write the renormalized perturbative expansion. In regard to this aspect of the struc-
ture of the theory it is important to emphasize the profound difference between a
truly physical theory, such as quantum electrodynamics, and models that have only
the role of mathematical laboratories, such as the polynomial models. In quantum
electrodynamics we can go to the laboratory and determine experimentally the val-
ues of the renormalized mass and of the renormalized coupling constant, that is, of
the mass and charge of the electron, thus establishing that certain values are possible
for these quantities. On the other hand, in the laboratory models we are limited to
what we can calculate analytically or numerically and we must extract this type of
information from the relations that the models establish between the renormalized
quantities and the parameters involved in their definitions. Since perturbation the-
ory is not able to give us these relations in a complete form, it only remains for us
to try non-perturbative methods, such as computational stochastic simulations, as
tools to establish the possible values for the renormalized parameters. Another way
to characterize this profound difference is to say that, in the case of a truly physical
theory, we have access to the use of the ultimate computer: the fundamental laws
of physics at play in nature.

Problems

Note: Some of the calculations contained in some of these problems are really very

long, and a considerable amount of organization and care is needed to get to the
end without errors. The problems containing such long calculations are marked with
three stars.

3.2.1. Calculate λR using equation (3.1.7) and calculating the observables involved
to first order, with the choice α0 = αR, thus obtaining the classical result
λR = λ. Do the calculations both in the symmetrical phase and in the broken-
symmetrical phase. Note that, since λR itself is already a first-order quantity in
λ, in order to keep consistent orders of the expansion parameter the numerator
of equation (3.1.7) should be calculated to first order, while it is enough to
calculate the denominator to order zero.

3.2.2. (?) Calculate λR to second order, using equation (3.1.7), with the choice α0 =
αR, in the symmetrical phase, obtaining the result quoted in the text,

λR =

λ

[
1 − 4

αR − α0

α0

− 9λs2(α0)

]

[
1 − αR − α0

α0

]4 .

Note that, since λR itself is already a first-order quantity in λ, in order to keep
consistent orders of the expansion parameter the numerator of equation (3.1.7)
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should be calculated to second order, while it is enough to calculate the de-
nominator to first order.

3.2.3. (???) Repeat the calculation of λR to second order proposed in problem 3.2.2,
this time in the broken-symmetrical phase2.

3.2.4. Evaluate the asymptotic behavior of the sum s2 given in equation (3.2.1),
for large values of N , approximating it by integrals over the momenta, as we
did before in the case of the quantity σ2

0 related to the propagator, for each
relevant value of d. Whenever it becomes necessary to use a minimum but
non-vanishing value of the modulus of the momentum as a lower integration
limit, use mR as that value.

3.2.5. Use the result in equation (3.2.4) for the dimensionfull renormalized coupling
constant ΛR in d = 3, as well as the one-loop result for the renormalized mass
mR obtained in section 1.3, in order to exhibit explicitly flows [α(N), λ(N)]
that approach the Gaussian point in the continuum limit and for which both
mR and ΛR have finite and non-vanishing limits. Assume, if necessary, that
ΛR is small compared to mR. The solutions should tend asymptotically to the
line tangent to the critical curve at the Gaussian point, and both α(N) and
λ(N) should go to zero as 1/N . Hint: try

α =
A

N
+

B

N2
and λ =

C

N
.

3.2.6. Write programs to calculate numerically the sum s2 given in equation (3.2.1)
in dimensions from d = 1 to d = 5 and confirm the asymptotic results obtained
in problem 3.2.4. These sums should be calculated with the same numerical
techniques that were used for the calculation of the sums that appear in the
quantity σ2

0, which were calculated in the section in reference [49]. In fact, it
suffices to make small changes in the programs written for that case in order
to produce the programs needed in this case.

3.2.7. (??) Calculate vR to order ε2 and thus obtain the two-loop evaluation of
the equation of the critical curve. Start by calculating vR in the broken-
symmetrical phase and obtain the result

0 =
(
λv2 + α+ 3λσ2

0

) (
3λv2 + α− 2α0 + 3λσ2

0

)

+λ
[
9λv2 + 3(α− α0) + 9λσ2

0

]
α0

∑

~n

g2
0(~0, ~n) + 6λ2α0

∑

~n

g3
0(~0, ~n).

Next evaluate the asymptotic behavior of the new sum that appears,

s3(α0) =
∑

~v

g3
0(~0, ~n) =

1

N2d

∑

~k1,~k2

1

[ρ2(~k1) + α0][ρ2(~k2) + α0][ρ2(~k1 + ~k2) + α0]
.

2Note: the answer to this problem is currently unknown.
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Finally, recalling that α0 must go to zero as 1/N2 in the limit, make vR = 0
and show that, in the continuum limit, one recovers the one-loop result for the
equation of the critical curve,

(
α + 3λσ2

0

)2
= 0.

Therefore, we conclude that the equation of the critical curve does not contain
corrections of order λ2 and that any correction to the order-λ result must be
at least of order λ3.

3.2.8. (? ? ?) Try to calculate the renormalized mass mR in the symmetrical phase
up to order ε2. Start by calculating the propagator to this order, obtaining
the result

g2(~n1, ~n2) = g0(~n1, ~n2) −
(
α− α0 + 3λσ2

0

)∑

~n3

g0(~n1, ~n3)g0(~n3, ~n2)

+
(
α− α0 + 3λσ2

0

)2
∑

~n3

∑

~n4

g0(~n1, ~n3)g0(~n3, ~n4)g0(~n4, ~n2)

+3λ
(
α− α0 + 3λσ2

0

)∑

~n4

g2
0(0, ~n4)

∑

~n3

g0(~n1, ~n3)g0(~n3, ~n2)

+6λ2
∑

~n3

∑

~n4

g0(~n1, ~n3)g
3
0(~n3, ~n4)g0(~n4, ~n2),

which, in momentum space, can be written as

Ndg̃2(~k) =
1

ρ2(~k) + α0

− α− α0 + 3λσ2
0

[ρ2(~k) + α0]2
+

(α− α0 + 3λσ2
0)

2

[ρ2(~k) + α0]3

+
3λ(α− α0 + 3λσ2

0)

[ρ2(~k) + α0]2
s2(α0) +

6λ2

[ρ2(~k) + α0]2
s3(~k, α0),

where the sum s3 is given by

s3(~k, α0) =
1

N2d

∑

~k1,~k2

1

[ρ2(~k1) + α0][ρ2(~k2) + α0][ρ2(~k − ~k1 − ~k2) + α0]
.

Observe that, since αR must still vanish over the critical curve, and the equa-
tion of that curve did not change up to the order ε2, as we saw in problem 3.2.7,
we should expect that the renormalized mass also does not change up to this
order. Discover whether or not it is possible to choose α0 in an appropriate
way and thus show that the renormalized mass also does not change up to this
order, establishing therefore the consistency of the two calculations3.

3Note: the answer to this last question is currently unknown.
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3.2.9. (?) Calculate λR(~k) for equal non-vanishing momenta ~k on all the external
legs, entering in two of them and going out in the other two, using for this
purpose the expression for this quantity that results from problem 3.1.7, to
second order, with the choice α0 = αR, in the symmetrical phase, obtaining
the result quoted in the text,

λR(~k) = λ
{

1 − 3λ
[
2s2(~0, α0) + s2(~k, α0)

]}
,

where the sum s2 is given by

s2(~k, α0) =
1

Nd

∑

~~k1

1

[ρ2(~k1 + ~k) + α0][ρ2(~k1 − ~k) + α0]
.

Note that, since λR(~k) itself is already a first-order quantity in λ, in order
to keep consistent orders of the expansion parameter the numerator of the
equation that defines λR(~k) should be calculated to second order, while it is
enough to calculate the denominator to first order.

3.2.10. Evaluate the asymptotic behavior of the difference of sums given in equa-
tion (3.2.5), for large values ofN , approximating the sums by integrals over the
momenta, as we did before in problem 3.2.4. Whenever it becomes necessary
to use a minimum but non-vanishing value of the modulus of the momentum
as a lower integration limit, use mR as that value.
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