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2 THE POLYNOMIAL MODEL

to determine the nature of the corresponding quantum theory. This new action still
has the same symmetry of the action of the free theory, namely, it is invariant by
the sign inversion of the fields. In addition to this, it has a lower bound so long as
the parameter A, which we call the coupling constant, is positive and not zero. On
the other hand, unlike what happened in the case of the free theory, the parameter
« may be negative in this model, so long as A satisfies these conditions.

Note that the addition to the action of the free theory of a single cubic term is
out of the question for two reasons: it would break the symmetry and, more impor-
tantly, would cause the action not to have a lower bound. This second problem is
much more serious than the failure of the action to be invariant by the symmetry
transformations, since it would imply the non-existence of the corresponding quan-
tum theory. We could, on the other hand, include a cubic term together with the
quartic term, thus obtaining a non-symmetrical but stable theory. If we want to
have a stable theory and keep the symmetry, we should restrict the discussion to
terms with even powers of the field. We will do this here, for simplicity and ease
of presentation, and motivated by the fact that, in general, symmetries have an
important role to play in physics. We will discuss explicitly the case ¢*, but almost
everything that we will do can also be done for the cases ¢*, p = 2,3.,4,..., with
analogous results.

We say, in the classical theory defined by the action given above, that the field ¢
is self-interacting. As we may see in future volumes of this series, it is also possible
to define models with fields having several components that interact with each other,
and that involve invariance by groups of symmetry transformations which are larger
and more complex than the simple sign reflections that we have in the model with
a single component. It is also possible to define manageable models with different
types of field that interact with one another, which are, of course, the most important
models for real physics. However, for our objectives here we may limit ourselves to
the model with a single field component, postponing to a future opportunity the
discussion of the more complex models.

Unlike what happened in the case of the free field, in the non-linear models there
is no known way to calculate the predictions of the quantum theory in exact an-
alytical form. In this section we will limit ourselves to the qualitative description
of the behavior of the model by means of heuristic arguments based on extensive
experience with its numerical treatment. Later on we will develop a technique of
approximate perturbative calculations that will allow us to determine in a quan-
titative and fairly reliable way some of the main characteristics of the model. In
general, in the case of the non-linear models it will always be necessary to make use
of some approximation technique or of computer simulations in order to determine
the behavior of the models.

In our approach to the subject, the computer simulations will often be the main
tool for the exploration of the models. Once one becomes well acquainted with the
technique of stochastic simulation, it can become a language for the understanding of
the models, sometimes leading one to the solution of problems, sometimes suggesting
new ideas, new observables and even new models. The ideas and techniques involved
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The Ultra-Local Distribution
Determined by the Potential
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Figure 1.1.1: A typical ultra-local distribution of the fields, given by the potential,
that is, by the polynomial terms of the action, in the case (a < 0, A > 0).

In this way the theory is reduced to the study of the effect of the derivative term on
the local distributions of either x or ¢ at each site. The inverse of relation (1.1.2),
which usually can only be obtained numerically, gives us ¢(x) and enables us to
obtain ¢ with the correct non-uniform distribution, starting from the variable x with
an uniform probability distribution within a closed interval, which is not difficult to
generate numerically. In this way a part of the structure of the model, the part of the
distribution given by the ultra-local terms of the action, is implemented in an exact
way. This is, in fact, one of the ways in which one can simulate this model in practice,
by producing values of x at each site with the correct distribution, getting from them
the corresponding values of ¢, and simulating the dynamics of the derivative term
by the use of stochastic techniques. The use in stochastic simulations is the main
application of this decomposition, which usually is not very useful as an analytical
approach.

In a very general way, the complete local distribution that rules the fluctuating
values assumed by the fields at an arbitrarily given site is given by the combination of
the effects of the potential and of the derivative term. In order to discuss the behavior
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not be equal to «, and in addition to this neither will Az be equal do A. In fact,
let us recall the fact that the parameter o can be negative in this model, while the
parameter ap = (mpa)? is necessarily non-negative, and should tend to zero in the
continuum limit. The rule of the game now is that neither o nor A have any direct
physical meaning and that we are free to do with them whatever is necessary, within
the constraints of the stability of the theory, in order to have ar and Ar assume
physically acceptable and significant values in the limit N — oco.

Since we have two free parameters to adjust in the model, that is, two functions
a(N) and A(N) of the increasing size N of the lattice that we may define, it may seem
at first sight that we may always choose these functions so as to obtain any physically
acceptable values of ag(a, A, N) and Ag(a, A, N) in the limit N — oo. However, this
is not necessarily so because, besides the stability constraints that we must impose
on the basic parameters of the theory, it may be that the dynamics of the theory
itself imposes over the renormalized parameters ar and A other constraints, with
the consequence that not all the possibilities are actually realized in practice. In an
extreme case, it is possible that there are no choices of the functions a(N) and A(NV)
for which the values of ar and A\r are physically acceptable in the limit, in which
case we say that the quantum theory of the model does not ezist. In a more general
way, it may be that not all pairs of physically acceptable values for ag and \r are
reachable by means of some path [a(N), A\(IV)] with increasing N, in the space of
parameters of the theory. For example, it may be that a constraint between a g and
Ag is established in the limit, preventing us from choosing both of them freely, in
which case we may say that the parameters a and A become degenerate in the limit.

In what follows we will describe a qualitative way of understanding the behavior
of the model which, despite the fact that it is purely intuitive and heuristic, based
on the phenomenology of computer simulations, will give us qualitatively correct
results, as we will verify later on by means of approximate calculations®. In order
to do this we will, as was mentioned above, represent the effect of the derivative
term of the action by the fluctuations that it implies for the values of the field ¢ at
a given site, resulting on a Gaussian local distribution of values with a width of the
order of 1. Let us recall that in the case of the free field the width oy did not depend
on mg in the continuum limit. On finite lattices the width did depend on «ag, but
not very strongly, so long as gy was not zero on finite lattices. In an analogous way,
in our case here we expect the width ¢ not to depend on mg in the limit, while on
finite lattices it should not depend too strongly on either o or A.

In this way, in first approximation we may imagine that the width of the local
distribution behaves like a semi-rigid body with finite dimensions which are almost
constant along the continuum limit. If the width is “squeezed” to any value below
its normal size, this gives rise to a non-zero value for the renormalized mass mgr. A
zero squeezing force corresponds to zero mpg, and the larger the squeeze, the larger
the renormalized mass. As the lattice size N increases the width becomes more
“rigid”, in the sense that the same squeezing force corresponds to a larger value of
mpg, until it becomes infinitely rigid in the continuum limit, in which any non-zero

!This argument was originally developed in collaboration with Dr. Timothy Edward Gallivan.
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The Potential and the Local Distribution
Symmetrical Phase
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Figure 1.1.3: The potential and the local distribution due to the derivative term, in
the case of the non-linear theory, in the symmetrical phase.

potential is larger. This squeeze of the width of the distribution gives rise to a finite
and non-zero value for oy and hence for the renormalized mass. The decrease in the
width of the distribution is never very large, and it is still a quantity of the order of
1. The difference in width due to the squeeze goes to zero in the continuum limit
because, as we saw in the first volume of this series, in this limit it is necessary that
g go to zero in the free theory, making the potential well become infinitely wide
and flat at the position of the minimum. The fact is that such a vanishing effect over
the width is sufficient to give to the renormalized mass, in the limit, any positive
value we wish.

In our model with a quartic term, in the case where we have both o and A
positive or zero, we should expect a qualitatively similar behavior, since we have
the same derivative term in the action and a potential well with a similar form,
although the detailed format of the curve is not exactly the same. In this case, in
order for the potential well to become infinitely wide in the continuum limit, thus
allowing ar to go to zero and mpg to approach a finite value, it is necessary that
both o and A tend to zero in the limit. In this way we have just made, without too
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parameter « fill be necessarily negative, in any continuum limit of this model that
has any chance of not being trivial. In fact, in this case something very interesting
happens, because the potential of the model acquires a double well, as shown in
figure 1.1.3, which alters completely the behavior of the model, since now a new
relevant parameter related to the potential arises, given by the distance between the
two minima, which can be easily calculated from the potential. We see that we now
have two different widths at play in the problem, the width of the local distribution
and the distance between the two minima. We also have two widths related to the
potential, the width of each one of the two wells and the total width of the two
wells, which are related by a factor of approximately two. The positions of the two
minima of the potential are given by ¢ = +1/—a/\, while the value of the potential
at the minima is given by —a?/(4\).

We see at once that now the statistical disadvantage of the rise of the potential
at each side of the double well, which tend to squeeze the distribution, can be com-
pensated by the statistical advantage due to the two local minima of the potential,
which may tend to widen the distribution. Another way to put it is to say that
the central bump of the potential tends to “un-squeeze” the distribution, working
against the squeezing tendency of the potential rises at the two sides of the double
well. If we tune our parameters in an appropriate way, it may be possible to end up
with a vanishing squeeze in the limit, without the need for an infinitely wide well. In
this way the possibility arises that we may have in this case ag = 0 without it being
necessary that a or A approach zero in the continuum limit. In other words, the
possibility arises that there are certain non-zero pairs of values (a., A.) that we can
approach in the continuum limit so that ag — 0 in the limit, a behavior which, as
we discussed before in the section in [5], is typical of second-order phase transitions.
Refining a little our analysis we verify that indeed such a phase transition happens
in this model, related to a process of spontaneous symmetry breaking.

As we saw, both the distance between the local minima and the width of each
one of the two wells around them are proportional to /—a/\, which may be made
as large as we wish by choosing a negative and with absolute value much larger
than A. In this way, by adjusting the parameters we can make the two potential
wells much wider than the width of the local distribution, which is always of the
order of 1, thus making it no longer statistically favorable for the distribution to
stay centered around ¢ = 0. The depth of the two wells is given by o?/(4\) and also
increases when we make the absolute value of « larger than A, contributing to make
it statistically favorable for the distribution to shift to one of the two sides, thus
falling into one of the two wells. Since the two wells are identical, this happens in a
random way, spontaneously to one of the two sides, which therefore spontaneously
breaks the symmetry which so far implied that the expectation value of the field had
to be zero, (p) = 0. Note that the local distribution must fall to the same side at all
sites, otherwise the derivative term would make a huge unfavorable contribution to
the statistical weights. The situation of broken symmetry is illustrated qualitatively
in figure 1.1.4.

We discover in this way that a process of spontaneous symmetry breaking occurs
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only be obtained by a more complete calculation, and which means that 3. = CZo?.
We have therefore an equation determining the pairs of values (a, A.),

ClogA. + . =0,

indicating that the locus of the phase transition is a critical line with a negative
slope, which extends from the Gaussian point (o« = 0, A = 0) all the way to infinity,
within the quadrant (o < 0, A > 0) in the parameter plane of the model. Of course
it is unlikely that the critical curve is exactly a straight line, because we did not
take into consideration, in this qualitative argument, the changes in the depth of the
wells due to the variation of the parameters, but we will see later that a straight line
is in fact quite a reasonable approximation. Observe that the symmetrical phase
occupies all the quadrant (o > 0, A > 0) and part of the quadrant (v < 0,\ > 0),
differing therefore from the classical expectation that making o < 0 would always
break the symmetry. This is, of course, a direct consequence of the exchange of the
classical point body by an extended quantum object within the potential well.

We may now draw a critical diagram for the model, illustrating in this way the
two phases and the critical curve, like the one that can be seen in figure 1.1.5. The
half-axis (A = 0, < 0) and the lower half-plane A < 0 are not included in the
diagram, of course, since the model is unstable in these regions. The choice of two
functions a(N) and A(N) that determines a particular continuum limit of the model
corresponds to a path drawn in this diagram, which may start at any point within
the stable region but which must necessarily end at some point of the critical curve,
which is the locus where we have ag(a, A) = 0 in the limit. These paths are called
flows, or renormalization flows of the model. The Gaussian point is the critical point
of the theory of the free field and the continuum limits of that model are represented
by flows that go along the semi-axis (A = 0, > 0) in the direction of @ = 0. We
can see here, once again, that any limits staying within the quadrant (o > 0, A > 0)
must approach the Gaussian point. Flows can approach the same point of the critical
line from either the symmetrical phase or the broken-symmetrical phase, possibly
producing different results.

The slope of the critical curve at the Gaussian point is finite and non-zero and
can be calculated by a perturbative approximation, as we shall see later in this
chapter. The slope of the curve at the asymptotic region is also finite and non-
zero, and can be related to critical points of other models of scalar fields, the so-
called non-linear sigma models, as we shall also see later on. In addition to this,
the qualitative properties of this curve can also be confirmed by means of another
process of approximation that we will examine in detail later on, namely the so-
called mean-field techniques. By and large the nature of the critical curve is rather
well established and understood in any dimension d > 3, and the analysis can be
extended without any important qualitative changes to the models A\ for p > 3,
as well as to multi-component models which are invariant under larger symmetry
groups. In this last case the presence of more field components does introduce some
new elements into the structure, of course. Usually more precise calculations of the
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MF, = —(a+ CgAap),

whenever the quantity in parenthesis is negative, and zero otherwise. Note that the
quantity in parenthesis coincides with the equation of the critical line, thus showing
that indeed v% is zero over that line. Note also that the result for v% contains 1/,
possibly indicating that a calculation which is purely perturbative in A may not be
sufficient to obtain this result.

We may also obtain estimates for the dimensionless squared mass apg, using
arguments similar to the ones above. Starting with the symmetrical phase, which
contains the possibility that A = 0, with a > 0, we know two things about ag: first,
it must be zero over the critical line, and second it must be equal to a when A = 0.
Since the equation of the critical line contains a term linear in «, it is clear that in
order to satisfy both these criteria we must make agr equal to that equation, thus
obtaining

ap=a+Cixo  for a+Cilog >0,

where the condition is the same as before, characterizing the symmetrical phase. In
the broken-symmetrical phase we must work a little more to get the result. First
of all, let us discuss why there should be a non-zero physical mass in this case.
This is so because, after the symmetry breaks and the local distribution falls within
one of the two wells, it will become squeezed by it, leading to an increase in the
renormalized mass, is a way similar to what happens in the free theory. So it follows
that ar should have its minimum of zero at the critical line and increase when one
goes away from it on either side.

In order to estimate the value that ap should have in the broken-symmetrical
phase, let us go deeply into it, making —a > A, so that the potential is very wide
and the local distribution is sitting around one of the two local minima. Under
these conditions we may approximate the potential in the relatively small region
where the local distribution is significantly different from zero by a parabola. If we
calculate the second derivative of the potential at the minimum, which gives the
curvature of this parabola, we get for it the value —2«, which is positive because «
is negative. By comparison with the situation in free theory we see now that deep
in the broken-symmetrical phase we should have ap = —2a. Adding to this that in
this phase apg still must be zero over the critical line, we see that we must make ar
proportional to the equation of the line, with a constant of proportionality that will
bring about the correct value in the deeply broken regime. With all this it is not
difficult to see that we must have

ar=—2(a+C3Xod) for a+Cihol <0,

where the condition is once again the same as before, characterizing the broken-
symmetrical phase. Note that the value —2« for the curvature of the parabola near
the minimum only goes to zero is we make o = 0 and hence go back to the Gaussian
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quantities. If we recall our discussion about the physical significance of the block
variables in the section in [6], we will see that it is the dimensionfull variables and
parameters that have a more direct physical relevance in the quantum theory. While
the dimensionless local variables and parameters, usually numbers of the order of
1 that do not scale significantly in the continuum limit, are convenient both for
establishing mathematical facts about the internal structure of the models and for
dealing with them in a practical way in computer simulations, the dimensionfull
variables include scale factors that cause them to scale in the continuum limit in the
correct way in order to represent the superpositions of the dimensionless observables
over the large and increasing numbers of sites contained within the blocks. As we
discussed in that section, such superpositions constitute the only type of quantity
within the theory that can in fact be directly observed.

The definition of the dimensionfull field in terms of the dimensionless field in
the A¢* model is the same as in the theory of the free field, ¢ = a>=9/2p, since
it is determined only by the derivative term. We do not have in this case a mass
term properly speaking, since a can be both positive and negative, but in a way
similar to that of the theory of the free field we may introduce a parameter m
with dimensions of mass by means of the relation m? = |a|/a®. A simple analysis
of the quartic term gives us, finally, the definition of the dimensionfull coupling
constant A = a?"*\. The treatment of the sums over links and sites and of the finite
differences in the continuum limit of the classical theory, in terms of integrals and
derivatives, is identical to the one discussed in the case of the free theory, so that
we obtain for the action S[¢] in the continuum limit, in terms of the dimensionfull
quantities,

Sl = [ v {% > 00@) + (@) + %&(5)} ,

I

where the sign of the quadratic term depends on the sign of a. Observe that the
relation existing between the parameters A and A of the classical theory implies
that, since A must remain finite in the limit, A must behave in different and definite
ways in each space-time dimension. For d > 5 it is necessary that A\ diverge to
infinity in the limit in order that A be different from zero, which shows that these
classical theories have a rather singular behavior in this case. For d < 3, on the
other hand, it is necessary that A — 0 in the limit in order for A to remain finite,
showing that in this case the behavior is the reverse of that of the previous case.
For d = 4 we have that A = X and therefore in this case it is not possible to make
any definite statement of this type. Given these scaling relations between A and A
it is reasonable to think that the dimensionfull renormalized coupling constant Ag
should be defined in terms of Ag in an analogous way.

Our expectation is that, just as it is the constant A that has physical relevance
in the classical theory, the constant Ag should play the same role in the quantum
theory. As was already pointed out, the analysis of the block propagator of the free
theory in the section in [6] indicated that it is the dimensionfull quantities, based on
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1.1.8. Derive the scaling relations between A and A for the classical theory of the
Ap?, p=3,4,... models, in dimensions d from 3 to 5. Assuming only that A
remains finite in the limit, verify in which cases it is possible to have non-trivial
N — oo limits, in which A is finite and non-zero.

1.2 Perturbation Theory

In this section we will develop in detail a perturbative approximation technique for
the Ap? model which we introduced in section 1.1. As we shall see later on, it will
allow us to confirm the qualitative behavior of the model, which was described in a
heuristic way in that section. Let us recall that the model is defined by the action

Sl = 3 (Bl + 23025 + 2 6,

containing a quartic interaction term. Due to the presence of the quartic term we do
not know how to solve the model analytically. However, without this term the model
becomes Gaussian and then we are able to solve it completely. It becomes clear then
that the results of the complete model should converge to the corresponding results
of the free theory when we make A\ — 0 since, in the continuum limit, this implies
that we must approach the Gaussian point in the parameter plane of the model.

The main idea of perturbation theory is to develop an expansion for the complete
model around the soluble Gaussian model. Presumably, for small values of the
coupling constant the results of the complete model are not very different from
the results of the free theory and hence we may understand the interaction term
as a small perturbation applied to the Gaussian model. In this way, maybe we
will be able to use the expansion in order to obtain useful approximations for the
complete model near the Gaussian point in the critical diagram. This is just the
usual expectation that one has for an approximation scheme, but a word of warning
is in order here. Although we will see that it is in fact possible to calculate some
useful approximations, things are not as simple as one may think at first, and the
approximation scheme does not work quite in the way that one would expect.

The first step in the development of the perturbative technique is the separation
of the action in two parts, which we shall denominate Sy and Sy,

S = So+ 571,

where S is a purely Gaussian action. For the time being we will not be very specific
about the detailed form of each one of the two parts. We have, for an arbitrary
observable O of the complete model,

[1as10iple e
(O) = . (1.2.1)

[ldgle e
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_ %o 2
SM—?ZSO (8)7

diverge as powers of N in the continuum limit, even if we keep the models within
boxes with finite volumes. In the case of Sk we have (Sk) ~ N¢/2, while in the
case of Sy we have (Sy) = (moL)?N9 252 /2. In addition to this, it is possible to
show that in the free theory the following relation holds,

(%o = 3(¢™)5,

which is the result indicated in the problem in [9]. From these consideration it
follows that, assuming that the general form of Sy is given by Sy,

o A
Sv=> (§<p2 + 1904) :

S

where S = Sk + Sy, we have for its expectation value

2
(Sy)o = 20 (a + §a§>\> Ne.
2 2
This means that, so long as the factor within parenthesis is not zero in the limit,

(Sy)o diverges as N¢ in the continuum limit.

At first sight it may seem that the expression in parenthesis may indeed vanish
in the limit, since we must remember that, as was discussed in section 1.1, « is
necessarily negative in the limit, while the factors contained in the second term of
the expression are all positive. In fact, this expression is similar to our heuristic
estimate for the equation of the critical curve, which was o + CZo3A = 0. However,
one can verify a-posteriori that the expression is not identical to the equation of
the critical curve, either by numerical means or by the the approximations in which
we will calculate the equation of the curve later on. For example, in the case of
the perturbative approximation we will verify that the two expressions differ by
the extra factor of 1/2 that appears in the second term in the parenthesis in the
expression of (Sy ).

In any case, even if the expression in parenthesis did coincide with the equation
of the critical line, it would not be equal to zero on finite lattices, but would only
approach zero in the N — oo limit, with some inverse power of N. Since the expres-
sion is multiplied by a factor of N¢, it would have to go to zero very fast in order to
avoid the divergence. As we saw in section 1.1 and will confirm quantitatively later
on, the equation of the critical curve is directly related to the value of ag, so that it
must go to zero exactly as N~2, which is not enough to eliminate the divergence in
the dimensions of interest, d > 3. Furthermore, even if everything worked out and
(Sy)o did go to zero in the limit, if we consider that we also have that (Sk)o diverges
as N in the limit, we see that the resulting theory could not possibly fail to become
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make both o and \ approach zero very quickly, thus making the model return to
the Gaussian point.

This behavior of Sy is the basic cause that is behind all the divergences that
appear in the perturbative expansion of the model. It is directly related to the
strong fluctuations undergone by the fields in the continuum limit, as well as with
the fact that the dominating field configuration are discontinuous in the limit, as
we studied in the section in [8]. Despite all this, it is still very reasonable to think
that the observables (O) of the complete model are continuous functions of the
parameters of the model, because the observables are defined by means of statistical
averages that eliminate the fluctuations and discontinuities which are characteristic
of the fundamental field. In other words, it is reasonable to think that f(e) is at
least a continuous and differentiable function of e, so that there should be at least
a reasonable first-order approximation for f near ¢ = 0, and it could even be that f
is an analytical function of € (problem 1.2.1).

We are faced here by a rather strange situation: on the one hand, it is reasonable
to think that there is an approximation up to some order for the observables of
the complete model in the vicinity of the Gaussian point but, on the other hand,
we see that this approximation may not be accessible by means of the perturbative
expansion starting from the definition of the quantum theory, due to the divergences
that appear. Observe that this apparent conflict is related to a exchange of order
of two limits, involving the continuum limit and the limit of the summation of the
perturbative series. We may argue that on finite lattices the perturbative series can
be summed, since all the quantities involved are finite and well-behaved in this case.
Hence, in principle we may sum the perturbative series on finite lattices and after
that take the continuum limit. However, when we write the series only up to a
certain term of finite order and then take the continuum limit, we are inverting the
order of the two limits. Although it is reasonable to think that, once the continuum
limit is taken, the resulting observables should have convergent expansions in terms
of the parameters of the model, there is no guarantee that these expansions are those
obtained by the exchange of the order of the limits. In fact, the divergences that
appear show us that the two procedures must have very different results.

At this point it is important to observe that the equation (1.2.1) which defines the
observables of the quantum theory is a ratio of two quantities involving S; and that,
due to this, it is possible that some or even all the divergences due to this quantity
end up by cancelling each other, between those coming from the numerator and those
coming from the denominator, if we make a careful expansion of the ratio, that is, a
careful expansion of f(g). We will verify later on that it is indeed possible to obtain
in this way a useful approximation for some of the observables of the complete
model, despite the divergences that are involved in the limit, but we should keep in
mind that we are dealing with a singular expansion, so that it should come as no
surprise it not everything works out perfectly as expected. It is in this context that
the idea of renormalization appears for the first time with a recognizable meaning.
Unfortunately, this term is used for several different things in the structure of the
theory, but here it really has to do with renormalizing something in the usual sense.
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parameter a will become strictly negative. Therefore we cannot include the o term
in Sy, because this quadratic action would become unbounded from below and the
corresponding measure well be ill-defined even on finite lattices. The alternative of
including only the derivative term in Sy and of simply including the « term in Sy
is also not adequate, since the free massless theory that results from this has a zero
mode that could be absent from the complete model, leading to the possibility of
the appearance of spurious infrared divergences.

In order to avoid possible infrared problems we will introduce into the model a
new parameter oy > 0 associated to a quadratic term containing ¢?, in such a way
that the model is not actually changed. Dealing first with the case in which we are
in the symmetrical phase, we will choose for Sy the action of the free theory as we
have studied it since the section in [10],

Solep] = % D (D) + % > & (s).
¢ s

The interaction part S; of the action will contain the remaining terms of the original
action and a term containing ay with the opposite sign, so that the sum of Sy and
St continues equal to the original action. It follows that in this symmetrical phase
we will have for S;

5= 30| S50 + 3000)|.

S

The parameter « is clearly irrelevant in the exact model and the final results should
be independent of it. We will see later on that this is indeed the case but, since ag
appears both in Sy and in S7, which will be treated in very different ways during the
development of the approximation technique, we will also see that there are some
subtleties relating to the role played by «y. Up to this point it seems that we are
free to keep the parameter qq finite and non-zero in the N — oo limit, but it is not
very reasonable to do this because this procedure would correspond to a diverging
mass myq for the distribution defined by S in the limit. Instead of that, we will
choose oy = m3/N? and work with an mg which is kept finite in the limit, rather
than diverging. What we are hinting at here is that perhaps it is possible to improve
the quality of the approximation by a suitable choice of the free parameter «aq. If we
knew beforehand the value mpg of the renormalized (physical) mass of the complete
model in the limit, we could even consider making mgy = mpg. Although it is not
apparent at this moment that we should do this, or that we could do it, since we
do not yet know mpg, we will see later on that this is, in fact, a natural and very
convenient choice.

In the broken-symmetrical phase we expect that the expectation value of the field
() will be different from zero and, in order to enable us to develop the perturbative
approximation is a simpler way, it is convenient to first rewrite the model in terms
of a shifted field ¢’ given by

o' =p—vp, o=y +ug, (¢)=0, (@) =uvg,
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1.2.1.

1.2.2.

THE POLYNOMIAL MODEL

(%) Determine whether the function f(e¢) defined in equation (1.2.2) is or
is not analytical as a function of €. In order to do this, first extend ¢ to
the complex plane, ¢ = x + 1y with real x and y, writing the function f,
now complex, as f = wu(x,y) + w(x,y). Verify then whether u(z,y) and
v(z,y) satisfy the two Cauchy-Riemann conditions: d,u(x,y) = d,v(x,y) and
Oyu(z,y) = —0,v(x,y). Perform the verification both on finite lattices and in
the continuum limit.

(x%) It is argued in the text that the problems with the perturbative expansion
originate from the fact that (S;)o diverges as N¢ in the continuum limit. This
causes, for example, the denominator of equation (1.2.1), which defines the
observables, to behave in the limit as

(e751)y = 0.

One could imagine that one way to try to get around this problem is to add to
the action a field-independent term ((a, A, N), which corresponds to multiply-
ing both the numerator and the denominator of equation (1.2.1) by a number
Z(a,\, N) = exp[((a, A\, N)]. This corresponds to a renormalization of the
statistical averages that define the expectation values of the complete model
in terms of the expectation values of the free theory, leading to

/[dap]@[cp]e—soeC—Sz ) <(9[<p]€<751>0.
/[dcp]esoecsf <€<7SI>0

Naturally, this does not change the observables. However, we are now free
to choose ( in any way we choose, and we may consider choosing it so that
the quantity ¢ — S acquires a small or even a vanishing average value, rather
than diverging as N¢ in the limit. It is clear that in this case ¢ will have to
be chosen so as to diverge in the limit and hence cancel the divergence of the
average value of S;. Observe however that in this way we can control only the
average value of the difference ( — S;, we cannot control the fluctuations of
this quantity, because ( cannot depend on the fields.

(0) =

If we recall that, as was seen in the text, the large-N limit of equation (1.2.1)
is of the type 0/0, it is reasonable to think that a general criterion or renor-
malization condition for the choice of ¢ would be

<6C_SI>0 =1,

which causes the limit to cease to be of the type 0/0, but which is a very
complicated condition to implement. To first order, we may think that the
condition (( — S7)o = 0 should be sufficient, and it is a condition which is
much simpler to deal with. About this type of renormalization procedure we
have the following tasks to propose:
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In the symmetrical phase we necessarily have that vg = 0, while in the broken-
symmetrical phase we may have vg # 0. If the phase transition is of second order
with respect to this parameter, as it is to be expected, then the critical curve is
the geometrical locus in the parameter plane («, A) of the model where the solution
vg = 0 becomes the only possibility, when we move from the broken-symmetrical
phase to the symmetrical phase in the parameter plane. What we will do is to
determine the values of («, ) for which vg # 0 is a possibility and then impose that
vr = 0 be the only solution, so as to determine the critical curve. Along the process,
a trivial vgp = 0 solution that exists in all the parameter plane will be factored out
and eliminated. In the broken-symmetrical phase this solution corresponds, to make
an analogy with the classical case, to the unstable solution in which the system is
at the local maximum of the potential at ¢ = 0.

In order to perform this calculation we must use the separation of the action
in the free and interaction parts given in equations (1.2.4) and (1.2.5), which are
those that should be used in the broken-symmetrical phase. First of all we write
the definition of vy, that is, that it is the expectation value of the original field
¢ = ¢’ + vg. Next we use the perturbative expansion given in equation (1.2.3)
in order to write the expectation values involved, limiting ourselves to the terms
of order zero and one. We choose arbitrarily the site of the lattice with integer
coordinates 77 = 0 in order to do the calculation, a choice which is possible due to
the discrete translation invariance of the lattice. Doing all this we obtain

vr = (¢ +vr)o — [((¢' +vr)Sr)o — ((¢" +vr))o{(Sr)d] -

Since (¢’)o = 0 by construction, several terms vanish and we obtain, up to this
order, a very simple equation,

(‘P,SI>0 = 0.

Is we write this in detail, substituting the expression for S; and then using all the
available symmetries in order to simplify the expression (problem 1.3.1), in particular
the fact that the expectation values of odd powers of the field are zero due to the
fact that Sy is symmetrical by reflection of the fields, we obtain

Z [vr (a4 Mog) (¢ (5)€'(0))o + Avr (" (s)¢'(0)),] = 0. (1.3.1)

S
This equation is simply the lattice version of the equation known as the “tadpole”
equation in one-loop order. Since all the terms contain at least one factor of vg, we
may now cancel out one factor of vy, which is the trivial vg = 0 solution which we

mentioned before, obtaining

(o + Avg) <90’(0) > w’(8)> + A <90’(0) > ¢’3(8)> = 0.

The calculation of the remaining expectation values involves only Gaussian integrals
and we obtain for the first term (problem 1.3.2)
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—a, = 300, (1.3.5)

where o > —3\o? corresponds to the symmetrical phase and o < —3\o? to the
broken-symmetrical phase. We see that this equation has the same form of the
heuristic estimate that we proposed in section 1.1, differing from it only by the
numerical factor v/3 ~ 1.73 involved in the evaluation of the relation between the
width o of the local distribution and the parameter \/—a/\ of the potential well.
In other words, the result coincides with our heuristic estimate if we choose for the
numerical constant Cy introduced in that section the value Cy = v/3. We may now
write our perturbative result for vy in terms of the expression in the equation of the
critical line as

_ o2
vp = M (1.3.6)

which is only real in the broken-symmetrical phase, as expected, and which shows
explicitly how vg goes to zero when one approaches the critical line from the broken-
symmetrical phase.

At this point it is important to point out, quite emphatically, that we have just
found one more worrisome property of the perturbative approximation technique.
We have found here a definite result for the position of the critical curve for the
model in a box with periodical boundary conditions, for any value of N, either finite
or not. In addition to this, this position of the critical curve has the curious property
of depending weakly on the irrelevant parameter «q if N is finite, and of becoming
independent of the same parameter if N — oo. Taken in this superficial way, our
result seems to indicate that, given a value of «y, the system displays a completely
well-defined phase transition on finite lattices with periodical boundary conditions.

However, it is a well-known fact that there is no possibility of existence of a phase
transition on finite lattices with periodical boundary conditions in systems of the
type that we are examining here. In this kind of system, with couplings only between
next-neighbors and without external borders, the phase transition can be realized
only in the N — oo limit. We can only presume that the curious dependence on
ap for finite IV is somehow related to this fact, effectively indicating, at best, that
there can be a kind of “approximate critical behavior” for finite N. This is one
more circumstance in which we verify that this method of approximation has rather
singular properties and that it should only be used with the greatest care.

A particularly interesting aspect of the structure of the model that we can obtain
from equation (1.3.5) is the slope OA./0a. of the critical curve near the Gaussian
point, which is given by

O 1

do. 307

(1.3.7)

We may ask here how close to the truth this result can be. Note that it depends
neither on o nor on A, and let us recall that the dependence on «q vanishes in the
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and where

91(7r, fi2) = go(7i1, 7ia) — [ (71)(72)S1)o — go(7i1, 7i2) (Sr)o] -

The expectation values that appear here are the zero-order propagator, as we cal-
culated it before in the theory of the free field,

Lo 1 2 iyt 1
9o(7i1,Tiy) = — ek
N ; p2(k) + ag
and the expectation values containing S;. The first one of these can be easily
calculated (problem 1.3.5) in terms of expectation values that we have discussed
and calculated before in the sections in [12] and [11], yielding

2

Observe that all the terms diverge strongly in the continuum limit, containing factors
of N4. The calculation of the last expectation value (problem 1.3.6) is longer and,
after some work, we may write it in the form

1 3
(Sr)o == (a —ap + 5)\03) 0N, (1.3.8)

. 1 3 L
(ol = 5 (o= a0+ 3A0t) N ol )

+(or—ag +3Xa3) > go(iir, 1) go(i, i) (1.3.9)

—

n

At this point we have everything written in terms of the propagator of the free
theory. Observe that here also we have terms with strong divergences, involving
factors of N¢. The sums over position space may be rewritten in momentum space
and manipulated in such a way that, when all the terms are brought together, one
verifies that all the terms with strong divergences cancel out, resulting in the final
expression for the first-order propagator in position space,

N N 1 ,l_‘rrﬁ‘.ﬁ —7 1 o — +3)\0-2
91(”1,712):W263Vk(1 2 = - _ 0%,
- p(k)+ao  [p*(k) + o)

The expression within braces is the form of the propagator in momentum space.
Observe that this time the result depends significantly on ag. On the other hand,
we may use our freedom in principle, of choosing «g in any way we wish within
the stability bounds, in order to simplify this expression, by eliminating the second
term, which contains a double pole. In order to do this is suffices to choose

g = @+ 3)\0’8

We may do this only so long as the resulting o remains positive and so long as it
goes to zero in the continuum limit. Examining the expression in the right-hand side
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approximate the expectation values of the complete model by expectation values of
a Gaussian model, which is characterized by only two independent quantities, the
expectation value of the field vg, which is related to the first-order moment (observ-
ables with a single power of the field) of the statistical distribution of the model, and
the renormalized mass my, which is related to the second-order moment (observables
with two powers of the field). In the case in which there is a non-vanishing vg in
the complete model, the shift from the field ¢ to the field ¢’ can be understood as a
way to make identical the first-order moments of the two distributions, that of the
complete model and that of the Gaussian model used for the approximation. In a
similar way, the choice ay = ar can be understood as a way to make identical the
second-order moments of the two distributions. Both are implicit conditions which
are resolved in a self-consistent way at the end of the calculations.

We see therefore that what we are dealing with here is, much more than part of
a perturbative expansion, a Gaussian approxrimation technique, which is not at all
an expansion, but rather a single-step self-consistent type of approximation. Since
the Gaussian does not have any moments with order greater than two, we cannot
expect that this technique can be successfully used to approximate observables that
are related to the higher moments of the distribution of the complete model. In
particular, we should not expect that it will be useful to examine the issue of the
renormalized coupling constant and the phenomenon of the interaction between par-
ticles within the structure of the quantum theory, which are related to the moments
of order four and larger. In addition to this, we should not expect that it will be
possible to improve on the results obtained here by the inclusion in the calculations
of the terms of higher order of the expansion given in equation (1.2.3) since, when
we adjust the only two independent moments existing in the Gaussian distribution
so as to make them identical to the corresponding moments of the distribution of
the complete model, we are already doing the best that can be done in terms of
approximate a non-Gaussian distribution by a Gaussian distribution.

As our last objective in this section, we calculate the propagator of the model
in the broken-symmetrical phase. The calculations are all very similar to the corre-
sponding calculations in the symmetrical phase, except for the need of the use in this
case of the shifted field ¢’. In particular, in this case the same type of cancellation of
all the terms with strong divergences takes place. After some work (problem 1.3.7)
we obtain in this phase for the first-order propagator, which we denote by ¢/ (7, 7i2),
with

the result

1 WP 1
I (= =\ 127 k- (1i1—7i2)
91(7i1,Ms) = — e'N —_—
1 Nd 212: p*(k) + ag

where the renormalized mass is now defined in terms of the dimensionless parameter

agp=—2(a+3X]), (1.3.11)
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Renormalized Mass Parameter
d=4, N=4,...,14, r=0.1
0.2
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Figure 1.3.1: Perturbative results for the renormalized mas parameter agr. The
curves on the left part are in the broken-symmetrical phase. In this graph o and A
are represented by the equivalent parameters r and €, which are defined in the text.
The values of the angle # are given in degrees.

can be determined numerically, and we might call this curve the perturbative critical
curve. The small solution becomes identically zero in the N — oo limit, showing
that we should not attribute to it any physical meaning. Once more this seems to be
just a perturbative ghost associated to an unstable solution sitting at the maximum
that the potential has at the origin. The curves corresponding to the large solution
are the ones with their maximums at the left in figure 1.3.1.

One can see that it is the large positive solutions in either phase that carry
the expected physical meaning by noting that for 6 equal to 180° we are over the
positive a semi-axis and therefore have the result for the free theory, ar = «, since
in this case a« = r = 0.1. For € close to 0° we approach the negative a semi-axis
where, as we discussed before, the two potential wells acquire a large separation
from each other and the local distribution of the fields sits at the minimum of one
of them. As we saw before, the minimum of the potential can then be approximated
by a parabola with a positive quadratic coefficient —2«, and the model once more
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breaking in the quantum theory of the Ap* model. As we shall see later on, these
results are surprisingly precise in some cases and, by and large, give us a qualitatively
correct picture of the critical behavior of the model. On the other hand, it is doubtful
that the technique can be extended in an effective way to other observables and
aspects of the model. As far as one can verify up to this point, the model seems to
contain particles of mass mpg, which we may adjust freely, in addition to being able
to generate a non-vanishing expectation value vg = () for the dimensionless field.
In the continuum limit vg vanishes, since we must approach the critical curve where
the phase transition is of second order, with vgp = 0 over the curve, but it is possible
to adjust things so that the dimensionfull field has a non-vanishing expectation value
Vr = (p) in the limit (problem 1.3.12). Hence, up to this point the model seems to
contain only the phenomena of propagation and of spontaneous symmetry breaking.
Whether or not it contains anything beyond this is an issue for further exploration
and discussion (problems 1.3.13 and 1.3.14).

Problems

1.3.1. Write the expectation value (¢’Sr), in detail and derive equation (1.3.1).
1.3.2. Calculate in detail the expectation value shown in equation (1.3.2).
1.3.3. Calculate in detail the expectation value shown in equation (1.3.3).

1.3.4. Show that the result expressed by equation (1.3.5) implies that the result in
equation (1.3.7) for the slope of the critical curve at the origin is in fact exact.
In order to show this, take the limits involved with due care: take first the
limit N — oo under the condition oy = m3/N? for finite mg, and then take
the limit in which o, — 0 and A\. — 0 along the critical curve, and in which
the ratio A./a. is kept finite and non-zero. Obtain the final result in the form

where 6 is the angle between the negative o semi-axis and the tangent to the
critical curve at the Gaussian point.

1.3.5. Calculate in detail the expectation value shown in equation (1.3.8).
1.3.6. (%) Calculate in detail the expectation value shown in equation (1.3.9).

1.3.7. (%) Calculate in detail the propagator in the broken-symmetrical phase, arriv-
ing at the result shown in equation (1.3.11).

1.3.8. Show that the perturbative equation which determines the renormalized mass
parameter ag in the symmetrical phase, as a function of a and A,
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1.3.11.

1.3.12.

1.3.13.

1.3.14.

1.3.15.

THE POLYNOMIAL MODEL

(%) For given «, A and N, write a program to solve numerically the equation

ar = —2[a + 3)\08(043)]

for agr(a, ).

Verify, in dimensions from d = 3 to d = 5, whether or not there are any
continuum limits in which Vx = (¢) is finite. If there are, identify them and
verify what values the renormalized mass mpr can have in such limits. In
particular, consider limits in which it is required that both Vi and mg remain
finite. Show that in d = 3 this requirement forces us to go to the Gaussian
point in the limit, that in d = 4 we can satisfy it at any point along the critical
line, and that in d = 5 it forces us to make A tend to infinity, a limit which is
also known as the sigma-model limit.

(%) Calculate, using the first-order perturbative approximation scheme pre-
sented in the text, and making the choice ay = ag, in each one of the two
phases of the model, the quantity o4 given by o = (p?) in the symmetrical
phase and by of = (™) in the broken-symmetrical phase. Show that, in either
case, one obtains

o} =~ 305 — 6ASy,

where the sum S is given in terms of the free propagator by
Si=_g0(0,).

(x) Evaluate, in each one of the dimensions d = 3 to d = 5, the behavior of
the sum Sy that appears in problem 1.3.13, using approximations by integrals
or numerical methods. Determine the conditions under which S goes to zero
in the continuum limit, which causes the factorization rule o = 3(02)* to
hold, just as is the case of the free theory. Observe that this implies that,
to first order, (S;) = (Sr)o in the continuum limit, thus showing that the
exchange of the complete distribution by the Gaussian distribution does not
affect appreciably the singular character of the action. Observe also that this
factorization shows that the local distribution of values of the field at a site
tends to become Gaussian in the continuum limit, that is, the model becomes
progressively more similar to the free theory.

Analyze the behavior in the continuum limit of the equations that determine
agr in the two phases of the model, discussed in problems 1.3.8 and 1.3.10,
verifying that both lead to the same critical curve.
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Critical
Curve

Gaussian Point

0

Figure 2.1.1: Limits leading from the polynomial models to the sigma models by
means of negative-slope straight lines departing from the Gaussian point. Note that
lines parallel to the @ and A coordinate axes are excluded.

be strictly negative and finite, in these limits we will have &« — —o0 and A — oo in
such a way that —a/\ is a positive constant. Figure 2.1.1 illustrates the situation
for lines starting from the Gaussian point. Observe that in these limits only the
slope of the lines really matters. It makes no difference whether we use A = —Cha«
or A = —Cha + C5 for some finite constant C'5, because the finite additional term
becomes irrelevant in the limit. In fact, we may take the limit over any curve that
approaches asymptotically a negative-slope straight line. An important example of
this is the critical curve of the Ap* model, which in the A — oo limit approaches the
critical point of the corresponding Ising model.

In order to establish this connection between the two models we start by recalling
that the action of the A\p* model without external sources, as it was defined in
section 1.1, is given by

Sl = 3 (Bl + 2302 + 2 6 s)

As we already discussed in section 1.1, we may now separate the action of the model
in two parts, a kinetic part Sk containing only the derivative terms,

Silel = 5 D (Aep)?

¢
and a potential part Sy containing the polynomial terms,

_ a2 A

Svle] = ZV(@, where V(p) = 2<p2 + Zp4_
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where > [¢) = =£1] represents the sum over all the possibilities for combinations
of the sign of the field at each site, over all sites. Writing this functional integral
explicitly this once, for clarity, we have

/[dgp o(a, A\, )] e Sklel — H Z /OO de(s) ofe, A, 9(s)] e~ Sxlvel
s | y(s)==170

where 1(s) is a new variable holding the sign of the field at the site s, while ¢
assumes only positive values, due to the limits of integration adopted.

Let us now examine the behavior of g(a, A, ¢) when A — oo and a@ = =, for
some positive 3. Note that, since lines making angles 0 and 7 /2 with the a coordi-
nate axis are excluded, so are the corresponding values 3 = oo and § = 0. Executing
the calculation of the integral in the denominator we obtain (problem 2.1.1), in terms
of the parabolic cylinder functions D,

/Ooo dp eV = g (%)_ ¢S D_ (\/%_A) . (2.1.2)

Using the asymptotic form of D _

==

NI

L (problem 2.1.2) and substituting « in terms of

A, we may write the distribution p(\, ¢) = o(a = —f\, A, @), for large values of A,
as

o(\, @) ~ PA 30y (2.1.3)
m

We see here that indeed we cannot have either 5 = 0 or # = 0o, because in either
case o would vanish identically and hence would cease to be a normalizable statistical
distribution. Given a finite and non-zero value of 5 we also see that, when A — oo,
o tends to zero for all ¢ except for ¢ = /B, where it diverges as vA. Hence, given
a continuous and limited function f(y) and considering the normalization of g, one
can verify that, in the A\ — oo limit (problem 2.1.3),

| ae s ann =1 (VB) [ avern=£(VE). @1

0
In other words, the distribution g(A, ¢) tends to a Dirac delta function,

lim oA, ¢) =8 (v = VB) = 2/B 8(¢* - B).

A—00

The conclusion is that in this limit the expectation values of the polynomial model
may be written as

2 =1 /[dlso| 3(¢* — B)] O] e Sxlvv]
> =1 /[dlsol 5(p? — )] e~ Sklwvl

(O)n =
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action without changing the observables. We are left, therefore, with the bilinear
term, and we write the action as (problem 2.1.4)

Skl = =B (l-)b(ly). (2.1.5)

We have here an interaction between next neighbors involving the product of unit
spins, exactly like in the Ising model. Hence we see that the infinite coupling limit
of the O(1) polynomial model is indeed the Ising model. Therefore, the expectation
values of the polynomial model can be written as expectation values in this model,
by means of a simple rescaling of the variable appearing within the observable,

> [ =£1] O[\/By] e 210
Z[w = £1] B e (E-)v(L+) :

(Oleh)n =

Observe that, once the A — oo limit is taken in the way explained here, this rela-
tionship between the two classes of models is exact and involves no approximations
of any kind.

It is important to discuss here the situation regarding the introduction of external
sources into the model in this limit. The Ising model inherits from the polynomial
model the introduction of external sources by means of a linear term in the action,

— 3 i()e(s) = —v/B Y d(s)u(s).

It follows therefore that, apart from a rescaling of the sources by /3, the introduc-
tion of external sources is to be done in the usual way. In order to write this term in
the form which is customary in statistical mechanics, we define the external sources
n(s) for the Ising model as j(s) = v/Bn(s), so that the external-source term of the
action acquires the form

=Y is)pls) = =8> n(s)(s).

At first sight it might seem natural to include the source term of the polynomial
model in the potential part of the action, together with the ov and A terms, and then
to rework the derivation of the large-coupling limit. However, this should not be
done, for two reasons: first, the external source term does not change in the limit
and has in fact no role to play in it; second, it is not simply a polynomial term
in ¢, because its coeflicient j is not a constant like o or A, but rather an arbitrary
function of the sites. The external-source term should therefore be left in the action,
together with the kinetic term Sk, and should not be included in the measure with
the potential term Sy .

When the external-source term is treated in this way, the derivation of the large-
coupling limit proceeds exactly as before, nothing changes in the derivation because
no steps in it depend on other terms that the complete action may contain, besides
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both confirmed qualitatively by the computer simulations. In each dimension d > 3
we have therefore the same situation, a critical line in the parameter plane of the
polynomial model, connecting at one end with the Gaussian point at the origin, and
connecting at the other end with the critical point of the Ising model, over the arc
at infinity.

The situation for d = 2 is very peculiar in the case of the O(1) models and
deserves to be mentioned here. In this case the polynomial model does not exist
in the vicinity of the Gaussian point, except for the Gaussian point itself. There
is, therefore, no critical line connecting the Gaussian point to the critical point of
the two-dimensional Ising model, which does exist, however, as is well known. In
the corresponding A\¢* model there is a convergent expansion near the Gaussian
point [28], which shows that the observables are analytical functions of the param-
eters and that there is therefore no critical behavior, as our perturbative results
indicate. However, it has also been shown that there is a phase transition in the
polynomial model for sufficiently large A [28], indicating that there should be a crit-
ical line starting somewhere within the critical diagram, away from the Gaussian
point, and extending from there to the critical point of the Ising model over the arc
at infinity. The details regarding this peculiar situation are currently unknown.

Going back to the cases d > 3, besides the indications that we saw here, the
computer simulations also indicate that the Ising models have the same triviality
behavior of the polynomial models, in the sense that Az vanishes in the continuum
limit. In all these models it seems that the kinetic term of the action completely
dominates the dynamics, and that the potential terms are not sufficient to change
qualitatively the behavior dictated by the kinetic term. If even making the coupling
parameter A tend to infinity we cannot obtain truly interacting models, it becomes
clear that a deeper structural change of the models is necessary. This is exactly
what one does when one discusses gauge theories involving vector fields, in which
the interactions are introduced precisely through the kinetic term. There still is,
however, a rather long path to follow before we get to that.

Problems

2.1.1. Calculate the integral in the denominator of equation (2.1.1), obtaining the
result given in equation (2.1.2); see for example [15].

2.1.2. Use the asymptotic form of the parabolic cylinder functions D, in order to
write the local distribution of the Ising models in the form given in equa-
tion (2.1.3); see for example [25].

2.1.3. Show that the equation (2.1.4) for the local distribution of the Ising models is
valid in the A — oo limit. In order to do that, show that the exchange of f(¢p)
for f(+/B) in the left-hand side does not change the limit.

2.1.4. Expand the squares of the finite differences in the action Sk, use the condition
of constraint and neglect field-independent constants, in order to write the
action in the form given in equation (2.1.5).
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originates from the usual kinetic term and which can be written in the form of a
coupling term containing products of fields at neighboring sites. This is the type of
separation of the action that will be of interest in this section.

In its original formulation, applied to a statistical-mechanic system that does not
necessarily have to involve only interaction between next neighbors, the mean-filed
method consists of the replacement of the interactions of a given site with all the
others by an interaction between that given site and a background field that does not
undergo statistical fluctuations. In a situation like this we would be typically dealing
with the electromagnetic interactions between the charges located at a given site and
all the other charges distributed across the crystalline lattice of a solid, whose effects
on the site at issue are felt through the electromagnetic fields that each charge gives
rise to. What one does in this type of approximation is to replace the fluctuating
electromagnetic field generated by the set of all the other charges by a mean field
that does not fluctuate. This mean field is defined at each site, representing the
average collective effect of all the other sites over the charges located at that point.
Naturally, in order for this scheme to be useful it is necessary that we be able to
calculate the mean field in terms of the charges distributed across the crystalline
lattice. The calculation of this mean field clearly involves two aspects: first, there
is a sum over the volume of the lattice, in order to take into account the effect of all
the other sites, which are at various distances from the site at issue; second, there
is a temporal average in order to eliminate the statistical fluctuations of the field,
which can be exchanged for an ensemble average, according to the usual procedure
of statistical mechanics.

A realization of this idea in a model defined on the lattice, like the ones we want
to deal with here, must take into account only the interactions of a given site with
its next neighbors. On a cubical lattice, like the ones we have been using, we can
imagine that we define at each site an average field that represents the effect of
the 2d next neighbors of the site. Of course in this case we are not dealing with
electromagnetic interactions but with the self-interactions of the scalar field. Since
this mean field does not fluctuate, from the point of view of quantum field theory
it is not dynamical, and hence it should be treated like an external field jyir, that
couples to the field ¢ of the site at issue by means of an action term of the type
Jumre. Naturally, in order for this scheme to be useful it is necessary to adopt some
criterion to allow the calculation of the value of jyr in terms of the collection of
fields, now uncoupled, that exist at the neighboring sites. The usual mean-field
method on a lattice of arbitrary size consists of the replacement, in the action, of
the interaction terms of each site with its next neighbors by an interaction term of
the site with a non-dynamical external field, whose value is equal to the sum of the
ensemble averages of the dynamical field at the neighboring sites,

2d

Z p(M)p(iie) — @)Y (i) = 2d (i) (),

Tig
where the sum runs over the 2d links ¢ that connect the site at the position 7 to its
next neighbors at the positions 77y, and where () is the average value of the field
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Figure 2.2.2: Lattice with N = 2 and fixed boundary conditions, which constitutes
the first extension of the mean-field method.

each other, any result obtained for one of them is valid for all the others. Therefore,
in the traditional method it is sufficient to keep a single active site, without any
changes in the results, which establishes the equivalence of the two interpretations.
In any of the two interpretations the dynamical fields interact only with a constant
background field, independently of how we interpret this non-dynamical field, either
as an external field or as the field of the neighboring sites.

The resulting structure, in this second interpretation, is a lattice with N =1
and a border where the field is kept fixed at its average value, just like the lattices
with fixed boundary conditions that we have seen before in [32], [33] and [34], which
are represented as in the diagram in figure 2.2.1, including the active site and the
border sites. In any of the two interpretations the mathematical consequence of the
approximation is that the infinite-dimensional functional integral on the lattice is
replaced by a one-dimensional integral over the dynamical field at the only remaining
active site,

[uad o [ap o) e .
- 2.2.1

/[dcp] e Sl /d(p e~ SuF(¥) ’

where Syr is the mean-field approximation for the lattice action and O(yp) is some
observable that depends only on the field at the single remaining active site. It is
usually possible to calculate analytically the resulting integral, which establishes the
usefulness of the method in its conventional form.

This second interpretation of the method suggests at once the definition of a
series of approximations of the continuous system, of which the usual mean-field
method is the first. Just consider lattices in which more than one site is left active,
within a central cluster, while the fields at the borders are kept fixed. For example,
we may consider a sequence N = 1,2,3, ... of cubical lattices, such that the second
approximation, with N = 2, is given by the lattice illustrated in figure 2.2.2, with
2¢ sites, all in direct contact with the border.
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Figure 2.2.4: Lattice with N = 3 and fixed boundary conditions, which constitutes
the second extension of the mean-field method.

a single site. These calculations may always be performed by freezing the fields at
the sites of the border at some arbitrary value, thus leaving a single active site. One
calculates then the average value of the field at the active site, by means of the
integral that appear in equation (2.2.1), using O(p) = . Having done this, one
compares the result obtained, which will depend on the value that was chosen for
the fields at the border, with that value. Of course in general they will be different
and the self-consistency problem is to find the value to be used at the border that
reproduces exactly the same value for the average value of the dynamical field at
the active site. The determination of the value of the mean field by a self-consistent
procedure like this was first introduced in the case of the constant coupling method
of statistical mechanics.

In an analytical calculation one can simply impose this condition a posteriori,
so that it results in an algebraic equation for the average value of the field. Once
this equation is solved and the average value of the field is found in terms of the
parameters of the model, mean-field approximations for other quantities may also be
obtained. The same self-consistency condition can also be imposed in the context of
a Monte Carlo simulation in which the filed at the border is kept at a constant value,
without fluctuations, either for N = 1 or for larger values of N. In this numerical
approach a negative feedback mechanism can be used to slowly adjust the value of
the field at the border so that it and the average value of the field measured in the
interior of the lattice converge to a common limiting value. We denominate this
special type of fixed boundary conditions self-consistent boundary conditions.

The stochastic simulation with NV =1 is equivalent to a Monte Carlo calculation
of the integral that appears in equation (2.2.1). In this case the feedback mechanism
can be implemented is a very simple way. One puts at the border fields a tentative
value and lets the dynamical field fluctuate. One then measures the average value of
the fluctuating field at the active site. If this average value differs from the tentative
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to be paid for the sharpness of the transitions obtained in this way. The feedback
mechanism can consume a large amount of computer resources if we want really very
sharp results, specially in simulations that already suffer from the notorious critical
slowing down problems near the critical region. Fortunately, there exist currently
algorithms that avoid completely this kind of problem for the scalar models that we
are examining here.

Observe that we have here a set of systems with a finite number of degrees of
freedom that still display complete critical behavior. How to reconcile this fact with
the previously mentioned fact that there is no true critical behavior in systems with
a finite number of degrees of freedom? What happens is that the relevant results
contained in [30] are not relevant for the self-consistent systems, because they assume
that one is discussing systems with a finite number of degrees of freedom and no
external couplings, which implies that one must use periodical boundary conditions
in order to avoid the border. In our fixed-boundary systems there is an additional
element, which is precisely the interaction with the border sites, for which there
is a self-consistent condition. In a heuristic and intuitive way, we may think of
these systems as finite systems that have, however, a “window to infinity”. The
self-consistent boundary conditions act in fact as a kind of semi-transparent window
opening onto an infinite outer lattice that surrounds our finite lattice, letting in
some information about the infinite lattice of which our finite lattice is a cutout.
It would be possible, in fact, to consider other types of boundary fixed conditions,
more complex, sophisticated and transparent than the one we are considering here.
For example, instead of keeping the boundary fields completely fixed at their mean
values, we might consider letting them fluctuate around the mean value in some
controllable way. In the future we may discuss in more detail a proposal along these
general lines. But before that we must illustrate the method by means of some
specific calculations with self-consistent boundary conditions.

Our extension of the method to lattices of arbitrary size provides us with an
explanation of why the usual mean-field method fails completely for most models
in dimensions d = 1 and d = 2. For this purpose it is necessary to remember that
these are models that do not display phase transition in the N — oo limit. In fact,
there are theorems [31] that show that models with only next-neighbor couplings
cannot have ordered phases, with oriented fields, in the N — oo limit, in dimension
d = 1, for any symmetry groups they may be invariant by. For dimension d = 2 the
same is true for models invariant by continuous symmetry groups, such as SO(I)
for 91 > 1. For discrete symmetry groups the existence of oriented phases is possible
in d = 2, as shown by the Ising model, with the discrete symmetry group O(1) = Zs.
There are no theorems like these for d > 3, cases in which the models usually display
well-defined phase transitions in the N — oo limit.

Let us see how these theorems are realized for the models defined on finite lat-
tices of increasing size. The situation is similar in the cases of periodical boundary
conditions and of fixed boundary conditions, but it is easier to give the explanation
in the case of fixed boundary conditions. In this case one verifies that the models
always display a phase transition on finite lattices, for any model and any space-
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Getting back to our explanation of the realization of the theorems for the models
defined on finite periodical lattices, in this case the system is always in a single
broken-symmetrical phase, and taking due care with the drift of the zero-mode one
can measure vg as a function of 3. The function vg(f) turns out to be a continuous
and differentiable function, which is never zero, being typically small in the range
of the parameters of the model where the symmetrical phase will appear in the
N — oo limit, and typically large in the complementary range. What happens in
the N — oo limit, when there is a phase transition, is that the curve vg(3) gradually
changes and thus approaches a continuous but non-differentiable curve in the limit.
The point where the curve becomes non-differentiable is the critical point and, in
this case, it appears at finite values of the parameters. In the cases in which the
system does not display a phase transition in the limit the curve not only changes
shape, but also moves to arbitrarily large values of beta, so that once more all that
remains in the limit is a symmetrical, non-oriented phase.

Finally, observe that we are not stating here that the continuum limits of the pe-
riodical systems and of the self-consistent systems are completely identical, because
some of the observables may depend on the boundary conditions adopted, which are
different in either case. These are two different classes of continuum limits, whose
properties can be somewhat different. Usually the more basic observables of the
system, such as the values of the parameters at the critical points, the renormalized
masses and the expectation values of the fields, will not depend significantly on the
boundary conditions, but observables with a subtler type of behavior, such as the
critical exponents, may very well depend strongly on the boundary conditions. In
fact, one can show that the critical exponents differ significantly in the two cases
that we are discussing here. Besides the fact that fixing the field at the border does
not make much physical sense in the context of quantum field theory, this is an-
other reason why it is important to think about generalizations of the self-consistent
boundary conditions described here, for example in order to allow the border fields
to fluctuate, as was mentioned before in this section. This subject may be discussed
in more detail in a future volume of this series.

2.3 Some Mean Field Results

We will perform in this section a few analytical calculations, in the usual mean-
field approximation with N = 1, of some observables of the scalar field models,
using the ideas presented in section 2.2. The approximations with N > 2. involving
the extension of the method which was also discussed in that section, are usually
too complex for an analytical treatment and are better characterized, therefore, as
material for performing stochastic simulations, which will be discussed in a future
volume. The calculations we will present here can be understood as exact analytical
solutions for the lattice systems with a single active site. We will start with the
Ising models, in which the calculations are somewhat simpler.

A quantity of particular interest in the Ising models is the magnetization, which
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Vrp = 2d ﬁI/R.
A factor of v cancels off and we are left with
1=2dp.

After the cancellation of the trivial solution vg = 0 we may impose the condition
vr = 0 in order to find the region where only this zero solution is possible. Observe
that the equation above does not depend on vi. Had we kept the higher-order terms
of the expansion, the condition vz = 0 would eliminate them at this point, leaving
only the equation above. Hence we obtain the mean-field approximation for the
critical points

5u(d) = 5

This technique of expansion around the critical point is useful in cases in which the
mean-field results cannot be obtained explicitly, or in which the exact solutions of
the resulting equations are difficult to determine analytically.

In four dimensions this N = 1 result is in fairly good agreement with the nu-
merical results obtained for larger values of N. The agreement is poorer in three
dimensions, very poor is two dimensions, and the result fails completely in one di-
mension, in which there is no critical point at all. Observe that the success or lack
thereof on the N = 1 approximation in reproducing well the results for large values
of N is not a diagnostic about the validity of the method itself, bur rather an indi-
cation of whether or not the results for increasing values of N accumulate around
some finite value of 5. For d = 1 the values (.(N) for each lattice size diverge to
+00 when N — o0, so that no finite lattice can represent well the limit. In larger
dimensions the critical points G.(N) of the finite lattices converge to finite values in
the N — oo limit, so that in these cases the approximation of the limiting result by
the results for finite lattices makes some sense, being better or worse depending on
the speed of convergence.

Table 2.3.1 contains results for the critical points of the Ising models for dimen-
sions from d = 1 up to d = 4. For d = 4 the result was obtained by means of
extrapolations to the N — oo limit of the results of stochastic simulations with
periodical boundary conditions on lattices with N from 4 to 10. For d = 3 we quote
the most precise result that we know about [36]. For d = 2 we quote the well-known
result for the two-dimensional Ising model [37]. Since the estimate from periodical
simulations is obtained from the continuous and differentiable curves of the magne-
tization as a function of (3, the error bars indicated are only approximate estimates.
The entry oo indicates the case in which the theorems about long-distance order [31]
imply that there is no phase transition, which is the same in which .(N) — oo when
N — o0 in the simulations with self-consistent fixed boundary conditions. The re-
sults of equation (2.3.2) are also included, for comparison. As one can see, in d = 4

(2.3.2)
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If we use here our “radial-angular” decomposition of ¢ into its absolute value and
its sign, ¢ = Y|y, with ¢» = £1, as was done in section 2.1, we may write this as

S [ = 1] / " dip i eXvrve =/ 0/0
0

Sl = 41 / " dyp eHvrve [/
0

VR =

We may now execute the sum over the single active site and hence get

/ de ¢ sinh(2d vgryp) o [T/ +(0 /40"
VR = : (2.3.5)
/ de cosh(2d vryp) e~ [@+a/2)e*+ (V0]
0

In this case it is also possible to perform the integrations analytically in terms
of special functions (problem 2.3.5) but, close to the critical curve, it suffices to
calculate the right-hand side of this equation for small values of vz. Therefore, we
expand equation (2.3.5) to first order in v and obtain

/ " dp o el
0

/ > dyp e[/ 0/
0

VR — 2dUR

Just like before, a factor of v cancels out and we obtain as our mean-field result an
equation giving implicitly the critical curve A = f(«),

1 / " dp o el
0

— —Jo__ . (2.3.6)
2d / dyp e~l+ar2e+0 /]

0

Once more the integrations can be done, this time in terms of the parabolic cylinder
functions D, (problem 2.3.6), but this does not help us to solve this equation in
order to write the equation of the critical curve in explicit form. The fact that
the left-hand side of this equation is equal to the mean-field value of the critical
point (. of the corresponding Ising model is not an accident, it is clearly related
to the fact that the A\ — oo limits of the A¢* models converge to the Ising models
(problem 2.3.7).
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Critical Curve of the Polynomial Model

symmetry O(1), dimension d=3, small values
T T T | T T T | T T T 40

Figure 2.3.1: The mean-field critical curve of the Ap* model with O(1) symmetry,
in d = 3, for the smaller values of the parameters.

We are led to conclude that the mean-field approximation confirms the basic
properties of the critical curves that we discussed before in sections 1.1 and 1.3.
One can improve on the comparison with the perturbative results by calculating the
mean-field approximation for the quantity o = (p?) over the critical curve, where
vr = (p) is zero. The mean-field approximation for o2 is given by

S [ = 1] / " dip ? evrve ol(@ra/e + /0]
0

Sl = 1] / " dp 2ivnve o~[@ra/e 0/
0

2

OMF =

and if we execute the sum over the signs at the single active site we get

/OO dey ¢?* cosh(2d vryp) o [(d+a/2)p*+(\ /40t
2 0

OMF —

/OO de cosh(2dvgyp) e~ (@+a/2e?+(0/4)6!]
0
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Critical Curve of the Polynomial Model

symmetry O(1), dimension d=4, small values
| T | T | T | T | T 40

— —30
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| 1 | 1 | 1 | 1 | 1 0
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Figure 2.3.3: The mean-field critical curve of the Ap* model with O(1) symmetry,
in d = 4, for the smaller values of the parameters.

If we now recall the perturbative result for the equation of the tangent line to the
critical curve at the Gaussian point, which can be obtained from equation (1.3.7),
and can be written as

Ma)=—— .

a5

we see that the two results are identical except for the exchange of of and ofp.
Therefore, the two results for the slope of the critical curve at the Gaussian point
coincide within the expected level of precision of the mean-field approximation, since
the mean-field result is just an approximation, while the perturbative result of the
Gaussian approximation is, for this particular quantity, presumably exact.

We can also calculate the critical exponent of vg in the case of the polynomial
models. In order to do this it is necessary to expand equation (2.3.5) up to a higher
order in vg, so as to allow us to write the differential of v} (a, A) as a function of da
e dA. This is the work proposed in problem 2.3.10, and it can be shown that it is
possible to write the differential of v% as



70 THE SIGMA-MODEL LIMIT

points of the Ising models is due to the fact that we are using the N = 1 mean-field
approximation in the right-hand column. Another part of the discrepancies may
be due to the fact that we are comparing results for systems with very different
boundary conditions, since the left-hand column refers to systems with periodical
boundary conditions. A situation like this is probably more likely to be realized for
the finer, more delicate observables, such as the critical exponents and correlation
functions, than for the more basic objects such as the critical points.

The choice of boundary conditions is an important subject within the structure
of the quantum theory, just as it is in the classical theory. It should be noted that
there are other ways, besides the one that we examined here, to implement fixed
boundary conditions, some of which may be physically more natural and compelling
from the point of view of quantum field theory. One example of this kind of thing
was proposed in the last chapter of a previous volume of this series of books [35].
Other ideas related to that one may be discussed in future volumes.

Problems

2.3.1. Verify that vg = 0 always satisfies equation (2.3.1). In order to discover
whether there are values of 3 for which it is possible to have a solution vg # 0,
use the series expansions of the hyperbolic functions to obtain the relation

d B [(2k 1) —2d 8] = 0.

0 (Zd ﬁVR)QkH
— (2k +1)!

k=0

Observe that all the factors in each term of this series are always positive
except for the last one on the right. Use this fact to determine the interval of
values of § for which it is possible to have 2d fvr and therefore vy different
from zero as a solution of this equation, and thus determine the mean-field
critical points (. of the Ising models.

2.3.2. Write a program to solve numerically equation (2.3.1) and plot graphs of vg
as a function of § for some values of d > 3. Consider using the exponential
bisection method and consider the results of problem 2.3.1. Verify how close
to the exact result in the broken-symmetrical phase is the ansatz

3(ﬁ B ﬁc)

YR 33 =28,

which has the correct behavior for 3 close to 3. and that tends to 1 for § — oo.

2.3.3. Expand the right-hand side of equation (2.3.1) up to the third order on the
variable A = 2d fvr and show that the terms with even powers of the variable
vanish, thus obtaining the result

A3

VR:A—?.
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2.3.6.

2.3.7.

2.3.8.

2.3.9.
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The integrals may now be written in terms of the parabolic cylinder functions
D, [15], so use them to write the final form of the equation

—k/2 2d+a
) (%)

—k/2 2d+a \
) "D () (222)

Use the same techniques of problem 2.3.5 in order to calculate the integrals
that appear in equation (2.3.6), and thus obtain

o>~

oo (dv)?k
V2N D he0 (
2d o oo (dv)2k
Zk:O ( k;? (

N>

var Doy (¥) (238)

by (%)

Observe that this result is the same of problem 2.3.5 if we truncate the two
series that appear there, leaving only their first terms, those with k£ = 0.

Take explicitly the Ising-model limit of equation (2.3.6), making A — oo and
a — —oo with a = —f )\, and show that it reduces to the known result for the
value of the critical point of the Ising model.

Obtain the asymptotic form of the critical curve, for large values of —a and A,
using in equation (2.3.8) the asymptotic expansion of the parabolic cylinder
functions D, [25], to the lowest non-vanishing order, thus obtaining the result

)\(a):—i(a+2d).

In order to obtain the behavior of the critical curve for small values of —« and
A, write equation (2.3.6) in the form

/ " dyp o e l@rare gt _ % / " dp e[@rernetromgt]
0 0

and differentiate implicitly in terms of da e d\, applying the resulting coeffi-
cients at the Gaussian point. The integrals that appear in these coefficients
are expressible in terms of the I' function [14], so use them to obtain

dx  2d

da 3°
Integrate this first-order differential equation for A(a)) with the boundary con-
dition A(0) = 0, thus obtaining the final result
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3

0

Stating from these expressions verify that C, and C) are finite and non-
vanishing numbers in the vicinity of the critical curve. This suffices to show
that the critical exponent of vy is once again v = 1/2 when we approach the
critical curve in the parameter plane of the model, from any direction within
the broken-symmetrical phase. Verify also that these two coefficients are neg-
ative, showing that the gradient of v% is oriented in the expected direction.
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J = 0. In addition to this, the connected Green functions g ;). » in the presence
of external sources can be obtained by means of multiple functional differentiations
with respect to j of the functional W{j] = In(Z[j]). It is in these connected func-
tions that the true correlations of the theory are encoded, including in the case in
which we have non-vanishing external sources. The connected two-point function
was calculated explicitly in the equation in reference [42] and the calculation of the
corresponding three-point function was proposed in the problem in reference [43].

In that problem, starting from the definition of the three-point function in terms of
Wi,

W [j] g
~ . . — Ycj)1,2,35
2j10j0j; Y
one shows that this functions can be written in terms of the complete three-point
function as

9(e,)1,2,3 = 9()1,2,3 — 9(c,j)1,2 P(e)3 — 9(c,5)2,3 P(e)1 — Y(c,5)3,1 P()2 — P(e)1 P(e)2 P(c)35

which corresponds to the subtraction from the complete function of all possible
factorizations in terms of connected functions with a smaller number of points. Note
that we returned here to the notation of the section in reference [39], denoting the
expected value of the field by ¢, instead of v and the dependencies on the positions
7; of the sites by indices, ¢()(71) = @()1. Observe that in any circumstances in
which ¢y = 0, which naturally implies that j = 0, we have for this connected
function g(c)1,2,3 = g1,2,3, which makes the definition of the renormalized coupling
constant considerably simpler in models based on three-point interactions, as is the
case, for example, for electrodynamics.

However, the polynomial models of scalar fields, such as the Ap* model that we
are studying here, are based on interactions involving four or more points, so that
we must go at least up to the four-point function in order to be able to define the
renormalized coupling constant. It is necessary, therefore, to take a fourth and last
derivative of W{j] (problem 3.1.1), which results, after a long but straightforward
algebraic calculation, in a relation between the connected four-point function and
the corresponding complete function,

91,234 = 9(4)1,2,3,4
[9(c.)2,3.4 P(e)1 T Ile)1,34 Pe)2 + G(ei)1.24 L3 + Gej)1,2,3 Ple)4]
— (912 9c.)3.4 T 9ei)1,3 9ieg)2a T 9ies)a Iieg)2,3]
— (912 L3 Pea T Ge)13 P2 Pea T Geg)ia P2 P
F9(e.)2.3 Pl Pe)4 T Ileg)2a Pl L3 T Iei)3a Pl Loz
= D)1 L(e)2 P(e)3 Pc)4- (3.1.1)
As was the case for the three-point function, this time we also obtain, as one can

see, the subtraction from the complete function of all the possible factorizations
in terms of connected functions with a smaller number of points. The expression
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3

Figure 3.1.1: Diagrammatic representation of the equation for the three-point func-
tion.

This shows that the triple functional derivative of I'[¢(] is related to the three-
point connected function. We can see that the connected three-point function is
obtained from the triple functional derivative of I'[¢o()] by means of a type of triple
transformation in which the transformation function is the propagator. In a dia-
grammatic language, we can say that the triple functional derivative is a vertez to
which are connected three external legs representing the three propagators that act
as transformation functions, this whole set of elements being equivalent to the con-
nected three-point function. This is therefore a new type of decomposition, a way
of decomposing the connected three-point function into simpler, more fundamental
parts. These simpler parts are denominated one-particle irreducible or “1pi” func-
tions. The corresponding diagram is illustrated in figure 3.1.1. If we differentiate
this expression a fourth and last time, using the same techniques and ideas, we
obtain, after long algebraic passages (problem 3.1.4), the relation

Z g( ‘)159( 1)2,6 g( 13,7 g( 14,8 D4F[S0(C)]
5,6,7,8 5 WJ )4 .7)3, +J ’3@(0)5D‘P(c)6390(c)704p(c)8

0T p(e)]
= —0(cj)1,234 T JeNl2sm = —
(ed) ; (ed) D()0(0)5090(0)6

0*Tp(e)]
+ Jle )35 =< 9(c,j)2,4,6
;; ) 00(6)500(c)6 (ed)

9(c,5)3,4,6

0 F[@( )]
+ 9(c,5) L5y 9(c,5)2,3,6 (3.1.3)
Z (¢.d) 2509(e)0 (c.d)

This relation has an interesting diagrammatic representation, which we illustrate in
figure 3.1.2, where the symbol CJ) represents the inverse of the propagator, as defined
in the equation in reference [48]. The last three parts of this diagram correspond to
all the possible ways to build a four-point process with the connected three-point
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functions and at most a single internal [J). We see therefore that the left side of
the equation corresponds to the difference between the connected four-point function
and these constructions. It is due to this that the functions generated directly by
I'[¢] are called “one-particle irreducible” or “Ipi”, that is, they are irreducible
functions in the sense that they cannot be separated into other functions by the
elimination of an internal line of the corresponding the diagram. In somewhat more
physical terms, the 1pi four-point function is the part of the four-point interaction
that cannot be built out of two three-point interactions. The dimensionless versions
of these 1pi functions will be denoted by ~, with position variables as arguments,
"))

aQO(c)l .. .D(,O(C)n
These functions are also referred to as truncated, meaning that the propagators
corresponding to the external legs are absent from the functions vy, ,. It is for
this reason that they are also called “vertices”, meaning that they represent only
the central vertices that connect together the external legs of the diagrams, without
the inclusion of the external legs themselves. All this diagrammatic nomenclature is
mentioned here only to make contact with what one sees in the more traditional ways
to approach the theory, since it will not have much importance for our approach in
these notes.

For models with j = 0 and in which there is symmetry by the reflection of
the fields, not only we have o) = 0 but the symmetry also implies that all the
functions with an odd number of points vanish. In particular, ge23 = 0 and
there are, therefore, no three-point interactions. In this case equation (3.1.3) can be
simplified to

—

= ’7(517 SRR nn) =M,..n-

T[]
Z 9(c)1,5 9()2,6 9(c)3,7 9(c)4

.8 = —J(c 1,2,3,4- (314)

It is clear that the four-fold functional derivative has the effect of extracting from
the quartic term of I'[¢,] its coefficient, which will be proportional to the renor-
malized coupling constant. Therefore, the last step we must take in this sequence of
calculations it to isolate 57 in the relation above between this 1pi functions and
the connected correlation function g(c1234, which we already know how to write
directly in terms of expectation values of products of the fields. In order to do this
we will rewrite this equation in momentum space, performing Fourier transforms on
the four variables 7y, ..., 74 which are not added over. Taking the four-fold Fourier
transform of equation (3.1.4) and using the discrete translation invariance of the
lattice (problem 3.1.5), we obtain

G 902 93 9t N V1234 = —G(e)123.45
where we are denoting the momentum coordinates by indices and where g1 =

ﬁ(c)(gl) is the momentum-space propagator, which depends on only a single momen-
tum coordinate, due to the discrete translation invariance. Since the propagators in
momentum space are never zero, we may now isolate the 1pi function, writing it as
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Effective Potential

As a Function of the Shifted Classical Field
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Figure 3.1.4: The effective potential as a function of the shifted classical field gp’(c).

symmetries that the fundamental action which defines the model has. Naturally,
at this point it is necessary to consider for a while the issue of the possibility of
spontaneous symmetry breaking that we know to exist in this model.

Let us recall that on finite lattices the symmetry is always broken, with vg # 0.
If we introduce into the model an infinitesimal constant external source 07, the field
will spontaneously orient itself in the direction of the external source, be it positive
or negative, without the system presenting any resistance to this change. For a
sufficiently small 7, this happens without any significant change in the “energy”
(in fact, the action) of the system, so that the effective potential of the theory,
the part of the effective action that does not involve derivatives of ¢, must be
completely flat in a region around the point ¢y = 0, as figure 3.1.3 illustrates. We
use in this figure the quantity vg without arguments as the value of vg(a, A, j) for
J — 0 by positive values. Both ar and A are renormalized parameters that are
related to the form of the graph of the effective potential in the regions ) > vr
and o) < —vR.

If we rewrite the effective potential in terms of the shifted classical field go’(c) =
©(¢c) — VR, recalling that v changes sign when d;j changes sign, then we can represent
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then adding over the variable 77; and differentiating a second time we get

D Vig
Z e D( T ARZ f1(1)3<P,(20)151 2 = 3Arfa(1 )SO(C
Pl ey T
Multiplying now by f2(2), adding over the variable 7y and differentiating a third

time we get

2°
Zﬁ ) fa(2 Y = 3)\RZf2(2)f2(1)290/(c)252,3

Pl019%(029% (03
= 6)\Rf3( ) f5(1) (s
Repeating the procedure a fourth and last time we get
2t V4)
AL 5(3) 67 Y f3(3)f3(2) f3(1)03.4
i 08(010€(029%(039% (0 3
= G6Arfa(3)fa(2) fa(1).

Multiplying by f4(4) and adding over 774 we obtain for the fourth functional deriva-
tive of V}

'V
§ J1(1) f2(2) f3(3) fa(4) = ; ; ;
Xy 09()19%(¢)29%()39¢ ()4

=6\ Z Ja(4) f4(3) f4(2) fa(1).

Since this fourth functional derivative is equal to the 1pi four-point function, we
obtain

Z S1(1) f2(2) f5(3) fa(4 )71234—6>\R2f4 ).f4(3) f4(2) fa(1).

1,2,3,4

In the left-hand side of this equation we have N4? times the four-fold Fourier trans-
form of 71234, while in the right-hand side, recalling that the mode functions f;(j)
are exponentials that satisfy orthogonality and completeness relations, we have N¢
times a Kronecker delta function that expresses the conservation of momentum, that
is,

d ~ _ dsd
N 1234 = 6ARN 0 9.3, 4-

Combining now this equation with equation (3.1.5) we obtain the final relation
between the renormalized coupling constant and the connected correlation functions,

1 9(e)1,2,3,4
6Nd g(c)l 5(0)2 5(0)3 §(0)4

)‘R51+2+3+4 (3.1.6)
For combinations of momenta that satisfy the conservation condition /21 + /;2 + E3 +
ky = 0 the delta function is simply 1 and, assuming implicitly the conservation of
momentum, we may write
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Substituting the complete functions of three and two points in terms of the cor-
responding connected functions, show that the connected four-point function
is related to the complete four-point function by means of

9(c,)1,2,34 = 9(4j)1,2,3,4
[9(e.)2,3.4 P(e)1 F Ile)134 P2 + G(ej)1,24 L3 T G(ej)1,2,3 Ple)4]
— 9.2 9z T Yie)3 9e2a + Giej)ng 9ie)2.s]
= [9e)1.2 Pe)3 Pt T Ge)13 P2 Pea T Geg)ia P2 Ple)3
+9(c.)23 L1 P4 T Iei)2.4 Pl L3 T Geg)3a L1 Ple2]
— P11 P2 Pe)3 P)4

which corresponds to the subtraction from the complete function of all the
possible factorizations in terms of connected functions with a smaller number
of points.

Observe that a significant part of the long algebraic passages involved in this
problem has already been executed before in the problem in reference [40],
relative to the three-point function. A simpler alternative way to obtain the
results shown above is to start from the final result of that problem, doing an
additional differentiation and using once more the same result to substitute
the complete three-point function where necessary.

Show that in the theory of the free scalar field, that is, in the Ap* model for
the case A = 0 and o > 0, the connected four-point function given in equa-
tion (3.1.1) vanishes identically. Recall the results related to the factorization
of the correlation functions of the free theory in momentum space, discussed
in the section in reference [44], they will be very useful here.

Starting from the equation in reference [46] show that we can write that equa-
tion in the form

DZF[QO(C)]

AT = J(cj)L,2
0Y(0)309(c)4 (3)

Z 9(e.)1,3 9(e,5)2
3,4

Then differentiate this equation once more with respect to j, using the chain
rule to rewrite the derivatives as derivatives with respect to ¢, thus obtaining

Z 9(e.j)1,4 9(c.5)2,5 Y(c,5)3,6 Dgf‘[ap(c)]
45,6 o . S DSp(c)40()0(c)50()0(c)6
0°T (o]
+ Jen,3.4 9e 2=
; (e.d) (e.d) 0010905
°T ()
+ Z 9(e,j)1,4 g(c,j)2,3,57( ) = 9(e)1,2,3-

15 09(0)40¥ ()5



88

3.1.6.

3.1.7.

INTERACTIONS BETWEEN PARTICLES

1 ~
v 2 S fa(n) P = By,
1,...,n

where, to simplify the notation, we are denoting the mode functions of the
Fourier basis as

27 7

fi(j) = e vk,

besides indicating the momentum coordinates by indices on the remaining
functions in momentum space, as we have done before for the position coordi-
nates. Use also the fact that, due to the discrete translation invariance of the
lattice, we have

1 _
w2 22 11 gena = f(1) G
1

where g is the propagator in momentum space, which depends only on a
single momentum coordinate, due the the discrete translation invariance, in
order to write the final result

Gon G2 93 9a N* Tiosa = —G(en.2.3.4-

Derive the expression for Ag in terms of the zero-momentum correlation func-
tions of the model, for the general case in which j # 0 and vg # 0.

Show that the expression of the coupling constant in terms of correlation func-
tions with a given constant momentum k that enters in the direction of the
vertex in two of the four external legs and goes out in the opposite direction
in the other two legs is

L1 20@R)? - (3R]
M) = (eEpe

both in the case in which j = 0 and vz = 0 and in the general case.

3.2 Critique of Perturbative Renormalization

Using the techniques and ideas developed in section 1.2 we may try to calculate
perturbatively the renormalized coupling constant A\g, which we wrote in terms of
observables of the model in section 3.1. Using equation (3.1.7) and calculating the
observables involved to first order, with the same choice oy = apr that we used
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safo0) = 3 4807 = %Zm (3.2.1)
i 2

In principle it is also possible to do the calculation in the broken-symmetrical phase
(problem 3.2.3), but currently we do not yet know the answer for that case. Making
the choice oy = ag as before, we obtain

)‘R = )\[1 — 9)\82(043)]. (322)

Observe that, since the sum is a positive quantity, the correction is always negative,
tending to decrease the magnitude of the positive classical result. We may try to
evaluate the behavior of the sum s, for large values of N by means of approximations
by integrals, as we did before in other cases. Doing this (problem 3.2.4) we obtain
the following results, for the usual values of the dimension d:

d=1: me 1 s

3n(mgL)
d=2: sy~ m]\ﬂ,
d:3:5ﬂ35§%EN; (3.2.3)
d=4: sy #ID(N),

e Qy

d25: 2~ Gy

where €); is the total solid angle of d-dimensional space. We see therefore that
the second-order result is divergent for d = 3 and d = 4, and finite for d > 5.
Observe that, in order for the results in d = 3 and d = 4 to make any sense, it is
necessary that we make A\ — 0 in the continuum limit, thus forcing us to return to
the Gaussian point. In d = 4 this takes us back to the free theory but, curiously,
despite this limitation the result is still of some interest in the case d = 3, because
in this case the dimensionfull coupling constant is given by Ar = Agr/a = NAg/L
and we therefore have, in terms of the dimensionfull quantities, a finite expression,

Agr = A[l — 9AS,], (3.2.4)

where the dimensionfull quantity Sy = s9 /N has a finite limit, so long as we have
a finite and non-vanishing renormalized mass mpg,

82L — 1

N © 2mmp

52:

This seems to indicate that in d = 3 there are non-trivial limits, with Ag # 0, that
approach the Gaussian point, where both A and \g are zero. We can use this d = 3
result to exhibit explicitly renormalization flows [a(N), A(N)], in the parameter
space of the corresponding model, that approach the Gaussian point in such a way
that both mp and Ag are different from zero in the limit (problem 3.2.5).
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Sums 2
d=2

40000 . . I . .
30000 |~ —
20000 |~ —
10000 — —
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Number of Vertices

Figure 3.2.2: Behavior of the sum s, with N in the case d = 2.

non-vanishing. It is very reasonable to think that the dimensionless quantities like
Ar will always be finite in the limit, when we make N — oo, since they do not scale
with V. Since we have that Ap = a® g, for dimensions d > 5 we have that a finite
Ar implies a vanishing Ag in the limit. We establish in this way the expectation
that the model is completely trivial in d > 5, with \g finite and Ay vanishing over
the critical curve. Of course this conclusion depends on the higher-order terms of
the perturbative series of Az being all finite, besides the series being convergent.
Obviously, none of these two things is guaranteed. One might even imagine that
the series could end up converging to zero, a hypothesis which would not change the
physical meaning of the theory, since that meaning is defined in terms of Ag, which
would still vanish in the limit. However, that hypothesis would make sense in terms
of the critical behavior of the dimensionless quantity Ag, as we discussed above in
the case d = 3.

In the case d = 4 we cannot conclude anything about the behavior of the theory
from our results, since in this case s, diverges logarithmically while Ag = Ag. We
can confirm our analytical estimates of the dependencies of s; on N and calculate
approximately the relevant coefficients, performing numerically the sum on finite
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Sums 2

d=4
1.10 T T T I T I T T T

1.05

1.00

095 1 | 1 | 1 | 1 | 1 | 1 | 1
0 10 20 30 40 50 60 70

Number of Vertices

Figure 3.2.4: Behavior of the sum s, with N in the case d = 4.

divergent sums and it is not possible to use them in a systematic way to establish a
system of successive approximations, which hopefully would be increasingly precise,
for all the observables of the theory.

Therefore, we see that we do not really have a complete expansion for the Ap?
model, but only a set of approximations that work reasonably well in some cases.
What we have here is not a consistent and systematic series development, but only
a set of isolated approximations whose validity can only be verified, ultimately, by
direct comparison with numerical results or other non-perturbative approximations.
Observe that this behavior of the perturbative expansion is due to the exchange of
the order of the two limits involved, the continuum limit and the series summation
limit. For finite NV all the terms of the expansion are finite and the series may be
convergent, or at least asymptotic, but in the N — oo limit the individual terms
become infinite and nothing can be done to salvage the situation in general, except
making the parameters of the model converge sufficiently fast to the Gaussian point.
In order to make use of the series it is imperative to first sum it on finite lattices
and only then take the continuum limit, one cannot invert the order of the limits.

In conclusion, we verify that in the case of the coupling constant we do not have
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whose coefficients may be adjusted so as to reproduce faithfully the characteristics
of the ensemble of the complete model. When we choose oy = ar we are making
the moment of order two of the Gaussian ensemble reproduce in a perfect way the
corresponding moment of the ensemble of the complete model, so that the differ-
ence between the two distributions can in fact be considered a small perturbation
of the Gaussian distribution, in so far as that observable is concerned. However,
independently of any choices of parameters, the fourth-order moment of the Gaus-
sian ensemble is always zero and cannot be adjusted to reproduce the corresponding
moment of the complete ensemble. Therefore, the fourth-order moment can never
be understood as a small perturbation when we are dealing with observables that
only exist when this moment is not zero.

It is important that we discuss here the role of the traditional scheme of pertur-
bative renormalization, in the context of the calculations on the lattice!. First of
all, there can be no doubt that the definition of the model on the lattice implies the
existence of well-defined relations ag(a, A) and Ag(c, A) between these renormal-
ized quantities and the parameters of the model, for any values of these parameters
within the stable region of the parameter plane of the models and in any dimension
d, for finite lattices, and over the critical curve in any dimension d > 3, in the
continuum limit. Analogously, for any observable O that is physically relevant we
have a well-defined relation O(a, A), under the same conditions. What we discover
when we work out the development of perturbation theory is that the perturbative
approximations for the relations between the observables O, ag and Ar and the pa-
rameters o and A are singular, in the sense that they contain quantities that diverge
in the continuum limit.

The traditional perturbative renormalization scheme consists of giving up, at
this point, any effort of extracting from the theory the relations ag(a, A), Ag(a, A)
and O(a, \) that it contains. In addition to this, on each finite lattice, where all
quantities are finite, we may consider rewriting O directly in terms of ar and g,
eliminating the parameters o and A from the picture in favor of their renormalized
counterparts, and thus obtaining a relation O(ag, Ag) that, possibly, will not contain
any quantities that diverge in the continuum limit. If it is possible to do this, then
the relation obtained is a well-behaved perturbative approximation of O in terms
of ag and Ag, and we may then take the continuum limit without stumbling on
any singularities. If it is possible to do this for the perturbative calculations to
all orders, then we say that the theory is perturbatively renormalizable, and the
scheme produces a complete perturbative series in the continuum limit, with finite
individual terms, which may or may not be convergent. Since o and A are not directly
observable, while ap and A\r presumably are, the resulting function O(ag, Ag) is a
direct relation between observables of the theory, so that not much seems to be lost
when one does this.

Of course, rewriting O in terms of ar and Ai on finite lattices may not be easy,
in fact, it may not be possible at all in closed form, so one may be compelled to

!These arguments were developed in discussions with Dr. Timothy E. Gallivan and with
Prof. Henrique Fleming.
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we see that A should diverge in order for this relation to be valid. This is the opposite
of what we saw in the original perturbative expansion, where we verified that A must
go to zero in order for the perturbative approximation to be valid. However, since
by now we have given up obtaining from the theory the relations between the basic
quantities and the renormalized quantities, we might as well just not worry about
this any more, and simply disregard the equation above. Of course, one cannot
avoid the strong impression that this whole procedure is mired with guesswork and
arbitrariness. It certainly looks like it would be very difficult to show that all the
facts assumed do indeed hold to all orders and hence to establish the results of this
procedure on a firm logical basis.

Anyway, up to this point the change of variables has not really been of any
use, since it simply introduced another parameter \g that ended up being another
name for A\p. No additional information about the relation between Ap and the
basic parameters of the model was obtained. It is important to emphasize that
this fact is no more than a limitation of the perturbative method and that this
relation undoubtedly exists in the model defined by means of the lattice. In order
to show the possible usefulness of the perturbative renormalization scheme, we may
now consider the calculation of a third observable O, at first in terms of o and A,
resulting in a relation of the type

0= f(f)(O&, )\),

which presumably contains some terms with divergent factors. We may now sub-
stitute A for \g, re-expanding the resulting expression and neglecting once more
the higher-order terms that appear. With some more manipulation we may also
substitute a for ag, thus obtaining a new relation

O = fo(ar, Ar),

which, so long as the model is perturbatively renormalizable, should not contain any
divergences. In this way we extract from the model a well-behaved relation between
agr, Ag and O, although the fundamental perturbative expansion in terms of o and
A is not well behaved. As an example of such an observable, we may consider the
coupling constant for a non-vanishing momentum E, a quantity which is related
in a direct way to the scattering cross-sections. Calculating the coupling constant
for the same momentum k on all the four external legs, up to order A\?, we obtain
(problem 3.2.9)

Ar(F) = A {1 ~ 3\ [232(6, ao) + sa(k, ao)] } ,

where the sum s5(k, ag) is given by

1
s ,a —
2(F, 2 NdZ p2(ky + k) + ag)[p2 (ky — &

)+ ag]
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actually possible for the renormalized parameters, in terms of which one chooses to
write the renormalized perturbative expansion. In regard to this aspect of the struc-
ture of the theory it is important to emphasize the profound difference between a
truly physical theory, such as quantum electrodynamics, and models that have only
the role of mathematical laboratories, such as the polynomial models. In quantum
electrodynamics we can go to the laboratory and determine experimentally the val-
ues of the renormalized mass and of the renormalized coupling constant, that is, of
the mass and charge of the electron, thus establishing that certain values are possible
for these quantities. On the other hand, in the laboratory models we are limited to
what we can calculate analytically or numerically and we must extract this type of
information from the relations that the models establish between the renormalized
quantities and the parameters involved in their definitions. Since perturbation the-
ory is not able to give us these relations in a complete form, it only remains for us
to try non-perturbative methods, such as computational stochastic simulations, as
tools to establish the possible values for the renormalized parameters. Another way
to characterize this profound difference is to say that, in the case of a truly physical
theory, we have access to the use of the ultimate computer: the fundamental laws
of physics at play in nature.

Problems

Note: Some of the calculations contained in some of these problems are really very
long, and a considerable amount of organization and care is needed to get to the
end without errors. The problems containing such long calculations are marked with
three stars.

3.2.1. Calculate Ar using equation (3.1.7) and calculating the observables involved
to first order, with the choice ay = apg, thus obtaining the classical result
Ar = A. Do the calculations both in the symmetrical phase and in the broken-
symmetrical phase. Note that, since \g itself is already a first-order quantity in
A, in order to keep consistent orders of the expansion parameter the numerator
of equation (3.1.7) should be calculated to first order, while it is enough to
calculate the denominator to order zero.

3.2.2. (%) Calculate Ag to second order, using equation (3.1.7), with the choice ay =
ag, in the symmetrical phase, obtaining the result quoted in the text,

aRp —

A [1 —4 0 _ 9)\32(040)]

(&%)
o o 4
R — Qg

e
Qp

Note that, since \g itself is already a first-order quantity in A, in order to keep
consistent orders of the expansion parameter the numerator of equation (3.1.7)

Ap =
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Finally, recalling that oy must go to zero as 1/N? in the limit, make vg = 0
and show that, in the continuum limit, one recovers the one-loop result for the
equation of the critical curve,

(a+3x02)* = 0.

Therefore, we conclude that the equation of the critical curve does not contain
corrections of order A\? and that any correction to the order-\ result must be
at least of order \3.

(% x x) Try to calculate the renormalized mass mpg in the symmetrical phase
up to order 2. Start by calculating the propagator to this order, obtaining
the result

92(7i1,M2) = go(7in, 7M2) — (Oé —ap+ 3)\0'8) Zgo(ﬁhﬁs)go(ﬁs, ii2)

73

+ (@ —ag+ 3)\03)2 Z Z 90(7i1, 13) go (73, 7i4) go (7ia, 7i2)

fis s
+3A (a — oo+ 3)\03) Z 95(0, 7iy) Zgo(ﬁh fi3) go (M3, i)
ﬁ:4 ﬁg
+6)° Z Z 9o(7i1, 53)98("737 14)go (74, Ma),

3 74

which, in momentum space, can be written as

NGy (R) = — L a—ao3Adg (o —a+ 3Aoh)
P2(k) +ao  [p2(k) + ao? [p%(k) + agl?
3N — ap + 3\o? 62 -
( = 0 0>$2(0z0)+_,—53(k‘,0z0),
[p%(k) + agl? [p%(k) + agl?

where the sum s3 is given by

1
[p2(ky) + ao][p2(k2) + axo][p2(k — k1 — k2) + o]

- 1
sa(k, ao) = N2d Z

k1,ka

Observe that, since aug must still vanish over the critical curve, and the equa-
tion of that curve did not change up to the order €2, as we saw in problem 3.2.7,
we should expect that the renormalized mass also does not change up to this
order. Discover whether or not it is possible to choose «q in an appropriate
way and thus show that the renormalized mass also does not change up to this
order, establishing therefore the consistency of the two calculations?.

3Note: the answer to this last question is currently unknown.
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