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Chapter 1

The Polynomial Model

In this chapter we will examine the polynomial models of scalar fields. These are
generalizations of the Gaussian model in which one tries to introduce interactions
into the model by the addition of a new term to the action, containing a power of
the field which is greater than the power two that appears in the Gaussian model.

1.1 Definition of the Model

In the previous volume of this series [2] we studied in detail the theory of the free
scalar field. That model was sufficiently simple to allow us to calculate analytically
all the predictions of the theory. As we saw, both in the case of the classical theory
and in the case of the quantum theory this simplicity follows from the linearity of
the model. We also saw that this same linearity is responsible for the fact that the
model does not contain the concept of interactions between particles, and hence that
the only physics that it does contain is the propagation of free particles. This was
shown by the factorization of all the correlation functions in terms of the propagator,
and also by the fact that the energies of the particles are simply additive, that is,
the energy of a state containing two particles is the sum of the energies of the two
corresponding single-particle states, implying the absence of any kind of interaction
energy.

We will make here a first trial at including interactions in the theory, for which
it will be necessary to break the linearity of the model, including in the action terms
with more that two powers of the field. We will therefore examine the model defined
by

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s), (1.1.1)

which we denominate the λϕ4 polynomial model. We therefore choose to break the
linearity of the model by the introduction of a new ultra-local term into the action,
leaving untouched the term containing the derivatives. This is the simplest example
of a model that, in the classical theory, contains interacting fields. Our task here is
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DEFINITION OF THE MODEL 3

in the methods of stochastic simulation constitute a rather extended topic with a
very technical character, and will be developed in detail in a separate volume of this
small series of books.

The character of the classical theory determined by our action is clear, and it
is not necessary to examine it in detail. The definition of the classical theory is
the same as before, the classical solution is the configuration ϕ that minimizes the
action. The fact that it exists is guaranteed by the conditions we impose on the
parameters of the model: λ > 0 with any α or λ = 0 with α ≥ 0. We may derive, in
a way analogous to the one used before for the free theory, the corresponding classical
equation of motion, which will be, of course, a non-linear differential equation for ϕ
(problem 1.1.1). In order to begin the examination of the behavior of the quantum
theory, we recall that it is defined by the probability distribution over all possible
configurations of ϕ, given by

[dϕ] e−
∑

`
1

2
(∆`ϕ)2−

∑
s(α

2
ϕ2+ λ

4
ϕ4)

∫
[dϕ] e−

∑
`

1

2
(∆`ϕ)2−

∑
s(α

2
ϕ2+ λ

4
ϕ4)

,

where we grouped separately the term containing the derivatives and the ultra-local
part, containing the polynomial terms, both the quadratic one and the quartic one,
which we call the interaction term. If we recall that the measure [dϕ] is a product
of differentials over all the sites s, representing the fact that in this measure the
stochastic variables ϕ have uniform probability distributions, we see that we can
include the ultra-local terms in the measure, writing the distribution as

[
dϕ e−(α

2
ϕ2+ λ

4
ϕ4)

]
e−

∑
`

1

2
(∆`ϕ)2

∫ [
dϕ e−(α

2
ϕ2+ λ

4
ϕ4)

]
e−

∑
`

1

2
(∆`ϕ)2

.

In this new measure the variables ϕ no longer have uniform probability distribu-
tions, but have instead the probability distribution given by the exponential of the
potential. A typical example of such a distribution can be seen in figure 1.1.1. We
see in this way that a possible way to understand our model is to think of it as
constituted of the dynamics implemented by the derivative term, but applied in-
directly to new random variables χ located at the sites, with uniform probability
distributions, which are given in terms of the variables ϕ by the differential relation

dχ = dϕ e−(α
2
ϕ2+ λ

4
ϕ4).

This means that we may write the stochastic variable χ, which has an uniform
probability distribution within a closed interval, in terms of the stochastic variable
ϕ, which has a non-uniform probability distribution over the whole real line, as

χ (ϕ) =

∫ ϕ

0

dϕ′ e−(α
2
ϕ′2+ λ

4
ϕ′4). (1.1.2)
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of the model at an intuitive level, it is very useful to invert the decomposition
described above, representing the effect of the derivative term by the Gaussian local
distribution that it implies, which was studied in detail in the first volume of this
series of books, and considering directly the effects that the potential term may
have on it. This allows us to use in the analysis of the model our classical intuition
concerning the behavior of an object within the potential, by extending the object
from a simple point body to a fluctuating statistical distribution. In this way we
are able to build an almost-classical intuition in order to understand the behavior
of the model.

We can imagine that we draw a copy of the potential at each site and that we put
inside it the value of the field at that site, while the terms (∆`ϕ)2 interconnect each
pair of neighboring sites. The stochastic dynamics implemented by these derivative
terms will cause the values of the fields to fluctuate at each site, so that we will
actually have a distribution of values within each potential. In the theory of the
free field these local distributions are simple Gaussians, whose width σ0 is a number
of the order of 1 for any lattice size, a number that determines the value of the
physical mass (also called the renormalized mass), which in the case of the free
theory is simply mR = m0. In our current model the complete local distributions
also have a width σ ≈ σ0 of the order of 1, but their format may no longer be exactly
Gaussian. The renormalized mass is defined in this model, just as in the free theory,
as the inverse of the correlation length of the model, measured through the two-point
correlation function, and presumably it is also related to σ, as is the case for the
free theory. What we propose to do in this section is to understand the complete
dynamics of the model by considering directly the influence of the potential over the
Gaussian local distribution implemented by the derivative term.

Let us recall that the relation between the two-point function and the renor-
malized mass was studied in detail, in the case of the free field, in a section of the
first volume [4]. The exponential decay of the two-point function for large distances
r, given by exp(−m0r) as was studied in that section, is a general property of all
massive theories, either free or otherwise. The behavior of the two-point function of
the interacting theories for large distances is in general of this same type, except for
the exchange of the parameter m0 for another parameter mR which usually differs
from m0. In the numerical approach we usually measure this new parameter by
means of a curve-fitting process applied to the numerical propagator of the theory
in momentum space rather than position space, that is, to the Fourier transform
of the two-point function, which is technically easier to do, and also more efficient.
We do this in the expectation, to be confirmed a posteriori, that the form of this
function in the interacting models is not very different from its format in the free
theory, and it usually works very well.

In the model that we are introducing here, given values of N , α and λ, we will
have not only a resulting value for the parameter αR related to the renormalized
mass, but also some resulting value for the renormalized coupling constant λR, which
is the physical coupling constant whose nature and precise definition we will examine
in more detail later on. Unlike what happened in the free theory, in general αR will
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Figure 1.1.2: The potential and the local distribution due to the derivative term, in
the case of the free theory.

squeezing force gives rise to an infinite mR. Let us imagine now that we insert this
local distribution inside the potential defined by the ultra-local terms of the action
at each site, as shown in figure 1.1.2 for the case of the free theory, with a Gaussian
distribution and a quadratic potential. If we were examining the classical theory, we
would put inside the potential a point body representing the value of the classical
solution for the field, and it would come to rest at the minimum of the potential. The
examination of the behavior of the quantum theory corresponds to the introduction
into the potential well of an extended object which can be represented heuristically
by our semi-rigid body, which becomes rigid in the continuum limit in the sense
explained above.

The width of the local distribution in the absence of the potential is determined
only by the derivative term and corresponds to the value αR = 0, that is, to a zero
renormalized mass. When we put the distribution under the action of the potential
on a finite lattice what happens is that it tends to concentrate the values of the field
around the minimum, and hence squeezes the distribution, decreasing its width,
because it is statistically unfavorable for the field to exist in the positions where the
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Figure 1.1.4: The potential and the local distribution due to the derivative term, in
the case of the non-linear theory, in the broken-symmetrical phase.

much effort, a prediction with very serious consequences regarding the behavior of
the model: if we limit ourselves to the case in which α ≥ 0 and λ ≥ 0 for all N ,
it will be necessary to make both α → 0 and λ → 0 in the limit, which takes the

model back to the critical point of the Gaussian model and therefore eliminates any

possibility that λR be different from zero in limits of this type.

Except for the case d = 3, this implies that there are in fact no interactions
between particles in the quantum theory of this model, in any limits that stay within
the quadrant given by α ≥ 0 and λ ≥ 0. We say that in this case the model has only
the trivial limit, leading to the theory of the free field, or that the theory is trivial

in this sector of the space of parameters of the model. The case d = 3 is a little
different because, since in this case the physical coupling constant has dimensions
of mass, it is possible that there are interactions even if the model approaches the
Gaussian point, e phenomenon that we will discuss later on.

We conclude that, if we are to have any chance of finding an interesting limit in
this model, it will be necessary for at least one of the two parameters to be negative.
Since we cannot make λ negative due to the stability constraints, it follows that the
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Figure 1.1.5: Critical diagram of the non-linear λϕ4 model.

in this model, giving origin to two phases in the space of parameters of the model, in
each one of which the behavior of the model is of a certain type, different from the
other one. The expectation value vR = 〈ϕ〉 is the order parameter of the transition,
being equal to zero in one of the phases, the symmetrical one, and different from
zero in the other phase, the broken-symmetrical one. Since the parameter space is
part of a two-dimensional plane, we expect that the two phases be separated by
a one-dimensional curve. In fact, we can easily estimate the locus of this phase-
transition curve. The argument that leads us to verify that the two phases exist
depends crucially on the width of the potential, which is proportional to

√
−α/λ.

This quantity does not change so long as α and λ are proportional to each other,
α = −βλ, so that the location of the points where the transition occurs, separating
the two phases, should depend only on the proportionality constant β.

We can estimate this quantity assuming that at the transition the distance be-
tween the two wells is of the order of the width σ0 of the local distribution, whose
value is determined predominantly by the derivative term of the action. It is clear
that, if the distance between the wells is significantly smaller than σ0, the local
distribution will tend to remain centered around ϕ = 0, with its width somewhat
reduced, while if the distance is significantly larger than σ0, the local distribution
will tend to shift sideways and fall into one of the wells. In order to better under-
stand this argument it is useful to think about the extreme cases, the one in which
the total width of the potential is much smaller than σ0 and the local distribution
is highly squeezed within it, and the one in which the total width of the potential is
much larger than σ0 and the local distribution is completely free to move within the
potential and therefore to fall into one of the two wells. This estimate gives us the
relation σ0 ≈

√
−αc/λc for the critical values of the parameters or, more precisely,

C0σ0 =
√

−αc/λc, where C0 is some positive constant of the order of 1 that can
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position of the critical lines will involve some rather intensive and possibly difficult
computer work.

Observe that there are many other flows that approach the Gaussian point,
besides those defined directly by the free-field model. For example, we have a class
of flows that go along the vertical half-axis (λ > 0, α = 0) in the direction of λ = 0.
This class of flows can produce trivial limits in which the resulting renormalized
mass is determined by the dimensionless coupling parameter λ, instead of by α. This
phenomenon, which we can see here in a very simple way, is also known by the name
of “dimensional transmutation”. It is also possible to approach the Gaussian point
from the broken-symmetrical phase, from under the critical curve. In this way we
may define trivial limits in which the field, although free, has non-zero expectation
values VR = 〈φ〉. Except in the case d = 3 any limits that are candidates to not being
trivial must approach some other point of the critical curve, and not the Gaussian
point. If all possible flows of the model turn out to be trivial then we say that the
model is trivial. Then, except for the introduction of the concept of spontaneous
symmetry breaking, such models are just another way to produce the theory of the
free scalar field in the continuum limit. They may still be useful test models on
finite lattices, though.

Observe that what we have obtained here is a type of critical behavior just like
the one described in the section in [5], where the quantity vR = 〈ϕ〉 plays the role
played by the magnetization in the case of statistical mechanics, as shown in the
first figure of that section. However, we can do a little better here, and continue our
heuristic argument in order to get an estimate for vR as a function of α and λ. First
of all let us point out that we should be able to get only the absolute value of vR and
not its sign, since the symmetry can break to either side. Let us therefore estimate
v2
R and not vR. It must be zero at the critical line, that is, when the squared width

of the potential, −α/λ, is equal to the squared width of the local distribution, C2
0σ

2
0 .

It must also be equal to zero whenever the potential is less wide than that, that is,

v2
R = 0 for − α

λ
≤ C2

0σ
2
0 ,

characterizing the symmetrical phase. To this we may add that, if the potential is
wider than the width of the local distribution, then the distribution should be able
to shift to one side by something like the difference between the two, giving as the
corresponding estimate for v2

R the value

v2
R = −α

λ
− C2

0σ
2
0 for − α

λ
≥ C2

0σ
2
0 ,

characterizing the broken-symmetrical phase. Note that this formula gives the cor-
rect value v2

R = 0 at the critical line. It also gives the correct value in the case of
an extremely wide potential, in which case C2

0σ
2
0, which is always of the order of 1,

can be neglected by comparison with −α/λ, and we should have the average vR of
the local distribution sitting at the minimum of the potential, that is, v2

R = −α/λ.
In short, we have for v2

R the result
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point. Therefore the potential never becomes infinitely flat around its local minima
in the broken-symmetrical phase, except in limits that approach the Gaussian point.
There are, therefore, no other possible continuum limits with finite masses in this
phase, except those that tend to the Gaussian point or to some other point of the
critical line.

As a last refining touch of our argument, we may point out its relation to the
question of the triviality of the model. Let us look back at figure 1.1.3 and imagine
that it represents the critical situation, in which the potential is just wide enough not
to squeeze the local distribution. This means that the local distribution is almost
free to move, but there is no space for it to actually do so. In this situation the
squeezing action of the outer walls of the potential and the spreading action of the
central bump are exactly balanced, so that the net action over the width of the local
distribution vanishes. However, even without changing the width, the potential can
tend to change the shape of the distribution. In fact, if we consider in which parts
of the local distribution the central bump and the outer walls act, we realize that
the bump tends to flatten and spread the top of the Gaussian, while the two outer
walls tend to increase the slopes on the two sides of the distribution. This change of
shape is exactly what one would expect if the local distribution tended to be more
like the function exp(−λRϕ4/4) than like a Gaussian.

In fact, one would expect λR to manifest itself by affecting the form of the com-
plete local distribution. Since αR is related to the second moment of the distribution,
its width, it is reasonable to expect that λR is correspondingly related to the fourth
moment of the distribution, and hence to the shape of the curve that describes it.
However, our experience with αR shows that, due to the derivative term of the ac-
tion, the local distribution has a very rigid character in the continuum limit, as a
consequence of the requirements of propagation, which requires αR to go to zero
in the limit. There is therefore legitimate doubt that we can have this distribution
significantly changed in shape in the continuum limit, to allow for a non-zero value
of λR, without disturbing the dynamics of propagation and thus ending up with
infinitely massive particles and no propagation. Note that if it is true that we must
have λR → 0 in the limit, then it is imperative that λR be zero exactly over the
critical line, where we already know that αR is zero, otherwise there would be no
possible continuum limits except those going to the Gaussian point.

Of course we cannot resolve this difficult matter with only heuristic arguments.
In fact, we will see that perturbation theory is also not enough to handle this issue,
and we will have to use computer simulations in order to explore it. However, we
can say that, if indeed it turns out that we must have λR → 0 in the limit, then only
theories that can be non-trivial with λR going to zero still have a chance of being
truly interacting quantum theories. This involves the scaling relations between λR
and its dimensionfull version ΛR. As is discussed in problem 1.1.8, in the classical
case, this leaves, of all polynomial models ϕ2p, p = 2, 3, 4, . . ., in all dimensions
d = 3, 4, 5, . . ., a single possibility: the λϕ4 model in d = 3.

We end this section with a short discussion of the continuum limit of the classical
theory, which requires rewriting the action of the model in terms of dimensionfull
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the dimensionfull field φ, that have direct physical relevance, being directly related
to the quantities which are observable in the quantum theory. Although we have
only shown this fact in the case of the free theory, we will assume that it is true in
general, a working hypothesis that we will only be able to confirm a posteriori by
the accumulation of calculational experience, numerical or otherwise. We will see
that this relation of scale between λR and ΛR will be very useful to enable us to
understand heuristically the behavior of the quantum models. Before anything else
is done, however, it will be necessary to define in a more precise way the constant
λR of the quantum theory, which we will do in the third chapter of this book.

Problems

1.1.1. Derive the classical equation of motion for the λϕ4 model, showing that it is a
non-linear equation. Write the equation both on finite lattices, in terms of the
dimensionless field, and in the continuum limit, using the dimensionfull field.

1.1.2. Calculate the position, the depth and the bottom curvature of the potential
wells in the models λϕ2p, p = 3, 4, . . ., which are defined by the action

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

2p

∑

s

ϕ2p(s),

verifying that the spontaneous symmetry breaking situation is qualitatively
similar to that of the λϕ4 model. Sketch qualitatively the phase diagrams of
these models and estimate whether the critical curves in these cases are more
or less steep than the critical curve of the quartic model.

1.1.3. Show that the stochastic variable χ introduced in the text for the λϕ4 model
is bound within the interval [0, χmax], where χmax is a finite quantity which
depends on α and λ.

1.1.4. Define a generalization of the stochastic variable χ, which was introduced in
the text for the case of the λϕ4 model, for the case of the λϕ2p, p = 3, 4, . . .
models.

1.1.5. Estimate and sketch the positions, on the phase diagram of the λϕ4 model,
of the curves defined by αR(α, λ) = C, where C is a constant. Do it on both
sides of the critical curve. Remember that αR = 0 over the critical curve, that
αR = α for the free theory, and that αR ≈ −2α for negative α and λ ≈ 0.

1.1.6. Write the action of the λϕ4 model in terms of the Fourier transforms ϕ̃ of
the fields and show that, due to the presence of the quartic term, the Fourier
modes in momentum space do not decouple from each other when λ 6= 0.

1.1.7. Show that, in the case d = 1, the model λϕ4 is identical to the quantum
mechanics of an anharmonic oscillator.
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We may now write this in terms of the measure of the free theory defined by S0,
dividing both numerator and denominator by

∫
[dϕ]e−S0 and thus obtaining

〈O〉 =

〈
O e−SI

〉
0

〈e−SI 〉0
,

where the subscript 0 denotes expectation values of the theory defined by S0,

〈O〉0 =

∫
[dϕ]O[ϕ]e−S0

∫
[dϕ]e−S0

.

The term SI of the action is the one that contains the parameter λ, that we
presume to be small. However, in general SI may contain also other parameters,
so that in order to enable us to do the development of the perturbation theory in
a more organized and explicit fashion it is convenient to use, instead of λ, a new
expansion parameter ε that we introduce as follows,

f(ε) =

〈
O e−εSI

〉
0

〈e−εSI 〉0
. (1.2.2)

We have therefore that f(0) = 〈O〉0 and f(1) = 〈O〉. Perturbation theory consists of
making a series expansion, which we denominate the perturbative expansion, of f(ε)
around ε = 0, up to a certain order, followed by the use of the resulting expressions
at the point ε = 1. Of course this can only be a good approximation to the complete
theory if SI is a small quantity. Classically we can make SI small by adjusting the
values of λ and any other parameters that it may contain but, as we shall see in
what follows, this is not possible in the quantum theory. This is the basic fact that is
at the root of all difficulties with the perturbative approach to quantum field theory.

In order to understand the origin of the difficulties it is necessary to recall some
important properties of the theory of the free scalar field, since we are writing our
quantities here in terms of the expectation values of that theory. As we saw in the
section in [7], in the case of the dimensions d ≥ 3 which are the ones of interest for
quantum field theory, the quantity σ2 = 〈ϕ2〉, which we denote here by σ2

0 to record
the fact that it is a quantity relating to the free theory, is a finite and non-zero
quantity both on finite lattices and in the continuum limit. In addition to this, we
showed in the section in [8] that the quantity 〈[∆µϕ]2〉 is also finite and non-zero
both on finite lattices and in the limit, in which case it has the value 1/d. Still in
the section in [8] these facts were used to show that both the expectation value of
the kinetic part SK of the action,

SK =
1

2

∑

`

(∆`ϕ)2,

and the expectation value of the part SM of the action containing the mass term,
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trivial in that case, since the interaction term would then become vanishingly small
in the continuum limit, when compared to the remaining part of the action.

The conclusion to which we are forced is that 〈SV 〉0 in fact diverges in the
continuum limit as Nd. It is important to observe once more that this divergence is
not due to an integration over an infinite volume, because we can do the complete
development of the theory within a finite box without any change in this result.
This divergence is a property of the continuum limit, an ultraviolet characteristic of
the theory, in which the influence of the high-frequency and short-wavelength modes
of momentum space predominate. It is not a property of the infinite-volume limit,
that is, of the infrared regime of the theory, in which the low-frequency and long-
wavelength modes predominate. It becomes clear, therefore, that it is not possible
to keep SV small by mere changes in the parameters α and λ, except if we make
them converge rapidly to zero in the continuum limit, which takes us back to the
Gaussian point, where all the results are already known, constituting the theory of
the free scalar field.

At this point it does not seem that this perturbative technique can end up having
any practical use but, in any case, let us proceed with our analysis of the situation.
If we consider for a moment the denominator of equation (1.2.1) it is clear that we
will have, in the continuum limit,

〈
e−SI

〉
0
→ 0,

while the perturbative expansion of this quantity, obtained by the series expansion
of the exponential function, will contain divergent terms if we keep ε finite and
non-zero when we take the limit,

〈
e−εSI

〉
0
≈ 1 − ε〈SI〉0 + . . . , where 〈SI〉0 → ∞.

We see here that a simple and naive expansion within such a singular structure can
make a vanishing quantity appear as a collection of infinities in the terms of the
expansion. We can now see that the limit of equation (1.2.1) for N → ∞ is a limit
of the form 0/0. However, it certainly exists, so long as the theory is well defined,
which we expect to be true so long as we keep the parameters of the theory within
the stable region of the critical diagram. The denominator can be understood as
the ratio of the measures of the interacting model and of the free theory,

〈
e−SI

〉
0

=

∫
[dϕ]e−(S0+SI)

∫
[dϕ]e−S0

,

so that the conclusion we arrive at is that these two measures are related in a singular
way in the continuum limit. On any finite lattice the expectation value 〈SI〉0 is finite
and we can improve the approximation by decreasing somewhat the parameters α
and λ. However, in the continuum limit the only form to avoid the divergence is to
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In fact, one can treat the problem at hand by making a change in the normalization
of both the numerator and the denominator of equation (1.2.1), eventually obtaining
the same results that we will obtain here in a more direct way (problem 1.2.2).

We will examine here the first-order and second-order terms in ε for the expansion
of f(ε), for which we obtain

f(ε) = f(0) + εf ′(0) +
1

2
ε2f ′′(0) + . . . ,

where the first three terms contain (problem 1.2.3)

f(0) = 〈O〉0,
f ′(0) = − [〈OSI〉0 − 〈O〉0〈SI〉0] ,
f ′′(0) =

[
〈OS2

I 〉0 − 〈O〉0〈S2
I 〉0

]
− 2〈SI〉0 [〈OSI〉0 − 〈O〉0〈SI〉0] .

Making ε = 1 we obtain

〈O〉 ≈ 〈O〉0 − [〈OSI〉0 − 〈O〉0〈SI〉0]

+
1

2

{[
〈OS2

I 〉0 − 〈O〉0〈S2
I 〉0

]
− 2〈SI〉0 [〈OSI〉0 − 〈O〉0〈SI〉0]

}
. (1.2.3)

This is the approximation for 〈O〉 up to the order ε2, that is, effectively up to the
order λ2. We will use it later on to calculate perturbative approximations for some
of the observables of the model.

Observe that it is not to be expected that this expansion may produce a con-
vergent series for the observables of the model. An alternative way to see this is
to observe that there cannot be a non-vanishing convergence radius for the series
of f(ε) around ε = 0 in the complex ε plane, because a non-vanishing convergence
disk around zero would include negative values of ε, which correspond to points in
the unstable region of the parameter plane of the model, where we know that it
does not exist. At most what we can hope to obtain are reasonable approximations
up to a certain order, which hopefully will be good enough to allow us to form
a correct qualitative idea about the behavior of the model. Note that the model
would be clearly more useful if it did not cease to exist when we exchange the sign
of the coupling constant. One is led to recall that this is the expected situation in
electrodynamics, in which we can have charges of either sign.

In order to complete the development of our perturbative ideas, we must now
return to the issue of the separation of the action S in parts S0 and SI . This sepa-
ration will depend on whether we want to perform calculations in one or the other
of the two phases of the model, the symmetrical phase or the broken-symmetrical
phase, whose existence and nature we discussed in section 1.1. In any case S0 must
satisfy the two essential conditions: it must be no more than quadratic on the fields
and it must be stable, which means that it must correspond to a well-behaved theory
of free fields, having therefore a lower bound.

The issue of stability must be examined carefully at this point. As we saw in
section 1.1, in any continuum limit that does not approach the Gaussian point the
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where vR is the expectation value of the field which, in the absence of any external
sources breaking the discrete translation invariance of the lattice, as is our case here,
should be constant, having the same values at all the sites. Since vR is a constant
it follows that the derivative term of the action remains unchanged. The polyno-
mial terms which are quadratic and quartic on the fields, however, are transformed
according to the relations

ϕ2 = ϕ′2 + 2vRϕ
′ + v2

R,

ϕ4 = ϕ′4 + 4vRϕ
′3 + 6v2

Rϕ
′2 + 4v3

Rϕ
′ + v4

R.

We may neglect the constant terms, that do not depend on the field, since the
exponentials of these terms are constant factors that appear both in the numerator
and in the denominator of the ratio that defines the observables, thus cancelling off
and not affecting in any way the statistical distribution of the model. Doing this we
obtain for the complete action of the model

S =
∑

s

[
1

2

∑

µ

(∆µϕ
′)2 + vR

(
α + λv2

R

)
ϕ′ +

α + 3λv2
R

2
ϕ′2 + λvRϕ

′3 +
λ

4
ϕ′4

]
.

Since we know that α will always be strictly negative, we introduce now the param-
eter α0 ≥ 0 and separate the action into a free part

S0 =
1

2

∑

`

(∆`ϕ
′)2 +

α0

2

∑

s

ϕ′2(s) (1.2.4)

and an interaction part

SI =
∑

s

[
vR

(
α + λv2

R

)
ϕ′(s) +

α− α0 + 3λv2
R

2
ϕ′2(s)

+λvRϕ
′3(s) +

λ

4
ϕ′4(s)

]
. (1.2.5)

This is the form of the interaction term to be used in the broken-symmetrical phase
of the model. We have therefore a completely well-defined scheme for trying to
obtain approximations for the observables of the complete model in the vicinity of
the Gaussian point, both in the symmetrical phase and in the broken-symmetrical
phase. We must now perform in detail the calculation for some particular observables
of the model, always keeping in mind that this is a very singular approximation
scheme and that it may turn out that not everything will work as we might hope,
in order to verify what we may learn about the structure of the model by means of
the use of this technique.

Problems
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(a) Show that this scheme would be sufficient to make the perturbative series
well-behaved, with finite terms in the continuum limit, so long as, besides
keeping at zero the average value of the quantity ζ−SI , we could also keep
the fluctuations of this quantity at some finite average sizes around zero.
Please note that we are not talking about the series being convergent,
but only about its individual terms not diverging in the limit.

(b) Show that it is not possible to satisfy this condition in this model. In
order to do this consider the calculation of 〈(ζ−SI)2〉0 under the condition
that ζ = 〈SI〉0, that is, calculate the quantity

〈S2
I 〉0 − 〈SI〉20

and show that it does not have a finite limit when N → ∞.

(c) Repeat the first-order calculations presented in the text, using these ideas
and the condition 〈ζ − SI〉0 = 0 in order to determine ζ , thus showing
that exactly the same results presented in the text are obtained in this
context.

1.2.3. Perform explicitly the expansion of f(ε) up to the order ε2 and derive the form
of the three terms that appear in equation (1.2.3).

1.3 Spontaneous Symmetry Breaking

Having developed in section 1.2 the ideas about the perturbative approximation for
the observables of the λϕ4 model, we will now discuss the calculation of some of the
observables of the model to first order in ε which, in the cases to be examined here,
is also known as the “one-loop” order2. The first thing that we will try to calculate
will be the position of the critical curve near the Gaussian point. In order to to this
we will examine the expectation value of the field,

vR = 〈ϕ〉,

which functions as an order parameter for the phase transition that exists in the
model. Of course, if we have in the model a non-vanishing external source j, then we
should expect that vR is also non-vanishing. The situation of spontaneous symmetry
breaking is that in which we have vR 6= 0 even when j = 0. Therefore, we will
consider here the case j = 0 and try to verify whether or not it is possible to obtain
solutions of the model with vR 6= 0 in the limit in which N → ∞. Observe that
only in this limit of large lattices one can expect to obtain a situation of phase
transition, with the existence of two distinct phases in the parameter plane of the
model, separated by a phase-transition curve.

2These calculations were developed in collaboration with Dr. André Cavalcanti Rocha Martins.
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〈
ϕ′(0)

∑

s

ϕ′(s)

〉

0

=
1

α0

. (1.3.2)

For the other expectation value we obtain (problem 1.3.3)

〈
ϕ′(0)

∑

s

ϕ′3(s)

〉

0

=
3

Ndα0

∑

~k

1

ρ2(~k) + α0

. (1.3.3)

Observe how we avoided infrared problems in both cases, by the introduction of the
non-zero parameter α0. In these calculations all the strong divergences due to the
behavior of SI , which consist of terms proportional to Nd, cancel out. This fact
corresponds, in the usual language of the traditional approach to the theory directly
in the continuum, to the cancellation of the so-called “vacuum bubbles”, and is
a direct consequence of the fact that we are expanding a ratio of two functional
integrals. We have therefore for our tadpole equation

(α + λv2
R)

α0
+

3λ

Ndα0

∑

~k

1

ρ2(~k) + α0

= 0.

We recognize now that the sum over the momenta is our already well-known quantity
σ2

0, the square of the width of the local distribution of the fields in the measure of
S0. We obtain therefore, substituting in terms of σ2

0 and cancelling the factor of
1/α0,

λv2
R + α + 3λσ2

0 = 0. (1.3.4)

This equation gives us vR for small values of −α and λ in the broken-symmetrical
phase.

Let us consider here the issue of the dependence of this result on α0. Observe that
the result does not depend explicitly on α0, but it may depend on this parameter
through the squared width σ2

0. For finite N the width does indeed depend on α0

but, as was shows in the section in [11], in the continuum limit it does not depend
on this parameter, so long as we make it go to zero sufficiently fast. More precisely,
it suffices that we make α0 = m2

0L
2/N2, for some finite m0, for the limit to be

completely independent of the value of m0. The mass parameter m0 could even be
chosen to have the same value as the renormalized mass mR of the model, but there
is no need for this coming from this calculation, all we know up to now is that m0

must be finite. Note that the need to choose α0 dependent on N in a certain way
in order to make the results independent of m0 is already a first indication that
the perturbative expansion is not completely well-behaved, since there should be no
dependence at all on α0.

Going back to the analysis of the critical behavior of the model, if we impose
now that the only possible value for vR be zero, we obtain from equation (1.3.4), by
setting vR = 0 in it, the equation of the critical curve, to wit
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d tan(θ) θ (degrees)
3 ' 1.3189 ' 52.83
4 ' 2.1515 ' 65.07
5 ' 2.8828 ' 70.87

Table 1.3.1: Table of the slopes of the critical curves at the Gaussian point.

continuum limit. Hence, if the perturbative technique establishes at least a first-
order approximation for the result of the complete model, then this result should be
exact at the Gaussian point (problem 1.3.4). We will see later on that it is consis-
tent with the results obtained by means of mean-field techniques and of stochastic
simulations. In the case of the stochastic simulations realized so far, it has been
verified that it is particularly difficult to execute them close to the Gaussian point,
due to the fact that in that region the potential wells of the model become very
shallow, which makes it more difficult to control the statistical errors. Therefore, up
to now it has not been possible to do more than to confirm qualitatively this result
with the stochastic simulations.

Using the asymptotic values of σ2
0(N) in the dimensions d = 3 to d = 5, presented

in the section in [11], we obtain the results shown in table 1.3.1 for the slope, where
θ is the smaller angle that the tangent line to the critical curve at the Gaussian
point makes with the negative α semi-axis. It is interesting to observe that in the
cases d = 1 and d = 2, since σ0(N) diverges, the slopes go to zero in the limit and
the critical curve collapse onto the negative α semi-axis, where the model does not
exist because this semi-axis is part of the unstable region. One might consider the
interpretation that this is the perturbative way of verifying that the λϕ4 model does
not really exist as a quantum field theory for d < 3.

Our next objective is to calculate the propagator of the model, which we will do
first in the symmetrical phase. We will denote the dimensionless two-point function
of the complete model by

g(~n1, ~n2) = 〈ϕ(~n1)ϕ(~n2)〉.

To order zero we simply have that g(~n1, ~n2) = g0(~n1, ~n2), where

g0(~n1, ~n2) = 〈ϕ(~n1)ϕ(~n2)〉0,

so that in this order we have the results of the free theory, αR = α and a simple
pole with its residue equal to one (apart from the normalization factor of 1/Nd) in

the region of imaginary momenta ρ2(~k) = −αR. Note that this first-order result
is not sufficient to allow us to take the continuum limit, because we know that α
must become negative in the limit, while αR cannot be negative. In the next-order
approximation, using equation (1.2.3) up to first order, we will have a result that
we shall denote by g1(~n1, ~n2), with

〈ϕ(~n1)ϕ(~n2)〉 ≈ g1(~n1, ~n2),
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of this equation we recognize it as the expression in the equation of the critical curve
that we calculated before, which shows that it does in fact go to zero in the N → ∞
limit, so long as we take the limit in such a way that the parameters of the theory
approach the critical curve. We therefore have here some perturbative evidence that
the phase transition of the model is indeed of second order and we see once more why
it is necessary to take the system to the critical situation in the continuum limit. In
addition to this, as we already discussed before in this section, the expression in the
right-hand side of the equation is positive in the symmetrical phase, showing that
α0 will be approaching zero by positive values and thus establishing the consistency
of this choice for α0. Observe that, with this choice for α0, we may write the result
for the propagator as

g1(~n1, ~n2) =
1

Nd

∑

~k

eı
2π
N
~k·(~n1−~n2) 1

ρ2(~k) + αR
, (1.3.10)

that is, we get a propagator with form identical to that of the propagator of the
free theory, with a renormalized mass mR, where we see that αR = α0 and the
renormalized mass is given by

m2
R = lim

N→∞
N2αR/L

2.

Formally, we may try to understand the expression αR = α + 3λσ2
0 for the

renormalized mass parameter αR as the sum of a zero-order term α and a first-order
term proportional to λ. However, in truth this is misleading, because we must recall
that the parameter α is in fact negative in any continuum limit and hence that the
first-order term cannot be considered as a small correction to the situation in the
theory of the free field, in which α must be positive. We see that, in spite of the fact
that we have developed this approximation technique in the lines of an expansion in
a perturbative series, the resulting object has a character rather different from the
expected.

We will see later on that the results of this process of approximation for the
renormalized mass agree surprisingly well with the results of the stochastic simula-
tions. In particular, note that the result indicates a unit residue for the pole of the
propagator, exactly as in the free theory, αR being the only non-trivial parameter
that appears. This unit residue is also found in all the stochastic simulations, within
the statistical errors. Judging by the form of the propagator, one would say that
the spectrum of the theory seems to be that of free particles with mass mR. One
might consider interpreting this as an indirect perturbative indication related to the
underlying triviality of the model. At least, the result for the residue is compatible
with it.

It is interesting to try to understand in clearer physical terms the nature of the
approximation technique that we have developed. The crucial point for the success
of the technique is the choice of α0, which ends up being equivalent to a preliminary
implicit choice α0 = αR, to be resolved after the end of the calculation, a possi-
bility that was suggested in section 1.2. From the very beginning we are trying to
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which is a positive quantity in this phase. Once again the expression in the equation
of the critical curve appears, showing once more that αR will go to zero when we
approach this curve in the continuum limit, this time by the other side, from the
broken-symmetrical phase. The factor of 2 that appears in this result confirms once
more our heuristic expectations and, as we will see later on, it also matches with
surprising precision the numerical results in this phase.

Observe that, since σ2
0 is a function of αR, both this result and the result for

the symmetrical phase are not explicit solutions for αR but rather equations that
determine αR in an implicit way,

αR − α− 3λσ2
0(αR) = 0

in the symmetrical phase and

αR + 2α+ 6λσ2
0(αR) = 0

in the broken-symmetrical phase, where

σ2
0(αR) =

1

Nd

∑

~k

1

ρ2(~k) + αR
.

It is not difficult to determine the existence, the number and the character of the
solutions of these equations, if one separates from the sum in σ2

0 the term containing
the zero mode, and to find these solutions on finite lattices by numerical means
(problems 1.3.8, 1.3.9, 1.3.10 and 1.3.11). We show in figure 1.3.1 a graph with some
of the numerical solutions, illustrating their behavior for lattices of increasing size.
In this graph, instead of the usual Cartesian coordinates α and λ in the parameter
plane of the model, we use polar coordinates centered at the Gaussian point, with
the radius r given by

√
α2 + λ2, and the angle θ defined as the angle between the

radius vector (α, λ) and the negative α semi-axis.
The equation for the symmetrical phase has two solutions, but only one of them is

positive and hence physically meaningful. While the positive solution remains finite
and non-vanishing in the N → ∞ limit, the negative solution becomes identically
zero in the limit. Note that this equation has solutions over the whole parameter
plane and not only in the symmetrical phase. The curves corresponding to this
solution are the ones with their maximums at the right in figure 1.3.1. Of course
this solution only has meaning in the symmetrical phase, but since this is not a well-
defined concept on finite lattices, in order to determine the range of validity of the
solution on finite lattices, from the point of view of perturbation theory, we must first
discuss the solutions in the broken-symmetrical phase. The equation for the broken-
symmetrical phase has two positive solutions, a small one and a large one, but only
for certain values of parameters, thus defining a perturbative broken-symmetrical
phase even on finite lattices. In the complementary region of the parameter plane,
which we might call the perturbative symmetrical phase, the equation has no real
solutions. On each finite lattice the position of the curve separating these two regions
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approaches the free theory on finite lattices, with this new value for the dimensionless
mass parameter. As one can see in figure 1.3.1 in this case the large solution does
indeed approach αR = −2α as expected, where −2α = 2r = 0.2. Just as in the
case θ = 180o the solution seems to be exact in this case, because for θ approaching
0o we have a vanishing λ and the distribution tends to become purely Gaussian, so
that the Gaussian approximation tends to become a perfect one. It is therefore to
the two large solutions that we should attribute physical meaning, using the broken-
symmetrical solution where it exists and using the symmetrical solution where the
broken-symmetrical solution does not exist, and therefore truncating in this way the
symmetrical solution. Note that there is a discontinuity between the two solutions
at the transition point, but this discontinuity vanishes in the N → ∞ limit. In this
limit the edges of the two curves approach the value αR = 0 at the critical line.

In the N → ∞ limit σ2
0 becomes independent of αR, the critical transition

becomes completely well-defined and the relations between αR and the parameters
(α, λ) become linear, in either phase. If we define σ2

∞ = σ2
0(N → ∞), then we have

in the symmetrical phase

αR = α + 3σ2
∞λ,

and in the broken-symmetrical phase

αR = −2α− 6σ2
∞λ,

which are equations of planes over the (α, λ) parameter plane. The three-dimensional
graph of αR(α, λ) over the parameter plane is composed of pieces of two planes that
intersect within the (α, λ) plane at the critical line. The first one is a piece of the
plane defined by the critical line and the line αR = α within the vertical (α, αR)
plane, the second one is a piece of the plane defined by the critical line and the line
αR = −2α in that same vertical (α, αR) plane. The relevant part of the first plane
is the part that stands over the symmetrical phase, the relevant part of the second
plane is the part that stands over the broken-symmetrical phase.

Note that both on finite lattices and in the N → ∞ limit the perturbative
solution for the expectation value vR of the field is proportional to the value of the
renormalized mass in the broken-symmetrical phase, that is, we have

v2
R =

αR
2λ
.

Due to the extra dependence on λ, we can have independent values of the two
dimensionless renormalized quantities, vR and αR. Whether or not the same is true
for the corresponding dimensionfull quantities VR and mR depends on the dimension
d of space-time, because the dimensions of the field and therefore of VR depend on
it (problem 1.3.12).

The final conclusion of this effort is that the perturbative technique of Gaussian
approximation allows us to calculate in a useful way the observables related to the
aspects of propagation of particles and to the aspects of spontaneous symmetry
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αR − α− 3λσ2
0(αR) = 0,

were we recall that

σ2
0(αR) =

1

Nd

∑

~k

1

ρ2(~k) + αR
,

has a single positive solution for each pair of values (α, λ) in the stable region
of the parameter plane of the model. In order to do this, remember that the
parameter αR has to be positive or zero and consider the behavior of the left
side of the equation when αR → 0 and when αR → ∞. Remember that the
sum that defines the quantity σ2

0 includes the zero mode and write it as

σ2
0 = σ′2

0 +
1

NdαR
,

where σ′2
0 has a finite limit for αR → 0. Show also that there is a second

solution, which is negative (and hence destitute of any physical meaning) and
which becomes identically zero in the N → ∞ limit.

1.3.9. (?) For given α, λ and N , write a program to solve numerically the equation

αR = α+ 3λσ2
0(αR)

for αR(α, λ).

1.3.10. Show that the perturbative equation which determines the renormalized mass
parameter αR in the broken-symmetrical phase, as a function of α and λ,

αR + 2α + 6λσ2
0(αR) = 0,

has two different real and positive solutions for some pairs of values (α, λ) in
the stable region of the parameter plane of the model, and no real solutions for
other pairs of values. Use the same ideas and techniques that were suggested
in problem 1.3.8. Show that the condition on α and λ for the existence of
solutions can be written in an implicit way, which depends on αR on finite
lattices, as

(α + 3λσ′2
0 )2 ≥ 6λ

Nd
,

and interpret the meaning of this condition on the continuum limit. Show
that when the equality holds in the condition above the renormalized mass
parameter is given by αR =

√
6λ/Nd, and hence that it goes to zero at the

critical curve in the continuum limit. Show also that the smaller of the two
solutions becomes identically zero in the N → ∞ limit.
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1.3.16. Show, using the first-order perturbative results obtained in the text, that in
the complete model the observable σ1 given by σ2

1 = 〈ϕ2〉 in the symmetrical
phase and by σ2

1 = 〈ϕ′2〉 in the broken-symmetrical phase, is equal, in either
case, to the observable σ2

0 of the free theory. Observe that this shows that the
field fluctuates in a similar way in either model, undergoing fluctuations with
the same typical size.

1.3.17. Show that it is possible to take continuum limits to the Gaussian point over
the positive λ semi-axis, that is, keeping α = 0 constant during the limit.
Determine how to take this type of limit so that the renormalized mass is finite
and non-zero, that is, discover how λ(N) must be so that mR has a finite and
non-zero limit. This type of limit, which produces a non-zero renormalized
mass without involving any parameters with dimensions of mass from the
corresponding classical theory, is related to what has been conventionally called
the phenomenon of “dimensional transmutation”.



Chapter 2

The Sigma-Model Limit

In this chapter we will discuss the infinite-coupling limit of the polynomial models,
which is, in a way, the antithesis of the perturbative approach. We will see that in
the λ → ∞ limit there is an exact representation of the polynomial models, which
is another class of non-linear models of scalar fields, known as the sigma models.
As we will see in the simple case we will deal with here, in this limit the quantum
λϕ4 models can be identified with a simple example of these sigma models. In the
one-component models that we are examining here these sigma models reduce to the
well-known Ising models. Note that we are dealing here with an equivalence between
the quantum versions of the models, not between the corresponding classical field
theories, which are quite different from one another.

2.1 Derivation of the Ising Model

In this section we will take the λ → ∞ limit of the λϕ4 model. This can be done
for more general models than the one-component λϕ4 model we are examining here,
namely the multi-component λϕ4 models which are invariant by the SO(N) groups
of transformations. In general the λ → ∞ limit of these models will take us to the
corresponding SO(N)-invariant sigma models. In our case here, however, we will
deal only with the one-component λϕ4, which is invariant by the sign reflections.
The simple discrete set of transformations given by the identity and the reflection
also forms a group of transformations, a discrete group which is known by either O(1)
or Z2. In this case the corresponding sigma model is simply the Ising model which
was mentioned in [13]. In this way we will establish that we can use the Ising model
as a direct representation of the infinite-coupling limit of the O(1)-symmetrical λϕ4

model.
The Ising model can be obtained from the λϕ4 polynomial model in the limit

in which the coupling parameter λ tends to positive infinity over negative-slope
straight lines in the parameter plane of the λϕ4 model. These lines must exist
only for λ > 0, because otherwise they would cross the region where the model is
unstable. Also, their slopes must be strictly negative (not zero) and finite, which
rules out horizontal and vertical lines in the parameter plane. Since the slopes must

43
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The functional integrals that appear in the definition of the observables of the quan-
tum theory may now be written as

∫
[dϕ] e−S[ϕ] =

∫
[dϕ] e−SV [ϕ] e−SK [ϕ],

so that, including the exponential of SV in the measure of the distribution of the
model, we may write this distribution as

[dϕ] e−S[ϕ] =
[
dϕ e−V (ϕ)

]
e−SK [ϕ].

Since we may multiply this quantity by any constant independent of the fields with-
out changing the observables, we may write the measure as

[dϕ %(α, λ, ϕ)],

where %(α, λ, ϕ) is the local part of the distribution, which we thus include in the
measure, normalized as

%(α, λ, ϕ) =
e−V (ϕ)

∫ ∞

0

dϕ e−V (ϕ)

. (2.1.1)

Observe that the integration runs only over the positive values of ϕ and hence can
be interpreted as an integration over the absolute value of the field. With this the
following normalization condition for % holds,

∫ ∞

0

dϕ %(α, λ, ϕ) = 1.

The integration over the absolute value of the field, when generalized to the more
complex models having SO(N) symmetry, corresponds to the separation of the inte-
gration variables into a radial part and an angular part. In this way the arguments
being presented here can be easily generalized to that case. In general the radial
variable will be the modulus of the N-dimensional field vector in the internal sym-
metry space, which in our case here reduces to the absolute value of ϕ. Also, in our
discrete O(1)-symmetrical case the integral over the angular part reduces to a sum
over only two points, corresponding to rotations by each one of the two angles 0 and
π, and hence to the two possible signs, cos(0) = 1 and cos(π) = −1. Therefore, in
our present case the integral over all the values of ϕ at each site is being decomposed
in this way into an integral over the positive values of ϕ and a sum over the two
possible signs. Since both %(α, λ, ϕ) and V (ϕ) are even functions of ϕ, they are in
fact functions only of the absolute value of ϕ, and independent of its sign, so it is
not necessary to make their dependence on the absolute value explicit. Given all
this, we may write the functional integrals as

∫
[dϕ %(α, λ, ϕ)] e−SK [ϕ] =

∑
[ψ = ±1]

∫
[d|ϕ| %(α, λ, ϕ)] e−SK [ψϕ],
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where the remaining part of the measure can be written explicitly as

[d|ϕ| δ(ϕ2 − β)] =
∏

s

d|ϕ(s)| δ[ϕ2(s) − β],

where the Dirac delta functions imply a condition of constraint on the fields, ϕ2 = β,
or ϕ =

√
β, since the sign of ϕ is being considered explicitly and hence ϕ is positive.

We may now use the Dirac delta functions to perform all the integrations over |ϕ|,
thus obtaining for the expectation values

〈O〉N =

∑
[ψ = ±1] O[

√
βψ] e−SK [

√
βψ]

∑
[ψ = ±1] e−SK [

√
βψ]

.

We may now examine the form of the action SK under these conditions, in order to
simplify it and exhibit it in a more familiar form. In terms of the new variables ψ
and the parameter β this action can be written as

SK [ψ] =
β

2

∑

`

(∆`ψ)2,

where the new field variables ψ = ϕ/
√
β satisfy the constraint ψ2 = 1, since they

are just signs, and the parameter β appears now multiplying the action, just like
the parameter β = 1/(kT ) of statistical mechanics. Although we may want to think
of β as the inverse of a fictitious temperature, in order to guide our intuition about
the behavior of the models, we should remember that our β is, in truth, related to
the mass parameter α and the coupling constant λ, and not to any truly physical
temperature related to the dynamical system we are studying. The phenomenon
that something relating to a coupling constant appears multiplying the action due
to a scaling redefinition of the fields is typical of the gauge theories, as we may see
in future volumes.

Note that, although SK [ψ] is a purely quadratic functional of ψ, the model is not

the free theory, due to the fact that the field ψ satisfies an equation of constraint, and
is not, therefore, a free real variable. This is a situation in which the non-linearities,
instead of being introduced by a term in the action, are introduced instead by the
measure of the functional integral, which is where the constraint is implemented in
the quantum theory. We may now perform one more transformation of the action of
the model, with the intention of showing in a clearer way its relation with the Ising
model of statistical mechanics. If we expand the squares of the derivatives contained
in the action, we get

(∆`ψ)2 = ψ2(`−) − 2ψ(`−)ψ(`+) + ψ2(`+),

where ψ(`−) and ψ(`+) are the fields at the two ends of the link `. Using now the
equation of constraint ψ2 = 1 we see that the two terms containing the squares are
constant, independent of the fields, which means that they can be neglected in the
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the potential term SV . We may therefore introduce external sources into the re-
sulting Ising model exactly as we would do in the original polynomial model, and
the whole functional generator formalism is made available for the analysis of the
Ising model, without any change. Hence the Ising model is in fact an exact and
complete direct representation of the infinite-coupling limit of the corresponding
λϕ4 polynomial model. This relationship can be generalized to the multicomponent
SO(N)-invariant polynomial models and the corresponding sigma models. It can
also be generalized to models with larger powers of the fields. It is possible to show
(problem 2.1.5) that the Ising model can also be obtained as the λ→ ∞ limit of the
λϕ2p polynomial models, with p = 3, 4, 5, . . ., in a way which is completely analogous
to the p = 2 case that we examined here.

Another aspect which we must examine here is the one relating to the superpo-
sition process involved in the definition of the block variables. Once again this is
inherited by the Ising model from the polynomial model, so we still have a simple
linear superposition of the fields ψ at the various sites within the block. Note that
although these fundamental fields satisfy the constraint ψ2 = 1, the same will not be
true for the block variables. If we consider the process of linear superposition of the
fields within a block, in order to define a block variable, it is evident (problem 2.1.6)
that the sum and the average of a collection of signs ψ = ±1 will not itself have unit
absolute value. If the fields are distributed is a very random way, without any ap-
preciable alignment, their average will tend to have an absolute value much smaller
than 1. Only in the opposite case, when the fields are highly aligned, the absolute
value of the average will tend to 1. The absolute value of the sum may have any
value, either larger or smaller than 1.

We see therefore that in general the introduction of external sources will cause
the block variables, which are the variables in terms of which we should interpret
the theory, to deform to any value, without respecting an equation of constraint.
In fact, they will behave much like the corresponding variables of the polynomial
models. In short, we see that the constraint that appears for the fundamental field
in the large-coupling limit does not survive the block-variable superposition process
and that the Ising model we get in the limit is not fundamentally different from the
λϕ4 polynomial model it derives from. Hence we confirm that the Ising models are
not to be seen as a completely different class of models, but as a way to examine
directly the behavior of the polynomial models in the λ → ∞ limit. Since, as was
mentioned before, the Ising models can also be obtained as the limits of the λϕ2p

polynomial models for any p ≥ 2, they become a tool for the examination of the
large-coupling limit of a large class of models.

We will finish this section with some comments about the critical behavior of
the models. As we shall see later, approximate calculations based on the mean-
field technique show that the Ising models have well-defined critical points βc for
dimensions d ≥ 3. Since they are the λ → ∞ limits of the polynomial models, we
see that the perturbative Gaussian approximation also predicts well-defined critical
points for the Ising models, although they are infinitely distant from the Gaussian
point. In fact, the two predictions do not differ very much from each other, and are
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2.1.5. Repeat in a qualitative way the derivation presented in the text for the case of
the λϕ4 models, in order to show that the Ising models are obtained, in limits
in which α → −∞ and λ→ ∞, with constant −α/λ, from the corresponding
λϕ2p models, for any p ≥ 3.

2.1.6. Show that the average of the field ψ over any number of sites has an absolute
value smaller than or equal to 1. Show also that the absolute value of the sum
of ψ over a block of sites may have any positive value in the continuum limit.

2.2 The Mean Field Method

In this section we will introduce the mean-field approximation method. This is an
approximation process which is not perturbative, not being based on the Gaussian
model. It is a traditional approximation method of statistical mechanics, which is
also useful for obtaining non-perturbative approximations in quantum field theory.
It is easy to use it to obtain approximations for local quantities defined on lattice
sites, such as, for example the expectation value of the field. It is a well-known fact
that the results of the method tend to improve with the increasing dimension of
the space where the models are defined. Usually the results are reasonably good in
three dimensions and even better in four dimensions, while the method often fails
completely in one and two dimensions. There are even some speculations that, for
some quantities, the method becomes exact in sufficiently large dimensions. In its
usual formulation this method does not establish a series of successive approxima-
tions, but rather a single approximation, making it difficult to evaluate the errors
involved in this approximation. We will introduce here an extension of the method,
that improves the situation and allows us to understand its bad performance for
small dimensions.

The formulation we will present is specifically for systems defined on the Eu-
clidean lattice, with interactions only between next neighbors. As we will see, it
is intimately related to stochastic simulations of the systems on finite lattices in
which one uses a certain type of fixed boundary conditions, which we denominate
self-consistent boundary conditions. These structures on finite lattices constitute an
extension of the usual mean-field method and, unlike the usual method, they give
us a whole series of successive approximations. The first of them will be the usual
approximation, while the subsequent approximations converge to the exact solution
of the models within a finite box with fixed boundary conditions, as the lattice
spacing is decreased. This extension of the method is similar, but not identical,
to other well-known extensions of the traditional method in statistical mechanics,
such as the Oguchi method and the Bethe, Peierls, Weiss and Kikuchi [29] method.
This approximation method can be used both in the polynomial models and in the
sigma models, we will assume only that we have an O(1) model of scalar fields, on a
lattice of dimension d, with the usual forms of the action. As we saw in sections 1.1
and 2.1, the action of any of these models can always be separated in two parts, a
strictly local one and one involving only interactions between next neighbors, which
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Figure 2.2.1: Lattice with N = 1 and fixed boundary conditions, related to the usual
mean-field approximation.

at any of the neighboring sites, assuming that they are all equivalent by discrete
translation invariance. This means that we are using for the external field the value
jMF = 2d〈ϕ〉. The calculation of this average value is made, in the context of this
method, a-posteriori and in a self-consistent way: one calculates the average value
at the active site located at ~n and imposes that this value be equal to the average
value at the neighboring sites.

In this way we replace the detailed interactions between the field at each site and
the fields at the neighboring sites by an interaction at each site with a background
field, which does not fluctuate, thus rendering the problem mathematically more
tractable. It is interesting to observe that the spirit of this approximation is some-
what different from the spirit of the usual approximation in statistical mechanics,
in which we consider the interaction of the dynamical variables with an external
mean field, ignoring completely that the interactions are established through the
links of the lattice. Observe that, in our case here, the dimension of the lattice ap-
pears explicitly in the approximation. However, this distinction will only be really
relevant when we consider the extension of the method to clusters of sites. For the
case discussed so far, in which only the field at a single site is kept active, that is,
undergoing statistical fluctuations, the two methods are identical. They are known
in statistical mechanics as the constant coupling method, which was developed by
Yvon, Nakamura, Kasteleijn, Van Kranendonk, Kikuchi and Callen [29].

This replacement of the interactions between next neighbors by an interaction
with a non-dynamical field that undergoes no fluctuations is clearly a very radical
change and it is rather surprising that it can produce good results, even if only
for some observables. In particular, since the dynamical fields at each site interact
only with the constant background field and no longer with each other, it is clear
that the fields at the various sites will become completely uncorrelated from each
other in this approximation, so that the calculation of correlation functions is out
of the question. There is, however, an alternative interpretation of the method,
which will allow us to extend it to clusters of active sites and hence to recover the
correlations among sites. This alternative interpretation, which changes nothing in
the mathematics involved, is that the fields at all the sites are frozen at their average
values, except for a single arbitrarily chosen site, which remains active. Since in the
traditional mean-field method all the sites are equivalent and uncorrelated from
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Figure 2.2.3: Modified lattice used in the Bethe-Peierls cluster method.

This extension of the mean-field method is similar to the method of clusters
of Bethe, Peierls, Weiss and Kikuchi in statistical mechanics, in which groups of
connected sites are considered. The first cluster considered in this method is the
Bethe-Peierls cluster, which is shaped like a diamond as shown, within the context of
our lattice representation, by the diagram in figure 2.2.3, including the border sites,
which are not part of the original cluster method. Larger clusters with formats
similar to this one may also be considered and used for analytical calculations.
However, the amount of analytical work involved is usually quite large, to achieve
only modest gains in the quality of the results obtained.

In the general case our extension is not identical to the traditional cluster method,
because in our case the interaction of the cluster with the mean field is established
only through the border, not by means of an external mean field that acts also on the
internal sites of the cluster, which have no direct contact with the border. This kind
of internal site appears in the Bethe-Peierls cluster and also in the cubical clusters
starting from N = 3, as illustrated in the diagram in figure 2.2.4. The two methods
also differ regarding the type of self-consistency condition which is imposed. In the
case of the Bethe-Peierls cluster, rather than adjusting the external mean field so
that it becomes consistent with the average value of the fields at the active sites,
what is done is to adjust it so that the average of the field at the central site is
identical to the average of the field at the other 2d sites of the cluster, which are
all equivalent to each other due to the symmetry of the cluster. Hence, what one
actually imposes in this case is that the normal derivative of the average value of
the field vanish at the border.

It is clear that the N → ∞ limit of our sequence of cubical clusters produces
exactly the continuum limit within a finite cubical box with a certain type of self-
consistent boundary conditions. Let us now discuss, in greater detail, the self-
consistency condition to be imposed on the border sites. The usual N = 1 mean-field
approximation is sufficient for the calculation of strictly local quantities, defined at
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value at the border, the value at the border is modified so as to coincide with the
value measured in the interior. This is done many times at regular intervals, so
that eventually the adjustment of the value at the border becomes negligible and
the border fields stay at the desired value. From this moment on one can start
measuring whatever observables one may be interested in. For lattices larger than
that of the case N = 1 a similar mechanism may be used, but this time there are
several possible variations of the procedure. For example, we may measure and feed
back to the border the average value calculated for the spacial average of the fields
over all the internal sites or, alternatively, we may use a spacial average over only
the internal sites which are in direct contact with the border, thus implementing a
self-consistency condition in the spirit of the Bethe-Peierls condition, involving the
normal derivative at the border.

One of the most interesting properties of these systems with fixed but self-
consistent boundary conditions relates to their characteristics of critical behavior.
Usually we build the models and their corresponding stochastic simulations on finite
lattices with periodical boundary conditions1. These systems suffer from the incon-
venience that there is no true critical behavior on finite lattices of this kind, that
is, in systems with a finite number of degrees of freedom and no external bound-
ary [30]. For example, if we calculate by means of stochastic simulations on finite
lattices the expectation value vR of the field in the Ising models, a quantity which
is analogous to the magnetization, as a function of the inverse temperature β, we
typically obtain curves vR(β) that are continuous, differentiable and monotonically
increasing. There are no sharp transitions except in the N → ∞ limit, which makes
it considerably more difficult to extract from these simulations the critical values of
the parameters of the models by means of extrapolations of the finite-lattice results
to the N → ∞ limit.

In contrast to this, the self-consistent lattice systems display sharp transitions
and complete critical behavior even on finite lattices. In the case N = 1 the fact that
the curve of the magnetization displays a sharp transition at a certain critical value
of β, a point where it is not differentiable, can be verified analytically. In numerical
simulations the sharpness of the transitions is limited, of course, by the technical and
numerical limitations of the computer simulations but, with increasing expenditure
of computer resources, the transitions can, at least in principle, be made as sharp as
one desires for any given N , quite unlike the case of periodical simulations. These
self-consistent simulations are, therefore, potentially better for the calculation of
critical quantities. With simulations for larger values of N we can not only improve
the calculation of local quantities such as the expectation value of the field, we
can also calculate significant approximations for non-local quantities, such as the
correlation functions for the theory defined within a finite box. This is, therefore, a
very useful extension of the mean-field method. Clearly, there is a numerical price

1For a more complete understanding of the rest of this section it is useful, although not com-

pletely essential, to have some knowledge of the simulation techniques and some experience with

stochastic simulations. This subject will be examined in detail in another volume of this series of

books.
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time dimension. In this way a certain βc(N) is defined on each finite lattice, which
is the critical point for that lattice size, assuming that we use as an example a sigma
or Ising model. In the cases in which there is a phase transition in the N → ∞
limit βc(N) tends to a finite value β∗

c when N → ∞. In the cases in which there
is no phase transition in the limit what happens is that βc(N) increases without
limit when N goes to infinity. Since in all cases we have the non-oriented phase for
β < βc, in these cases this random phase is the only one that remains in the N → ∞
limit.

Thus we see that, if there is a phase transition for some well-defined finite β∗
c

in the N → ∞ limit, then the N = 1 approximation, which also displays a well-
defined phase transition, will not be qualitatively different from the limit, although
it may be quantitatively quite different, thus giving rise to an approximation that is
interpreted as successful. In contrast to this, in the case in which there is no phase
transition in the limit N → ∞ the N = 1 approximation, because it always displays
a well-defined phase transition, becomes qualitatively different from the limit and is
thus interpreted as a complete failure. Observe that the N = 1 approximation fails
precisely in the cases in which the system does not display critical behavior in the
limit of large values of N , cases which are not, therefore, of much interest for us.

The situation regarding the realization of the theorems is not very different for
periodical boundary conditions, except for the fact that in this case there are no well-
defined critical points on finite lattices. However, in order to tackle this case, we must
first dispel a common misconception regarding finite lattice systems with periodical
boundary conditions. Although it is true that if one measures the expectation value
of the field vR in such systems one gets zero within errors, this does not really mean
that the single phase existing on finite lattices is the symmetrical phase. The reason
why one gets zero for vR in these circumstances is not that the field configurations
are typically non-oriented, but rather that the average value us washed out by the
wandering of the direction of alignment. The best way to describe what happens is
to say that the system is always in the broken-symmetrical phase on finite lattices,
and that it only becomes symmetrical in a certain region of its parameter space in
the N → ∞ limit.

One can verify this fact in at least three ways, which we now describe shortly.
First, one can include in the action a constant external action j and verify that
the resulting value of vR does not vanish in the limit in which j → 0. Second,
one can consider looking at the expectation value of the average of the field over
the lattice, which is just the zero mode, the zero-momentum Fourier transform ϕ̃(~0)
which is like the magnetization in statistical mechanics; if one measures both its
expectation value and the expectation value of its square, one gets zero for the first
but not for the second, meaning that the field configurations are typically oriented,
and that the direction of this orientation drifts. Third, one can eliminate the drift
on finite lattices by hand by freezing the zero mode of the field in an arbitrarily
chosen direction, and then verifying that one gets explicitly a non-vanishing average
magnetization; this changes nothing in the N → ∞ limit, since in this limit the drift
is frozen in any case.
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is the order parameter of these models. It can be defined as the expectation value
vR of the field, which will be pointing predominantly in the direction that we choose
arbitrarily for the symmetry breaking. This is the direction in which we will keep
oriented the fields at the border. We will calculate vR in the mean-field approxi-
mation as a function of the parameter β and of the dimension d of space-time. As
we saw before in section 2.2, the parameter β can be understood as the inverse of a
fictitious temperature. For a given value of d, the critical point βc is the value of the
inverse temperature for which the magnetization vR(d, β) ceases to be zero, when
we “cool” the system and therefore increase β. For the calculations it is convenient
to use the dimensionless field ψ that was introduced in section 2.2, so that for the
purposes of this section we will use, rather than vR = 〈ϕ〉, the quantity νR = 〈ψ〉,
where vR =

√
βνR. It is νR rather than vR that is more closely related to the stan-

dard definition of the magnetization of statistical mechanics. As was derived in that
section, the action can be written in terms of ψ as

S[ψ] = −β
∑

`

ψ(`−)ψ(`+),

while the constraint is written as

ψ2 = 1,

where the field ψ is, therefore, either +1 or −1. We now freeze all the sites except
one at the value ψ = νR, arbitrarily choosing the positive direction as the direction
of orientation of the fields. Therefore in our N = 1 mean-field approximation the
relation νR = 〈ψ〉 can be written as

νR =

∑
[ψ = ±1] ψ e2d βνRψ

∑
[ψ = ±1] e2d βνRψ

.

Since the sum is over a single site, in this simple O(1) case we can immediately write
the result as

νR =
sinh(2d βνR)

cosh(2d βνR)
, (2.3.1)

thus obtaining an algebraic equation that in principle gives us the complete solution
for νR in the N = 1 system. This equation can be solved numerically in order to
provide us with graphs of νR as a function of β (problem 2.3.2). It can also be
used to determine the value of β at which νR = 0 becomes the only possible solution
(problem 2.3.1), by the use of series expansions. However, the simplest way to obtain
the critical points is to simply expand its right-hand side around νR = 0. This is
sufficient to determine the critical points because the phase transition is of second
order in these models and, therefore, we have that νR ≈ 0 for β ≈ βc. Expanding
and keeping only up to first-order terms (problem 2.3.3) we get
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d N βc
periodical mean-field

1 1 ∞ 0.500
2 1 0.4406868 0.250
3 1 0.22165(4) 0.166̄
4 1 0.15 ± 0.02 0.125

Table 2.3.1: Critical points of the Ising models in dimensions from d = 1 to d = 4.

the mean-field result deviates about 17% from the numerical results, while for d = 3
it deviates by about 25%.

Calculating the magnetization in an infinitesimal neighborhood of βc one can
also obtain the mean-field approximation for the corresponding critical exponent.
The definition of this critical exponent is as follows. If we have, close to the critical
point in the broken-symmetrical phase,

νR ≈ C (β − βc)
γ (2.3.3)

for some non-vanishing constant C, then γ is the critical exponent of νR. Once
more, this can be done using the complete solution in terms of the hyperbolic func-
tions (problem 2.3.4), but the simplest way to obtain the result is to expand equa-
tion (2.3.1) to third order in νR (problem 2.3.3), thus obtaining

νR = 2d βνR − 8

3
d3β3ν3

R.

Once more a factor of νR cancels out and we obtain

1 = 2d β

[
1 − 4

3
d2β2ν2

R

]
.

Remembering that βc = 1/(2d) and considering that we are in the vicinity of the
critical point, with β ≈ βc, we may write this as

νR =
√

3
βc
β

√
β − βc
β

≈
√

3

√
β − βc
βc

= C(β − βc)
1/2. (2.3.4)

This shows that the mean-field approximation for the critical exponent is γ = 1/2,
and determines the value of the constant C =

√
3/βc. This value for the critical

exponent of the magnetization is characteristic of the mean-field calculations with
N = 1.

Another mean-field calculation of interest is that of the critical curves of the
λϕ4 polynomial models, which are given by equation of the type λ = f(α). In this
case we will use the usual dimensionless field ϕ as our variable. If we define the
magnetization for this case as vR = 〈ϕ〉 we may write, in the N = 1 mean-field
approximation,
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Although we are not able to solve equation (2.3.6) analytically in order to write
the equation λ = f(α) of the critical curve in explicit form, it is possible to solve
the asymptotic form of the equation, for large values of λ (problem 2.3.8). Doing
this we discover that in this limit the critical curve is asymptotic to the straight line
defined by the equation

λ(α) = − 1

βc
(α + 2d),

where βc = 1/(2d) are the critical points of the corresponding Ising models, so that
the asymptote cuts the λ axis at the point −4d2 and forms with the negative α
semi-axis an angle θ such that tan(θ) = 1/βc. Expanding equation (2.3.6) for small
values of −α and λ one can also obtain the slope of the tangent line to the critical
curve at the Gaussian point (problem 2.3.9). Doing this we obtain for this tangent
line the equation

λ(α) = − 1

βc

α

3
.

We see that the asymptotic slope is −1/βc, larger therefore than the slope at the
Gaussian point, which is −1/(3βc), by a factor of 3, thus showing that the critical
curve has its concavity turned mostly upwards.

In order to get the graphs of the critical curve we are compelled to solve the
equation by numerical means. In fact, this can be done not only for our O(1) case
here, but for the SO(N) generalizations as well. A curious fact is that it is in fact
easier to do this for N = 2 and the other even-N cases than for N = 1 and the
other odd-N cases, because in the even-N cases it turns out that the integrals can
be written in terms of the error function. For the odd-N cases we must use direct
numerical integration in order to solve the equation, which is a technique that can
be used in all cases [38]. The graphs in figures from 2.3.1 to 2.3.4 show the critical
curves obtained by such numerical means in a few cases. Each graph shows also the
tangent line at the Gaussian point and the asymptotic line for large values of λ.

Figure 2.3.1 shows the solution in the case d = 3, for fairly small values of the
parameters −α and λ, while figure 2.3.2 shows the same solution for larger values
of the parameters. Figures 2.3.3 and 2.3.4 show the corresponding data for the case
d = 4. It should be noted that, as one can see in the two graphs with the larger
values of the parameters, the asymptotic lines actually cross the critical curves.
This implies that at some location for even larger values of the parameters the
critical curves must have inflection points and reverse their concavities, presumably
approaching their asymptotes from below rather than from above. One can see,
looking directly at the data shown in the graphs, that the critical curves do in fact
slowly approach the asymptotes, but it seems that the location of the inflection
point is at very large values of the parameters, that so far have not been probed
numerically. It is interesting to observe that this behavior seems to be characteristic
of the O(1) models. In the SO(N) models with N > 1 one does not see this type of
crossing, and the critical curves seem to approach their asymptotes from above.
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Figure 2.3.2: The mean-field critical curve of the λϕ4 model with O(1) symmetry,
in d = 3, for the larger values of the parameters.

At the critical curve, where vR = 0, this reduces to

σ2
MF =

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.

Note that the right-hand side of this equation is exactly equal to the right-hand side
of equation (2.3.6), which determines the critical line, and that therefore we have

σ2
MF =

1

2d
= βc,

so that the equation of the tangent line to the mean-field critical curve at the Gaus-
sian point can be written as

λ(α) = − 1

σ2
MF

α

3
.
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Figure 2.3.4: The mean-field critical curve of the λϕ4 model with O(1) symmetry,
in d = 4, for the larger values of the parameters.

d(v2
R) = Cα dα + Cλ dλ,

where the coefficients Cα e Cλ are finite and non-vanishing expressions in the vicinity
of the critical curve. The fact that we are able to write the differential of v2

R directly
in terms of the differentials of α and λ with coefficients that are finite and not zero
over the critical curve is sufficient to show that the critical exponent of vR is, once
more, γ = 1/2.

In conclusion, we have discovered that the mean-field method is related, through
its generalizations, to systems on finite lattices with fixed and self-consistent bound-
ary conditions. These systems define a second family of continuum limits for the
models, which does not necessarily have to be identical to the one defined by the
systems with periodical boundary conditions. Although the two families of limits
have, by and large, similar properties, many of the details are not identical and some
quantities of interest may, in fact, depend on the boundary conditions. For example,
it may be that only part of the discrepancies shown in table 2.3.1 for the critical
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2.3.4. Starting from the relation νR ≈ C (β − βc)
γ that defines the critical expo-

nent γ of νR, write the corresponding relation for the parameter A = 2d βνR
and differentiate the resulting equation with respect to β, thus obtaining an
expression for the critical exponent,

γ =
β − βc
A

dA

dβ
− β − βc

β
.

In the vicinity of the critical point we have β ≈ βc and A ≈ 0, so that we may
write for γ

γ =
β − βc
A

dA

dβ
. (2.3.7)

In order to calculate dA/dβ, differentiate equation (2.3.1) with respect to A,
and thus obtain the result

dA

dβ
=

2d sinh2(A)

sinh(A) cosh(A) − A
.

Use this in the expression for γ and expand it to second order around the
critical point, then use the result βc = 1/(2d), in order to obtain for γ the
expression

γ =
3

2C2βc
(β − βc)

1−2γ .

Note that, given the second-order nature of the phase transition in these mod-
els, we know that γ must be within the interval (0, 1]. Examine the behavior
of this expression in the cases 1/2 < γ ≤ 1 and 0 < γ < 1/2, and show by
reduction to absurd that the only possible value for the critical exponent is
γ = 1/2. Substitute this value in the equation above and obtain the value of
the constant C, thus reproducing equation (2.3.4) which was derived in the
text.

2.3.5. Use the series expansions of the hyperbolic functions sinh(B) and cosh(B),
with B = 2d vRϕ, that appear in equation (2.3.5), in order to rewrite that
equation in the form

1

2d
=

∞∑

k=0

(2d vR)2k

(2k + 1)!

∫ ∞

0

dϕ ϕ2k+2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

∞∑

k=0

(2d vR)2k

(2k)!

∫ ∞

0

dϕ ϕ2k e−[(d+α/2)ϕ2+(λ/4)ϕ4]
.
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Obtain the same result in another way, using in equation (2.3.8) the asymptotic
expansion of Dν [25], since for λ→ 0 the arguments of the Dν functions that
appear in that equation go to infinity.

2.3.10. In order to determine the mean-field value of the critical exponent of vR in the
λϕ4 model, write equation (2.3.5) in the form

vR

∫ ∞

0

dϕ cosh(B) e−[(d+α/2)ϕ2+(λ/4)ϕ4]

=

∫ ∞

0

dϕ ϕ sinh(B) e−[(d+α/2)ϕ2+(λ/4)ϕ4],

where B = 2d vRϕ. Then differentiate in terms of dα and dλ, keeping in mind
that vR is a function of α and λ, in order to write the differential of vR in
terms of its gradient as

dv =
C1

C0
dα +

C2

C0
dλ,

where the coefficients are given by

C0 =

∫ ∞

0

dϕ e−[(d+α/2)ϕ2+(λ/4)ϕ4]

×
{[

1 − 2d ϕ2
]
cosh(B) +B sinh(B)

}
,

C1 =
1

2

∫ ∞

0

dϕ ϕ2 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

× [v cosh(B) − ϕ sinh(B)] ,

C2 =
1

4

∫ ∞

0

dϕ ϕ4 e−[(d+α/2)ϕ2+(λ/4)ϕ4]

× [v cosh(B) − ϕ sinh(B)] .

Next expand the hyperbolic functions in each one of these coefficients for small
values of B, that is, in the vicinity of the critical curve. Observe that it is
enough to expand C1 e C2 to first order but that C0 must be expanded to the
next non-vanishing order, because the equation of the critical curve implies
that the terms of orders zero and one of its expansion cancel each other. In
this way, obtain the differential of v2

R as

d(v2) = Cα dα + Cλ dλ,

where the coefficients, which define the gradient of v2
R, are given by



Chapter 3

Interactions Between Particles

3.1 The Coupling Constant

Having discussed in sections 1.2 and 1.3 the behavior of the λϕ4 model with respect
to the one-point and two-point correlation functions, which are related respectively
to the phenomena of spontaneous symmetry breaking and of the propagation of
waves and particles, we will now consider the three-point and four-point functions,
which are related to the phenomena of interaction between waves or between parti-
cles within the model. Our first task will be to discuss the nature of the renormalized
(or physical) coupling constant λR, and of its dimensionfull version ΛR, relating them
to expectation values of observables of the model. In this way we will define these
quantities and determine, at least in principle, the way to calculate them.

As we will see, the renormalized coupling constant is a quantity that vanishes in
the Gaussian model and whose value measures how non-Gaussian the renormalized
ensemble of the model under study is, thus determining its true degree of non-
linearity and the existence or not, within the structure of the model, of phenomena
of interaction between waves or between particles. Note that we are not talking
here about the ensemble of the fundamental field, but rather about the ensemble
of the physical variables associated to blocks, as was discussed in the section in
reference [6], since these are the variables that are directly associated to the actual
physical observables of the theory. Hence, we should expect the quantity of greater
interest in this discussion to be the dimensionfull renormalized coupling constant
ΛR, since it is the dimensionfull quantities that scale in the correct way and thus
are related to the block-variable observables, as we saw explicitly in the case of the
propagator in the section in reference [6].

In order to be able to write the renormalized coupling constant in terms of ob-
servables of the model, we return to the discussion of the formalism of the generating
functionals and of the effective action, which were introduced in the sections in ref-
erences [39] and [45]. We saw in the section in reference [39] that the complete
Green functions g1,...,n = 〈ϕ1 . . . ϕn〉 of the theory in the absence of external sources
can be obtained by means of multiple functional differentiations with respect to j of
the functional Z[j] defined in the equation in reference [41], after which one makes

75
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consists of a relatively small number of terms with different structures, each one
accompanied of all the possible permutations of the position indices. Observe that
in any circumstances in which ϕ(c) = 0, corresponding necessarily to j = 0, we
obtain a much simpler relation, that can be written as

g(c)1,2,3,4 = g1,2,3,4 − [g1,2 g3,4 + g1,3 g2,4 + g1,4 g2,3], (3.1.2)

since for j = 0 we have that g(c)i,j = gi,j. Just as g(c,j)i,j gives us the true two-
point correlations, g(c,j)i,j,k,l gives us the true four-point correlations of the model,
that is, those which are not just superpositions of two-point correlations. While
the two-point function is related to the propagation of waves and particles, the
four-point function is related to the interaction between these waves and between
these particles. It gives us the part of the complete four-point function which is not
just a product of two-point functions. The part of the complete four-point function
that can be decomposed into such a product of two-point functions corresponds
to two waves or particles propagating together in a region of space-time, but that
superpose linearly, passing transparently through each other, without interacting
with one another. This is in fact all that happens in the theory of the free scaler
field. One can show (problem 3.1.2) that in that theory, where everything is linear,
the connected four-point function vanishes identically, a fact which corresponds to
the lack of interactions between waves or between particles in that theory.

In order to relate this function with the renormalized coupling constant we must
go back to the discussion of the concept of the effective action, which was introduced
in the section in reference [39] and discussed in detail in the section in reference [45].
The renormalized coupling constant is one of the parameters that appears in the
expression of the effective action, it is the parameter that relates most directly to
the connected four-point function and that encodes in the most concise way the
structure of interactions of the theory. As we saw, the effective action Γ[ϕ(c)] is a
functional of ϕ(c) defined from W [j] by a Legendre transformation. As we saw in the
equation in reference [47], the double functional derivative of Γ[ϕ(c)] with respect
to ϕ(c) is related to the inverse of the propagator. Starting from that equation we
may write, with some changes of indices and an additional sum over the lattice, the
equation

∑

3,4

g(c,j)1,3 g(c,j)2,4

d
2Γ[ϕ(c)]

dϕ(c)3dϕ(c)4

= g(c,j)1,2.

If we differentiate this once more with respect to j, using then the chain rule in order
to rewrite the derivatives as derivatives with respect to ϕ(c), as we did in the deriva-
tion of the equation in reference [47], and recalling also that the double functional
derivative of Γ[ϕ(c)] is the inverse of the propagator, we obtain (problem 3.1.3)

∑

4,5,6

g(c,j)1,4 g(c,j)2,5 g(c,j)3,6

d
3Γ[ϕ(c)]

dϕ(c)4dϕ(c)5dϕ(c)6
= −g(c,j)1,2,3.
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Figure 3.1.2: Diagrammatic representation of the equation for the four-point func-
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Figure 3.1.3: The effective potential as a function of the classical field ϕ(c).

γ̃1,2,3,4 =
−1

N4d

g̃(c)1,2,3,4

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4

. (3.1.5)

We have here the 1pi function written in terms of expectation values of the model
in momentum space.

In order to relate this to the renormalized coupling constant, we will have to make
some assumptions about the form that the effective action Γ[ϕ(c)] may have, which
will be based on the symmetries of the model. Let us recall then that our polynomial
model is defined by the action given in equation (1.1.1), which we reproduce here,

S[ϕ] =
1

2

∑

`

(∆`ϕ)2 +
α

2

∑

s

ϕ2(s) +
λ

4

∑

s

ϕ4(s).

We will be interested primarily in analyzing the low-momentum regime of the model,
because this is enough for obtaining the value of the renormalized coupling constant,
since it appears as part of a local potential, which exists even for fields which are
constant over the lattice, having therefore infinite wavelength and vanishing mo-
menta. In addition to this, we will assume that the effective action has the same
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the effective potential as shown in figure 3.1.4. Observe that in the continuum limit
we have vR → 0, since it is necessary that we approach the critical curve in the
limit, where vR = 0 since the phase transition is second-order. Hence, if we will end
up by taking the limit, we can do the analysis either in terms of ϕ′

(c) or in terms
of ϕ(c). For simplicity, we will limit ourselves here to the derivation of the relation
between λR and the observables of the model in the case in which j = 0, but it is
not difficult to generalize the result (problem 3.1.6).

Since we will assume that the effective action, when written in terms of ϕ′
(c), has

the same symmetries that the fundamental action which defines the model has, it
follows that Γ[ϕ′

(c)] must be composed of terms that have the same symmetries of

the terms existing in S[ϕ], that is, that it must have the general form

Γ[ϕ′
(c)] =

1

ζ

{
1

2

∑

`

[∆`ϕ
′
(c)]

2 +
αR
2

∑

s

ϕ′2
(c)(s) +

λR
4

∑

s

ϕ′4
(c)(s) + (others)

}
,

where we wrote explicitly the terms which are relevant for the analysis of the low-
momentum regime of the model, ζ is the residue of the pole of the propagator and
“others” indicates terms with more than four powers of the field and terms with more
than two derivatives. Terms with many derivatives do not contribute significantly
to the low-momentum regime and terms with more than four powers of the field do
not contribute to the four-point function. Based on the numerical experience with
this model, we may assume that ζ = 1, which seems to be true with significant
precision in all cases examined so far.

When taking the functional derivatives of Γ[ϕ′
(c)], and considering that we are

interested in the case j = 0, we should realize that it is implicit that we should
put ϕ′

(c) = 0 at the end of the calculations, because this is the value of ϕ′
(c) that

corresponds to the condition j = 0 in this model. It is clear that the quadratic terms
will vanish anyway when we take the derivatives, while the terms with powers larger
than four will vanish due to the condition ϕ′

(c) = 0. Therefore, we may consider only
the terms of the effective action that contain exactly four powers of the field and no
derivatives, and so we are reduced to considering only the term

V(4)[ϕ
′
(c)] =

λR
4

∑

0

ϕ′4
(c)0,

which is the term of the effective potential which is relevant for zero momentum.
Taking the first derivative we get

dV(4)

dϕ′
(c)1

= λR
∑

0

ϕ′3
(c)0δ0,1 = λRϕ

′3
(c)1.

Multiplying this equation by f1(1), where, in order to simplify the notation, we are
denoting the mode functions of the Fourier basis as

fi(j) = eı
2π
N
~ni·~kj ,
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λR = − 1

6Nd

g̃(c)1,2,3,4

g̃(c)1 g̃(c)2 g̃(c)3 g̃(c)4

.

Naturally, since we neglected the terms in Γ[ϕ′
(c)] with larger powers of the momenta,

this relation only makes sense for small or vanishing momenta. We take, therefore,
the zero-momentum case ~k1 = ~k2 = ~k3 = ~k4 = ~0 in order to obtain, substituting the
connected functions in terms of the complete functions,

λR =
1

6Nd

3〈|ϕ̃(~0)|2〉2 − 〈|ϕ̃(~0)|4〉
〈|ϕ̃(~0)|2〉4

. (3.1.7)

If we recall the factorization relations of the free theory for the correlation func-
tions in momentum space, that were introduced in the section of reference [44], we
immediately see that this quantity vanishes identically in the free theory.

We may also write this result in terms of the dimensionfull quantities, using the
appropriate scaling relations to transform ϕ in φ and λR in ΛR, thus obtaining

ΛR =
1

6Ld
3〈|φ̃(~0)|2〉2 − 〈|φ̃(~0)|4〉

〈|φ̃(~0)|2〉4
.

This is the quantity whose value determines whether or not there exists in this
model the phenomenon of non-linear interaction between waves, or between particles.
Naturally, this quantity is of great physical interest and we will dedicate some time
to the examination of its properties.

Problems

3.1.1. Using the definition of the connected four-point correlation function

g(c,j)1,2,3,4 =
d

4W [j]

dj1dj2dj3dj4
,

in a theory with a non-vanishing external source j, show that it is related to
the complete functions of four, three and two points by the formula

g(c,j)1,2,3,4 = g(j)1,2,3,4

− [g(j)2,3,4 ϕ(c)1 + g(j)1,3,4 ϕ(c)2 + g(j)1,2,4 ϕ(c)3 + g(j)1,2,3 ϕ(c)4]

− [g(j)1,2 g(j)3,4 + g(j)1,3 g(j)2,4 + g(j)1,4 g(j)2,3]

+ 2[g(j)1,2 ϕ(c)3 ϕ(c)4 + g(j)1,3 ϕ(c)2 ϕ(c)4 + g(j)1,4 ϕ(c)2 ϕ(c)3

+g(j)2,3 ϕ(c)1 ϕ(c)4 + g(j)2,4 ϕ(c)1 ϕ(c)3 + g(j)3,4 ϕ(c)1 ϕ(c)2]

− 6 ϕ(c)1 ϕ(c)2 ϕ(c)3 ϕ(c)4.
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Next, use the fact that the second functional derivative of Γ[ϕ(c)] is the inverse
of the propagator and rearrange the terms in order to obtain the final relation
in the form

∑

4,5,6

g(c,j)1,4 g(c,j)2,5 g(c,j)3,6

d
3Γ[ϕ(c)]

dϕ(c)4dϕ(c)5dϕ(c)6

= −g(c,j)1,2,3.

3.1.4. Starting from the final result of equation (3.1.3), differentiate it once again
with respect to j, using the chain rule to rewrite the derivatives as derivatives
with respect to ϕ(c), thus obtaining

∑

5,6,7,8

g(c,j)1,5 g(c,j)2,6 g(c,j)3,7 g(c,j)4,8

d
4Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7dϕ(c)8

+

+
∑

5,6,7

g(c,j)1,4,5 g(c,j)2,6 g(c,j)3,7

d
3Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7

+

+
∑

5,6,7

g(c,j)1,5 g(c,j)2,4,6 g(c,j)3,7

d
3Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7
+

+
∑

5,6,7

g(c,j)1,5 g(c,j)2,6 g(c,j)3,4,7

d
3Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7

= g(c,j)1,2,3,4.

Using again the final result of problem 3.1.3 and, once more, the fact that the
second functional derivative of Γ[ϕ(c)] is the inverse of the propagator, obtain
the final relation

∑

5,6,7,8

g(c,j)1,5 g(c,j)2,6 g(c,j)3,7 g(c,j)4,8

d
4Γ[ϕ(c)]

dϕ(c)5dϕ(c)6dϕ(c)7dϕ(c)8

= −g(c,j)1,2,3,4 +
∑

5,6

g(c,j)1,2,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)3,4,6

+
∑

5,6

g(c,j)1,3,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)2,4,6

+
∑

5,6

g(c,j)1,4,5

d
2Γ[ϕ(c)]

dϕ(c)5dϕ(c)6

g(c,j)2,3,6.

3.1.5. Starting from equation (3.1.4), write it in the form

∑

5,6,7,8

g(c)1,5 g(c)2,6 g(c)3,7 g(c)4,8 Γ5,6,7,8 = −g(c)1,2,3,4

and execute four Fourier transforms on the external variables ~n1, . . . , ~n4, using
the corresponding variables ~k1, . . . , ~k4 in momentum space, and recalling that,
for a function F of n position variables ~ni,
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for the calculation of the propagator, we obtain (problem 3.2.1) the classical result
λR = λ. Naturally, this implies that ΛR = Λ to first order in ε, which means to
first order in λ, which seems to indicate, in a superficial way, that we may have a
non-vanishing renormalized coupling constant in the quantum theory. We will see,
however, that this is an excessively superficial analysis and that the real situation
is much more complex than what it indicates.

Let us recall that, in the calculation of the propagator, the calculation of order
zero in ε resulted in the classical propagator, that is, in the propagator of the
Gaussian ensemble that we are using to approximate the ensemble of the complete
theory, while the calculation to first order in ε gave us quantum corrections to
the classical result. Also, this first-order result was not a small correction of the
zero-order result, but instead was qualitatively different from it. In the case of
the coupling constant it is clear that the zero-order calculation results in λR = 0,
which is the value of this quantity in the Gaussian ensemble, while the first-order
calculation gives us the classical result. This situation is to be expected, since we
are now calculating a quantity which is, by definition, at least proportional to the
expansion parameter λ, and that vanishes when the expansion parameter vanishes,
unlike what was the case for αR. Unlike what happened in the case of αR, we are
discussing here a quantity that does not exist at all in the Gaussian ensemble of the
free theory. Just like what happened in the case of the propagator, it is possible
that passing to the next order, which takes us away from the classical results, will
make a qualitative difference.

These results that we refer to as “classical” correspond, in the traditional lan-
guage, to Feynman diagrams with zero loops, that is, to the “tree” approximation.
These results do not include the effects of the quantum fluctuations of the fields on
the observables. Hence, the zero-loop approximations do not include the quantum
effects contained in the theory, but only the effects of the classical dynamics of the
fields. In order to include the effect of the quantum fluctuations it is necessary to
do the calculations up to the lowest order of ε which includes diagrams with one
loop. In the case of mR this meant doing calculations up to the first order in ε, but
in order to explore the effects of the quantum fluctuations of the fields on the renor-
malized coupling constant it is necessary to calculate λR to second order in ε, thus
including diagrams with up to one loop. These calculations to order ε2 are consid-
erably longer and more complex than those to the first order, and involve quantities
with strong divergences that behave as either Nd or as N2d, all of which cancel out
completely from the final results. Doing the calculation in the symmetrical phase,
with vanishing momenta on the four external legs, we obtain (problem 3.2.2)

λR =

λ

[
1 − 4

αR − α0

α0
− 9λs2(α0)

]

[
1 − αR − α0

α0

]4 ,

where the dimensionless sum s2(α0) that appears here is given, in terms of the
dimensionless free propagator g0(~n, ~n

′), by
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Figure 3.2.1: Behavior of the sum s2 with N in the case d = 1.

Of course this type of limit constitutes a small subset of all possible alternatives,
in which we approach, in the limit, some other arbitrary point of the critical curve,
rather than the Gaussian point. About these other possibilities our perturbative
approximation has nothing to say, but note that, is we assume that there is at
least one such limit for each one of these points, in which ΛR is finite, it follows
immediately that it is necessary that λR → 0 over the whole critical curve, when
we make N → ∞. This means that it is highly likely that the ensemble of the
renormalized theory becomes Gaussian over the critical curve in the continuum
limit. Since λR is a dimensionless quantity that measures, just like αR, a moment
of the distribution of the renormalized model, it is very reasonable to think that
both should have the same particular type of behavior in the locus of the parameter
plane of the model where the critical transition takes place. In other words, it is
reasonable to think that λR should always go to zero over the critical curve in the
continuum limit, as part of the critical behavior of the model.

We may also try to extract some information of the result in equation (3.2.2)
in the case d ≥ 5. In this case our result seems to indicate that we will have a
finite and non-vanishing λR as a function of α and λ, since the sum s2 is finite and
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Figure 3.2.3: Behavior of the sum s2 with N in the case d = 3.

lattices (problem 3.2.6). The results obtained in this way, for mRL = 1, are shown
in the graphs found in figures from 3.2.1 to 3.2.5. Simple but good-quality curve
fittings, with only a single parameter in the cases d = 1, d = 2 and d = 3, and with
three parameters in the cases d = 4 and d = 5, give the approximate results

s2(d = 1) ≈ 1.0N3,

s2(d = 2) ≈ 1.0N2,

s2(d = 3) ≈ 1.0N,

s2(d = 4) ≈ 1.0 + 0.013 ln(0.93N),

s2(d = 5) ≈ 0.19 + 1.0
1

N
− 0.014

1

N2
.

One may also consider calculating the expectation value of the field and of the
propagator up to order ε2, which corresponds to the inclusion of diagrams with up
to two loops. In some cases one may still be able to extract from these calculations
some useful information such as, for example, for the determination of the critical
curve (problem 3.2.7) and, in some cases, for the determination of the renormalized
mass (problem 3.2.8). However, in general the results of these calculations include



CRITIQUE OF PERTURBATIVE RENORMALIZATION 95

0 10 20 30 40

Number of Vertices

0.0

0.2

0.4

0.6

0.8

1.0

Sum s_2
d=5

Figure 3.2.5: Behavior of the sum s2 with N in the case d = 5.

a perturbative approximation as successful as in the cases of the renormalized mass
and of the expectation value of the field. It allows us to go so far as to formulate the
conjecture that, in any dimension d ≥ 3, in any limit where N → ∞, α(N) → α(c)

and λ(N) → λ(c), where (α(c), λ(c)) is a point over the critical curve, we have λR → 0.
However, it does not allow us to make concrete predictions about the behavior of
the model away from the Gaussian point, as we were able to do for the renormalized
mass and the expectation value of the field. It seems, therefore, that the discussion
of the perturbative approximation should be separated in two parts, the first one
being relative to the calculation of the quantities involving, at most, the second
moment of the distribution of the model, as is the case for vR and αR, while the
second one relates to the quantities involving the higher-order moments, such as λR.

We see that the reason why the approximation does not work so well for the cou-
pling constant is the fact that it is not possible to impose, in this case, the equivalent
of the condition α0 = αR used in the case of the renormalized mass, which trans-
formed the first-order perturbative approximation into a self-consistent Gaussian
approximation. This is due, of course, to the fact that the Gaussian model, the
only one we know how to solve exactly, has no moments of order greater than two,
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re-expand the expressions that appear when one tries to do this, possibly neglecting
higher-order terms in order to keep consistent powers of the expansion parameters.
All this considerably complicates the whole argument and makes it more difficult to
understand what is really going on when one does all this. Let us try to exemplify
this in the context of the calculations that we made here, at first in a very simple
and possibly incomplete way. We have calculated one-loop approximations for αR
and λR, obtaining expressions of the form

αR = fα(α, λ) and λR = fλ(α, λ).

We saw that, while the one-loop propagator is entirely finite, the renormalized mas
parameter being given by

αR = α + 3σ2
0λ,

the one-loop coupling constant contains the divergent sum s2, being given by

λR = λ[1 − 8s2λ].

We proceed then to a change of variables, introducing a new parameter λ0 in place
of λ, defined by the relation

λ = λ0 + 9s2λ
2
0.

Note that this mixes powers of λ and corresponds, therefore, to a reorganization of
the perturbative expansion. Substituting this expression for λ in the result for λR
we verify that the divergent terms of order λ2

0 cancel out, so that we obtain

λR = λ0 − 162s2
2λ

3
0 − 729s3

2λ
4
0.

We now argue that we can neglect in this equation the terms of orders λ3
0 and λ4

0, not
because they are small, since they are clearly divergent in the limit, but under the
allegation that they will cancel out with the remaining higher-order terms that have
not yet been explicitly included in this analysis. This is the first condition involved
in the criterion of perturbative renormalizability in a weak sense, term by term in
the perturbative expansion, without preoccupation with its convergence. What we
are requiring here is that the divergent terms cancel out, not in the original series,
but after its reorganization by the change of variables from λ to λ0. Under these
conditions we have

λR = λ0,

which shows that our change of variables is in fact a change from an expansion in
terms of the basic parameter λ to another expansion in terms of the renormalized
parameter λR. If we now write λ in terms of λR,

λ = λR + 9s2λ
2
R,
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Proceeding with the substitution of λ by λ0 = λR = λR(~k = ~0) we obtain

λR(~k) = λ0

{
1 + 3λ0

[
s2(~0, α0) − s2(~k, α0)

]}
. (3.2.5)

The difference of the two sums can be evaluated for small values of the momentum
~k with the help of approximations by integrals and, doing this in d = 4 and for large
values of N (problem 3.2.10), we obtain a finite result,

λR(~k) = λR

[
1 + 24π2λR

k2

L6m6
R

]
.

We say that the theory is perturbatively renormalizable if it is possible to do this in
each order of perturbation theory, and hence to obtain predictions with arbitrarily
high precision for O, given values of αR and λR. Note that, if we imagine that the
theory is in fact trivial, then we see that this result is not wrong, but that is is simply
rather irrelevant, because in this case the only possible value for λR is zero and the
relation simply shows that λR(~k) = 0 for any ~k. We can see now that there is in fact a
rather subtle problem behind all this. When we do this kind of manipulation we are
giving up obtaining from the theory the relations between (αR, λR) and (α, λ) and,
instead of that, we implicitly assume that certain values of αR and λR are possible in
the context of the model defined in a non-perturbative way by means of the lattice.
This seems to be a very reasonable thing to do in a model which is defined with
two free parameters, and we certainly know which values are or are not possible for
α and λ. However, we do not have now any information about which values are in

fact possible for the renormalized parameter λR, according to the non-perturbative
definition of the model. Therefore, we do now know which values we may in fact
use for λR in this perturbative renormalization scheme.

It is implicitly assumed, in the traditional perturbative renormalization scheme,
that the possible values for (αR, λR) are the same which are possible for (α, λ). How-
ever, in general it is possible that this is not true, and that there are restrictions for
the images of the relations αR(α, λ) and λR(α, λ) determined by the non-perturbative
definition of the models. One restriction that we already know to exist in this model
is that αR ≥ 0, while the parameter α can be either positive or negative on finite
lattices, and must become negative in the continuum limit, as we saw in section 1.3.
Another fact, which is even more important than this one, is that there certainly
are important restrictions for λR in a model that ends up being trivial, in which
the only possible value for λR in the N → ∞ limit is zero. We can always deter-
mine beforehand which values are possible for (α, λ), but we cannot do the same
for (αR, λR). Triviality implies that the usual implicit hypothesis, that the possible
values for (αR, λR) are the same which are possible for (α, λ), is false. To continue
with the usual perturbative renormalization scheme under these conditions can only
produce fictitious results, without any physical or mathematical relevance.

The conclusion is that a model satisfying the criterion of perturbative renormal-
izability is not sufficient to guarantee the usefulness of its perturbative expansion,
renormalized in the usual way. It is also necessary to determine the values which are
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should be calculated to second order, while it is enough to calculate the de-
nominator to first order.

3.2.3. (???) Repeat the calculation of λR to second order proposed in problem 3.2.2,
this time in the broken-symmetrical phase2.

3.2.4. Evaluate the asymptotic behavior of the sum s2 given in equation (3.2.1),
for large values of N , approximating it by integrals over the momenta, as we
did before in the case of the quantity σ2

0 related to the propagator, for each
relevant value of d. Whenever it becomes necessary to use a minimum but
non-vanishing value of the modulus of the momentum as a lower integration
limit, use mR as that value.

3.2.5. Use the result in equation (3.2.4) for the dimensionfull renormalized coupling
constant ΛR in d = 3, as well as the one-loop result for the renormalized mass
mR obtained in section 1.3, in order to exhibit explicitly flows [α(N), λ(N)]
that approach the Gaussian point in the continuum limit and for which both
mR and ΛR have finite and non-vanishing limits. Assume, if necessary, that
ΛR is small compared to mR. The solutions should tend asymptotically to the
line tangent to the critical curve at the Gaussian point, and both α(N) and
λ(N) should go to zero as 1/N . Hint: try

α =
A

N
+

B

N2
and λ =

C

N
.

3.2.6. Write programs to calculate numerically the sum s2 given in equation (3.2.1)
in dimensions from d = 1 to d = 5 and confirm the asymptotic results obtained
in problem 3.2.4. These sums should be calculated with the same numerical
techniques that were used for the calculation of the sums that appear in the
quantity σ2

0, which were calculated in the section in reference [49]. In fact, it
suffices to make small changes in the programs written for that case in order
to produce the programs needed in this case.

3.2.7. (??) Calculate vR to order ε2 and thus obtain the two-loop evaluation of
the equation of the critical curve. Start by calculating vR in the broken-
symmetrical phase and obtain the result

0 =
(
λv2 + α+ 3λσ2

0

) (
3λv2 + α− 2α0 + 3λσ2

0

)

+λ
[
9λv2 + 3(α− α0) + 9λσ2

0

]
α0

∑

~n

g2
0(~0, ~n) + 6λ2α0

∑

~n

g3
0(~0, ~n).

Next evaluate the asymptotic behavior of the new sum that appears,

s3(α0) =
∑

~v

g3
0(~0, ~n) =

1

N2d

∑

~k1,~k2

1

[ρ2(~k1) + α0][ρ2(~k2) + α0][ρ2(~k1 + ~k2) + α0]
.

2Note: the answer to this problem is currently unknown.
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3.2.9. (?) Calculate λR(~k) for equal non-vanishing momenta ~k on all the external
legs, entering in two of them and going out in the other two, using for this
purpose the expression for this quantity that results from problem 3.1.7, to
second order, with the choice α0 = αR, in the symmetrical phase, obtaining
the result quoted in the text,

λR(~k) = λ
{

1 − 3λ
[
2s2(~0, α0) + s2(~k, α0)

]}
,

where the sum s2 is given by

s2(~k, α0) =
1

Nd

∑

~~k1

1

[ρ2(~k1 + ~k) + α0][ρ2(~k1 − ~k) + α0]
.

Note that, since λR(~k) itself is already a first-order quantity in λ, in order
to keep consistent orders of the expansion parameter the numerator of the
equation that defines λR(~k) should be calculated to second order, while it is
enough to calculate the denominator to first order.

3.2.10. Evaluate the asymptotic behavior of the difference of sums given in equa-
tion (3.2.5), for large values ofN , approximating the sums by integrals over the
momenta, as we did before in problem 3.2.4. Whenever it becomes necessary
to use a minimum but non-vanishing value of the modulus of the momentum
as a lower integration limit, use mR as that value.
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